3GPP TSG-RAN WG2 #65bis
R2-092039
23-27 March 2009
Seoul, South Korea
Agenda item:
5.8.6
Source:
Qualcomm Europe

Title:
Inline enumerated ASN.1 types, reconsidered
Document for:
Discussion, Decision
1. Introduction

This document identifies a problem with the code generated when enumerated types are defined “inline” in ASN.1, and discusses possible solutions.

Note that the sample code used in this document was generated before the ASN.1 review CR and is not entirely current. Where the document discusses compiler behaviour, the indicated results are exemplary of particular compiler implementations, not necessarily universal but quite plausibly typical.
2. Discussion

2.1. The root of the problem
The following idiom, in which an enumerated type is defined “inline” as part of a SEQUENCE, is common throughout the corpus of the ASN.1 code:

IE-Type1 ::= SEQUENCE {

field1

Type1,

field2

ENUMERATED { value1, value2 }

}

As one example, consider the following excerpt from SIB3:

speedDependentReselection

SEQUENCE {

mobilityStateParameters

MobilityStateParameters,

speedDependentScalingParametersHyst
SEQUENCE {

q-HystSF-Medium

ENUMERATED {

db-6, dB-4, db-2, db0,

db2, db4, db6},

q-HystSF-High

ENUMERATED {

db-6, dB-4, db-2, db0, db2,

db4, db6}

}

}

OPTIONAL,

-- Need OP

Here the enums for q-HystSF-Medium and q-HystSF-High have no type names of their own, so the generated code includes a type (which in this instance is common for both enums, since their contents are identical; this behaviour is not a feature of the ASN.1 standard and it is not clear how generally it can be expected from compilers) automatically generated by the compiler, as shown overleaf:
typedef enum lte_rrc__enum29 {

 lte_rrc_db_6 = 0,

 lte_rrc_dB_4_1 = 1,
 lte_rrc_db_2 = 2,

 lte_rrc_db0 = 3,

 lte_rrc_db2 = 4,

 lte_rrc_db4 = 5,

 lte_rrc_db6 = 6,

 lte_rrc_spare_1 = 7

} lte_rrc__enum29;

The temporary names of the values are generated in a reasonably clear way from the corresponding names in the ASN.1 source: “db4” becomes “lte_rrc_db4”, “db-2” becomes “lte_rrc_db_2” (the hyphen is translated to an underscore because it would be illegal in a C/C++ identifier), but oddly, the value “dB-4” becomes “lte_rrc_dB_4_1”.
The reason for this seemingly strange translation becomes clearer when we examine another portion of the ASN.1 code, in this case the intra-frequency neighbour cell list:

IntraFreqNeighbouringCellList ::=

SEQUENCE (SIZE (1..maxCellIntra)) OF SEQUENCE {

physicalCellIdentity

PhysicalCellIdentity,

q-OffsetCell

ENUMERATED {

dB-24, dB-22, dB-20, dB-18, dB-16, dB-14,

dB-12, dB-10, dB-8, dB-6, dB-5, dB-4, dB-3,

dB-2, dB-1, dB0, dB1, dB2, dB3, dB4, dB5,

dB6, dB8, dB10, dB12, dB14, dB16, dB18,

dB20, dB22, dB24},

...

}

The inline enum q-OffsetCell requires a generated type name, which may appear (with some irrelevant sections omitted for brevity) as follows:

typedef enum lte_rrc__enum73 {

 lte_rrc_dB_24_1 = 0,

 lte_rrc_dB_22_1 = 1,

 lte_rrc_dB_20_1 = 2,

[values 3 through 9 omitted]

 lte_rrc_dB_5_1 = 10,

 lte_rrc_dB_4_2 = 11,
 lte_rrc_dB_3_1 = 12,

[values 13 through 29 omitted]

 lte_rrc_dB24_1 = 30,

 lte_rrc_spare1_5 = 31

} lte_rrc__enum73;

The interesting point is the value corresponding to “dB-4” in the ASN.: The C field is “lte_rrc_dB_4_2”.

The underlying issue is that enumerated values in C and C++ occupy a global namespace; the name “dB-4” appears in two distinct places in the ASN.1 snippets above, and cannot be translated in C to “lte_rrc_dB_4” since an identifier collision would result. Instead, the compiler generates sequential identifiers for enumerated values with the same name. There is also a third “dB-4” in the inter-frequency neighbour list, resulting in an identifier “lte_rrc_dB_4_3” in the generated code.

Note that this problem does not (need to) occur when the enumerated type is given a name of its own in the ASN.1 source; in these cases, the compiler can disambiguate the identifiers by embedding a prefix derived from the (ASN.1) name given to the enumerated type. Thus the problem discussed here is produced specifically by “inline” enum definitions.

2.2. Problems with extension
The compiler behaviour described in the last section is not unreasonable in itself. The problem arises when we consider the possibility of modifications to the ASN.1 source. Suppose that in the future (e.g., in a noncritical extension), a new enumeration is defined inline in ASN.1 with “dB-4” as one of the values. The generated enum type will have a value of the form “lte_rrc_dB_4_X”; the question is what X will be, and the answer depends on compiler behaviour and is not obviously predictable.

In at least one compiler implementation, if the new enum appears before SIB3 in the ASN.1 source, it will “steal” the identifier “lte_rrc_dB_4_1”. The existing entry in “enum29” will become “lte_rrc_dB_4_2”, the one in “enum73” will become “lte_rrc_dB_4_3”, and so on. On the other hand, if the new enum appears somewhere else in the source, it might leave “enum29” untouched, with the new “dB-4” value becoming “lte_rrc_dB_4_2”, and the other two existing values changed.

The general result is that otherwise backward-compatible changes can cause silent changes in the generated code. In the next section, we will examine the effects on implementations of such changes.
In fact, even changes that appear strictly editorial in the ASN.1 source can cause this cascading effect. For instance, the enumerated values for q-OffsetCell in the intra-frequency neighbour list and offsetFreq in MeasObjectE-UTRA differ
 only in the naming of their spare value: “spare” vs. “spare1”. In the generated code, this difference results in the creation of two separate enumerated types with dynamically generated names. If the naming divergence is later fixed—a backward-compatible change which would excite no particular concern in RAN2—the two enums will merge, causing cascading changes in the generated code.
2.3. Implementation concerns
It is clear from the discussion above that any ASN.1 change that adds or removes an inline enum may cause a cascade of changed type names, requiring corresponding changes to implementation code. This impact is similar to the issue that was already considered for SEQUENCE OF SEQUENCE constructions, where several companies (and ultimately the working group) considered it important enough to warrant action. However, there is a more pernicious aspect to this particular problem.
As is already well known (and evident from the examples shown in Section 2.1), the enumerated types themselves also receive sequentially generated type names. This issue was discussed briefly among companies involved in the ASN.1 review, and deemed not to be a critical problem, since these types should rarely need to be used explicitly, and in cases where such an operation is really necessary (e.g., parameters to a function), the enums can be cast to an unsigned integer type. While this approach sacrifices some type safety for implementation convenience, the tradeoff seems to be acceptable.
However, casting enum types to integers actually makes the problem described in this paper drastically worse. To see why, consider the following snippet of C code:
void f(unsigned x) {

if (x == (unsigned)lte_rrc_dB_4_1) {

doSomething();

}

}

lte_rrc_enum29 enumVal;

f((unsigned)enumVal);
Here the function f() takes some conditional action based on the value of its parameter. Assuming all enum types and values are as described in Section 2.1, the code is apparently written correctly; it compares the parameter (which in this case was of type lte_rrc_enum29 before being cast to unsigned for the function call) to lte_rrc_dB_4_1 (which in fact is one of the possible values of the “enum29” type).
However, suppose the sort of change described in Section 2.2 occurs, introducing a new enumerated type and causing the value for -4 dB in “enum29” to change to lte_rrc_dB_4_2. The code above is now quite wrong semantically; the function compares its argument (of type lte_rrc_enum29) to lte_rrc_dB_4_1 (which is one of the values of the new type).

Without the explicit cast to unsigned, the problematic code would most likely generate a compiler warning (e.g., lint’s “dubious operation on enum”). However, the cast suppresses this warning, meaning that there is no even semi-automated way of detecting the problem. The only evident solution is for a developer to perform a manual inspection of the generated code at each release, to verify that the arrangement of dynamically named enums has not changed; and if it has, to perform a brute-force search of the implementation code base for all values associated with enumerations whose names changed. This process is accident-prone given the “alphabet soup” nature of the generated identifiers, laborious even when successful, and does not inspire heightened faith in the correctness of the resulting code.
2.4. Possible solutions
It is somewhat difficult to see a way forward on this issue that addresses the problem without imposing difficult requirements on either RAN2 or implementation teams. The impact of implementation-side solutions has already been discussed above, and we consider it clearly unacceptable in terms of code reliability (as well as developer sanity). This section therefore discusses measures that can be taken in the specification to ameliorate the problem faced in implementation.

In general, we consider that by maintaining the ASN.1 code for the air interface, RAN2 have assumed what amounts to a software-engineering task. Accordingly, the product needs to meet reasonable standards for software quality, including ease of use and “defensive” design. In other words, if RAN2 (wearing its software-engineering hat) does its job well, implementation teams should find it as difficult as possible to coerce a mistaken result from the ASN.1 code. This is not a normal standardisation criterion—in general, the principle is that the spec should be clearly correct, but not necessarily “idiot-proof”—but in delivering code to be compiled into commercial products, RAN2 has essentially become a member of each product’s development team. Ideally, RAN2 should be “shipping” code that would pass a code review at every one of the companies using it!
Of course the best result would be a body of code in which the “cascading names” problem could be certified never to occur. In order to guarantee this rather idealistic result, RAN2 could attempt to enforce something resembling the following rules:
1. Any addition to the ASN.1 source that includes a new inline enum must take place after all other inline enums.

2. No inline enum may be removed from the source code.

3. Any change to an inline enum that makes its contents identical to that of another enum
 is strictly forbidden.

These rules would be quite difficult to enforce in practice, especially the third one, which requires constant cross-checking against the pool of preexisting types every time a change is made that affects an enumeration in any way (as we saw in Section 2.2, even an “editorial” change by RAN2 standards can cause the problem to appear).

As an alternative, there could be a principle that names of enumerated values must never collide. This approach would remove all namespace collisions between these values, meaning that the generated identifiers are determined entirely by the names of the corresponding values (e.g., “dB-4” would only be allowed to appear once, and would always become “lte_rrc_dB_4”). As described, this alternative sounds quite reasonable; however, it does not take account of some idioms that could naturally occur repeatedly (e.g., “ENUMERATED { true }” or “ENUMERATED { disable, enable }”). A more realistic form of the restriction might be as follows:
Names of enumerated values must never collide, unless the enumerations themselves are identical.
This formulation leaves RAN2 with the delicate task of determining (with high accuracy!) whether pairs of enumerations are really identical. Problems in this respect have already surfaced (like the “spare”-vs.-“spare1” divergence described in Section 2.2), and it is easy to think of cases where others are plausible (would “ENUMERATED { disable, enable }” in one place, and “ENUMERATED { enable, disable }” in another, be easily recognised as a divergence?)—however, this is a task of lesser scope than enforcing the three rules above, for example.
An additional restriction that could reduce the complexity of manual checking would be to require that identical enums must always be given an explicit name. This guideline has been generally followed already after the ASN.1 review, but it is worth noting that many repeated constructions that are common in UMTS (such as “ENUMERATED { true }”) have not been used thus far in the LTE spec, but are also not forbidden by the coding guidelines—in short, constant vigilance would be required to maintain the code in this condition. These various formulations are, however, all variations on the single concept of preventing collisions in the namespace to avoid the need to use the dynamically numbered “disambiguation” suffixes described above. The most extreme form of this rule—hopefully more extreme than is necessary—would be to forbid inline enumerated types entirely, meaning that the generated code could always use an explicit type name from ASN.1 as a “disambiguator”.
As far as we can determine, there is no third option for true prevention of the problem. Any other approach would seem to involve accepting that cascades will occur, and seeking methods to make them less destructive—for instance, careful collation of all CRs with ASN.1 impact after each meeting could allow routine production of a list of the resulting cascades (assuming that all compilers in use have the same name-generation behaviour!), which could then be used by implementation teams as a guide. However, in keeping with the premise that RAN2 are performing software engineering, we would strongly prefer a solution that is less reliant on offloading this work on individual companies’ developers.
3. Conclusion
We suggest that RAN2 should first agree on the need to solve the problem described above.
The analysis in this paper identified two general approaches:

Alternative 1: Develop a set of coding rules, similar to rules 1-3 in Section 2.2, that prevent future extensions to the ASN.1 code from causing naming cascades.

Alternative 2: Discuss and determine an appropriate set of conventions to prevent collisions in the namespace of enumerated values.
Alternative 2 seems the more robust and practical alternative, but requires some discussion to determine what the appropriate conventions are. In either case, the existing ASN.1 code should be brought into compliance with the new conventions.
� In fact, this example no longer applies after the ASN.1 review, when one of the involved enums was given an explicit type of its own. However, the principle of the example is still applicable.

� We are unsure of the expected compiler behaviour if an enum defined inline has identical contents to another enum with an explicit type. It seems highly desirable to avoid needing to know the answer!

