(attachment to Tdoc R2-085362)
Initial discussions:
Dear Sudeep, Nathan a.o,

Thank you for initiating the discussion. Before commenting the detailed questions below, some initial remarks.

1. The need codes only need to clarify the UE behaviour upon absence of the IE. In case an IE is present, the procedural specification and/ or the field description should specify the details of the UE behaviour. In case of absence however, the need code indicates the behaviour (except for the case of OP) i.e.

OC: when absent, UE should continue using the configuration unmodified

OD: when absent, UE should clear the value and discontinue using the associated functionality

(OP: the procedural specification and/ or the field description specify the details of the UE behaviour for the case the IE is absent)

Agree.  In line with current definitions.
2. For external (L1/L2/idle mode) parameters, the UE behaviour is specified elsewhere. In case of absence of L1/L2 parameters, OC or OD should typically be used. In exceptional cases, the UE operation may be more complicated (e.g. the operation may depend on another related parameter). In such case OP may be used. The field description would then refer to the external specification providing further details.

Note: for some parameters it is desirable to have both a 'continue' and a 'discontinue' option. In such case the IE can not be optional but we e.g.

need to introduce a 3-way choice (absent: continue, absent: discontinue,

present: modify)
Agree.  So the current frame work and definitions seem to meet these cases as well.
This mail is getting lengthy. I hope Sudeep can try to summarise

With kind regards, Himke

-----Original Message-----

From: Nathan Tenny [mailto:ntenny@QUALCOMM.COM]

Sent: 09 September 2008 20:13

To: 3GPP_TSG_RAN_WG2@LIST.ETSI.ORG

Subject: Re: [63_LTE_B01] Handling of optionality need in ASN.1: usage of "need"

Hi Sudeep,

Thanks for triggering this discussion.  I think the questions you raise are important, but I wonder if we all understand them the same way---that is, we may need to answer them in terms of "what does the spec need to capture in situation X?" before we can give final "ASN.1-flavoured" answers.

Thus, the answers I'm suggesting below are at a somewhat more abstract level than the original paper.  Perhaps it will turn out that we all agree with each other at this level, and we can then move on to bickering and sniping about the details... :-)

Yes, I think we all largely agree on these and the discussion, I am afraid, is on the details :-)
On 9/8/2008 2:01 PM, PALAT, Sudeep (Sudeep) wrote:

> 1) When is Need required?

I guess we know that my ultimate answer to this would be "always".  What I'm thinking here is that, if a parameter is optional, implementors need to have an unambiguous way to handle the case where it is present and the case where it is absent.
Agree.  But let us defer this until we have worked through the details.  So, sorry, I have to go one level lower and bring the codes into this discussion.
Most of the time, these behaviours are obvious: If the parameter is present, do what the procedural text says; if the parameter is absent, do nothing whatsoever.  We know there are exceptions, of course, and this discussion is largely about how to code the exceptions; but let's call this typical case the "normal" handling of optional parameters.
Agree – most cases, do nothing when absent.  One can then even argue that do we require OC?  It will be required only a) if decide to have a “need” for all optional IEs and b)it helps remove ambiguity for a few cases such as HO (even though I think most of these ambiguous cases can be covered with OP).  But I am not against use of OC.  Again let us defer that until we discuss further?
> 1a) Should all Optional parameters need to have a "need"? 

>

> 1b) what about IEs that are passed to higher layers?

Well, in the sense above, of course all optional parameters need to have

*something* so that a reader of the spec can tell what to do with them.

 This includes the "passthrough" IEs of 1b), but normally I would assume that these IEs always are handled in the normal way---somewhere the spec says "pass this IE to upper layers", and no action is needed on absence.

Ideally, I would like to avoid the situation where the spec contains IEs for which no indication at all is given of what to do with them.  This practice might cause no real problems, but I don't think we should rely on that assumption---at least, the parameter description table should say "this IE is passed to upper layers".

HV> In general we should avoid writing procedural text in the filed

descriptions (as we have stated many times for 25.331, but in the end we did not fully succeed to avoid this). In other words, I would prefer we include such statement in the procedural specification (as is already the case

today)

Most of the discussion above is on the presence.  I agree with Himke that it would be desirable to capture this in the procedural section rather than field description.  But this is only a guidance rather than a strong rule.   So can we leave it at that for now?
> 2)What Need should be used for the different cases?

Without talking about specific need codes, let's look at the expected behaviours when these cases occur:

> 2a) What should be the Need for "lists"?

I think the question is intended to refer to "lists that are stored somewhere", e.g., neighbour cell lists.  There are two possible behaviours on presence of a list ("replace the stored list" or "add to the stored list"), and at least three on absence ("delete the stored list", "do nothing", and "stop operation of whatever feature uses the list").

Some individual examples get very slippery, however, such as the various "DRBs to add/modify/delete" lists.  Note that these lists are not

*themselves* stored in the UE, in the sense that the UE does *not* maintain, e.g., an internal "DRBs to modify" list; rather, it has (one assumes---technically this is an implementation issue, but I think this is a safe assumption about any reasonable implementation) an internal "active DRBs" list, which is *affected* by each of these IEs but is not the *same* list as any of them.  (There may be cases where the internal list ends up with the exact same *content* as one of the IEs, but it's not in a modelling sense the same list.)

The current definition is clear “the UE shall continue to use the existing value” and not the last signalled value.  So I think we are OK here. 

With that issue in mind, I would suggest that the behaviour for "DRBs to add" is exactly the "normal" behaviour I described above: If the IE is present, do what the procedural text says (add its contents to the internal list); if the IE is absent, do nothing (leaving the internal list untouched).

Yes.  Agree; that was my assumption.  But see below for more comments on this point.
I'm sorry that this answer is rather long and dense, but I think it's quite important to get what we mean clear.  I believe the situation I've described above is the biggest point on which Himke and I differ, and as we are both pretty stubborn, we'd better come to an understanding. :-)

“both” should be replaced by “all” above? :-)

HV> Surprisingly, I can agree to the above. If we do not have delta

signalling for the list, than the list is just like any other parameter. If we have delta signalling, which is typically the case for the addModify- and release-lists, we somehow need to clarify the UE behaviour. In line with my previous comment, this would normally be in the procedural specification. In line with my initial remarks, the main thing is what should happen upon

absence:

- absence of addModify: no action i.e. continue with the current list

- absence of release: no action i.e. continue with the current list So, we could apply OC in the above cases. 
Yes, as per definition, and if we decide that all optional parameters require a “need”, then OC is the right code to use.  Even without using OC, as Nathan mentioned, the “normal” behaviour is quite clear.  Does OC help understanding (especially with say, delete lists) or remove ambiguity?
The procedural specification will have some text saying: 'if the IE is present, do so and so'. Lack of procedural text for the casethe IE is absent implies the UE should not do anything. So, one ccould argue that OP is suitable also. On the other hand, it may be better to reserve that value for cases in which there is really specific action upon absence of the IE (although I can't think of any cases right now)
Yes, I think we should not use OP here – unless there is something different from normal behaviour (which is to do nothing).  So I agree, we should reserve OP for that case.
> 2b) What should be the Need for "delta configuration"?

Assuming that absence of a delta configuration means "don't change", I guess these also represent the "normal" handling: If the IE is present, refer to the procedural text; if the IE is absent, do nothing.

Again, the issue is simply one of whether OC should be used.  The arguments are same as for the list case above.

> 2c) If a Need is to be used for transparent IEs, then what should it be?

"Transparent" IEs meaning the ones that are passed untouched to another layer, right? Yes. Here, again, we seem to be in the "normal" behaviour: If the IE is there, refer to the procedural text (or the field description table); if it's not, do nothing (apart from error cases, but if the IEs are truly "transparent", it seems like error checking should be the responsibility of the receiving layer).

That answer assumes that we want to specify "behaviour on presence of the IE" somewhere in the spec, for every IE.  As mentioned above, I think we should, but these IEs seem to be the only ones for which it isn't entirely obvious that we *need* to.

Yes, agree – the use of “need” is not intuitive here and none of the cases really apply (assuming that we agree to specify the behaviour for absence when OP is used).  
> 2d) what should be used for "higher level" IEs?

I don't quite understand the intent of this question (I didn't completely understand it in the tdoc either).  Perhaps you can elaborate with an example or two?
Sorry, to give an example, the phr-Configuration below(to pick a change I made last meeting):

phr-Configuration




SEQUENCE {



periodicPHR-Timer




ENUMERATED {sf10, sf20, sf50, sf100, sf200, 













sf1000, infinity, spare},






prohibitPHR-Timer




ENUMERATED {sf0, sf100, sf200, sf1000},






dl-PathlossChange




ENUMERATED {dB1, dB3, dB6, infinity}




}

OPTIONAL  -- need OC
> 3) Should all IE that are need OP have a behaviour specified either in 

> procedural text or field description section?

I'm skipping this question for now, since it seems to be predicated on a particular choice of semantics for the need codes.
This question comes up in a few cases above.
> 4) Should IEs in SIBs be treated differently?

I don't immediately think so, but I'm open to looking at cases that suggest they should be.

This was just a sort of reminder to check SIB carefully.  I think we can defer this and come back and analyse this once we agree on the dedicated signalling. My initial thinking was that OC and OD may not apply for SIBs.
> 5) And finally, can we agree on the following proposal in the Tdoc

> R2-084282 (based on the reasoning that there is no difference between 

> the three when an IE is present and there is no need to indicate 

> "action on presence" just for OP).

I couldn't read the change since I'm one of those Luddites who insist on reading email in plain text, but I think this question refers to the deletion of "presence or" in the definition of "Need OP".  For me this change is OK.  (I can't remember why I put it in in the first place.)

======

To sum up:

Let's assume that all IEs *always* have behaviour specified on presence (we can discuss the question separately of whether that assumption is right, but I think it can be answered individually).  I see, then, four possible behaviours for an optional IE:

1) The "normal" behaviour described at the beginning: Do nothing at all if the IE is not there.  No changes to internal states or ongoing procedures or functionalities, no changes to stored information, nothing.

Agree.  But we need to still address the questions on whether to use OC for the different cases.
2) "Delete the stored version": This only makes sense for IEs whose contents are stored by the UE (i.e., it does *NOT* apply to the "DRB list to X" IEs, as described above); if the IE is absent, delete the stored version.

Agree.
3) "Stop operation": This case covers stateful features (like CPC in UMTS); it makes sense only when the IE is clearly associated with a specific functionality that is either on or off, and if the IE is absent, the receiver should switch that functionality off.  (FFS whether this also includes deleting the parameters for the functionality.)

See below.
4) "Do something else", i.e., refer to the procedural text to explain what to do if the IE is absent.  This case ought to be rare; as far as I remember, we found only one or two examples in UMTS.  When it is used, I'd be happiest if there were always a clause called something like "Actions upon absence of IE such-and-such", but I guess the field description table would be an acceptable alternative.

HV> As mentioned before, I think this should be in the procedural

specification. Note that we agreed not to have a general section on action upon absence/ presence for each IE (mainly to avoid too much seperation).

Anyhow, I agree this should be infrequent
Agree.  As per the current definitions, these would be OP. If we also agree that this would be the only case where we use OP, then this would then mean OP will only be used rarely.  
I don't care what code names we use for these four behaviours.  It's not completely clear to me if 2 and 3 need to be separate---today it seems that we have them conflated under "OD", which may be one of the big sources of confusion.

HV> I assume that 2 and 3 typically come together. I would appreciate to

know if there are cases in which this is not appropriate. So my assumption is that the 3 codes describing the UE action upon IE absence are sufficient.
Yes, I agree with Himke for now.  Let us see if there are concrete cases where we need to differentiate between 2 and 3.   Some of these cases would be covered by what I was calling “higher” level IEs.
Thanks

        NT 

Further discussions:

Ericsson expressed the following view:

It looks like the discussion is converging, but maybe except few details are still not very clear. 

for the 'high-level' IEs, it is actually not easy to set a clear rule when to use the Need tag. these IEs are usually grouped by the functionality supported. when one functionality is enabled, it does not mean all parameters related should be present because it could be that only a subset of the functionality is needed. so for these IEs, the Need tag on both the Group IE and individual IEs probably has to be considered on a case by case basis. 

for IEs in SIBs, most optional IEs should be perhaps Need OP because UE behaviour should be made clear when the IEs are either present or absent (except some IEs are already using OD, e.g. access barring related

parameters.) some of these IEs may be signalled in the dedicated signalling. then for those IEs in the dedicated signalling it can be Need OC.

then for IEs only associated with a certain functionality that could be either on or off, it seems right now there is no clear rule how to use the Need tag. one example is the dedicated UL power control RNTIs (in TPC-PDCCH-Configuration). See R2-083945 agreed at last meeting, only when TPC-PDCCH-Configuration is enabled, the parameters related are present. a CHOICE is introduced to either enable or disable the TPC-PDCCH-Configuration. The current Need OC/OD seems not appropriate to be used here because e.g. for OC it means if the IE is absent, the UE continues the existing valus and the associated functionality.

for transparent IEs and List IEs, if the definition of Need OC is expanded by saying that the absence of an IE means also no UE action,

then Need OC could be used for these IEs as well.   

despite some confusions regarding the Need tag, we still think the Need tag is useful, especially the Need OC complements very well with the procedural text even though it sometimes only means the 'normal'

handling, i.e. no action. therefore removing of the Need OC should not be considered at all at this time. further we just want to point out that besides the Need tag, the spec is also using a Condition tag. The

Condition tag has been some kind of expanding of the Need tag.  

NEC’s comments:

Thank you for providing this nice summary of this long discussion. 

I just would like to be sure the outcome so far is well understood: except for the use of OC which needs further thinking, the current definitions of the need codes are OK. Is this correct? 

In addition, it is also concluded that for transparent IEs, no need code is to be used. Is this correct?

Besides, from the last RAN agreements, it will be anyway needed to perform a full review of the signalling after the RAN2#64 meeting. Therefore maybe the details of this issue can be finalized during this review (hence after RAN2#64)?

Saumsung subsequent comments:

Is the main remaining issue now whether we keep the OC code? I don't have a strong opinion, but one advantage of having a code is that we still distinguish the following 2 cases:

- we did not concluded yet/ or fogot to clarify whether or not it should be 'just optional i.e. do nothing' and

- we discussed and concluded that it should be 'just optional i.e. do nothing'

To me this would already be sufficient reason for having a code OC. I agree that for parameters that we just forward to upper layers it seems strange to say 'continue using the current value'. I guess we can simply generalise the description of OC to cover this by saying 'do nothing e.g. continue using the current value.

I fully agree with Sudeep that we should try to conclude this (I hope we are almost there) and immediately start implementing.

Qualcomm:

> Fundamentally, the debate is on OC. a) Should all Optional IEs require 

> a "need" - if yes (Nathan's preference), we will be using OC for most 

> of these "do nothing on absence" cases.

I agree.

> b) Or should OC be used only for those cases (my preference - not

> strong!) where there is confusion on whether to continue or not (for 

> example these may be cases where UE may actually have to do something 

> to continue to use the currently stored configuration such as after a 

> HO).

My concern here is that if we do not *always* use a need indicator, there is no trivial way to distinguish between "the need is supposed to be obvious" and "the need indicator is missing".  This is particularly a concern for implementors, but it would also affect the review process in a few months.

> If we look at it from UE behaviour point of view (as in Nathan's 

> email), by reserving OC for these cases, I guess we are creating an 

> additional behaviour. Do we need to differentiate this behaviour?

It's not quite clear to me what the additional behaviour is.  If by "OC"

we mean "do nothing if the IE is absent", is "do nothing" really an additional behaviour?

On the additional question of SIBs, I think Mikio provided an argument that "OD" was the right need for the access class barring parameters in the SIBs.  But in general, I guess most parameters in the SIBs would always have the semantics "if absent, don't do whatever this parameter would have told you to do", which sounds like OC---however, there may be cases where we have to think hard about whether absence means the same thing at initial acquisition and at reselection.

And finally, on the "higher level IEs" question, as in the example Sudeep gave for phr-Configuration, I find this usage very difficult to understand.  The example was

phr-Configuration
SEQUENCE {


some

Stuff,


someMore
OtherStuff

} OPTIONAL -- Need OC

Leaving aside the question of the comment, I don't think the ASN.1 is even syntactically correct, is it?  In my understanding you can't make the entire definition of an IE OPTIONAL.  If the intent is "when phr-Configuration appears, it consists of this one sequence element, which is always optional", then we would need something like

phr-Configuration
SEQUENCE {


realIE-Contents

SEQUENCE {



some

Stuff,



someMore
OtherStuff


} OPTIONAL -- Need OC

}

in which the IE "phr-Configuration" is a SEQUENCE with a single element, which itself is optional.

I'll try to catch up now with the other back email and see if I have anything to add.

Samsung:

Some remarks:

A) On the OC

I already expressed the same opinion as Nathan before i.e. use a need code always and just change the current definition to do nothing e.g. continue using existing configuration

B) On the IE nesting

We use nesting for different purposes i.e. for structuring purposes and for signalling optimisation (i.e. to avoid presence bits for each element). For the latter case, I assume we do this primarily for the case where the need code of all 'children' is OC (not sure if there is much use for other cases).

Some further analysis may be needed for the case we introduce nesting for structuring purposes. Maybe we can only apply optionality at the higher level if the need code is the same for all childeren. It is not entirely clear to me if this would be a serious constraint in real life.

