3GPP TSG-RAN WG2 Meeting #61
R2-080693
11th – 15th February 2008

Sorrento, Italy
Agenda item:

5.1.2.4
Source:
ASUSTeK

Title:
HARQ reordering for RLC retransmitted PDUs
Document for:

Discussion and Decision

1
Introduction

In the email discussion on RLC AM receive operations after RAN2 #60bis [1], Questions 4 and 5 were raised without reaching a consensus on the solution of it.  These two questions trigger our consideration on HARQ reordering and missing detection of RLC retransmitted PDUs.  Since a RLC status report is also transmitted through HARQ process in MAC, the status report will experience HARQ retransmissions as the RLC data PDU does.  Thus, without TSN as an indication, the RLC transmission sequence, i.e., the HARQ transmitting order of retransmitted AMD PDUs and newly transmitted AMD PDUs, is unknown to the receiver.  

To make things more complicate, the transmitter is allow to re-segment a NACKed AMD PDU before retransmission.  In addition to all the complication, LTE stage-2 specification specifies that the number of re-segmentations is not limited.  This feature implies that, although probability of HARQ loss is low, HARQ loss of retransmitted RLC data PDU need be considered.  In other words, we need detect missing RLC retransmissions in RLC layer.

This document addresses the issue of reordering for RLC retransmissions and tries to propose some possible solutions.

2.
Issue of HARQ reordering for RLC retransmissions
In UMTS, HARQ reordering is based on TSNs, which indicate the HARQ transmitting order of the first transmission of each packet.  For an RLC retransmitted AMD PDU, a new TSN is allocated in UMTS so that HARQ reordering function can work well with window-based and/or timer-based reordering schemes.  In LTE, there is no TSN so that when retransmitted RLC data PDUs are mixed up with new AMD PDUs in the transmission stream, there is no way for the receiver to exactly distinguish the order of HARQ first transmissions between RLC retransmissions and RLC new transmissions.  Without this information, a straightforward timer-base reordering may end up with negatively acknowledging a RLC data PDU, which is still under HARQ retransmission.  Figure 1 shows an example of typical transmission scenarios.  Each block represents an AMD PDU and the number in each block represents the SN of the AMD PDU.  The order in the receiving stream is due to HARQ retransmission variability.

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	2
	2
	17
	18
	19
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


 



	
	
	0
	1
	3
	4
	
	7
	5
	6
	9
	8
	10
	11
	12
	13
	14
	16
	
	
	17
	15
	2
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	
	
	
	
	
	
	
	
	



In Figure 1, when receiving SN = 3, T_reordering starts due to gap at SN = 2.  When receiving SN=6, T_reordering expires and SN=2 is NACKed.  When receiving SN=9 (as shown in the reordering queue), T_reordering starts at least due to gap at SN = 8. 

Then, when receiving SN=8, Question 5 of the email discussion [1] comes: shall we stop T_reordering or not?  If not, then, when receiving SN=13, T_reordering will expires and SN=2 will be NACKed again while SN=2 is still under RLC retransmission.  Else if we stop T_reordering when receiving SN=8, the question becomes: when SN=2 shall be NACKed if it is unfortunately missing again?

Figure 1 shows the issue when mixing up RLC new transmission with RLC retransmission in RLC HARQ reordering function.  In other words, a data PDU under retransmission may be negatively acknowledged prematurely.

This issue comes from the fact that there is no TSN in the HARQ to indicate the order of HARQ first transmission of each packet, i.e. the order of RLC transmission sequence.  For example, in Figure 1, if the receiver “knows” the RLC transmission sequence, the correct timing to trigger T_reordering for retransmitted SN=2 would be at the time when receiving SN=17.

Note that, without TSN, i.e., without the information of RLC transmission sequence, window-based reordering scheme will not work well either if mixing up RLC new transmission with RLC retransmission in RLC HARQ reordering function. 

3. Proposals to solve the issue

3.1
Status prohibit function

From Figure 1, one can see that mixing up retransmissions with new transmissions can bring complex scenarios already. If a second NACK is reported while retransmission of previous NACK is undergoing, the situation will become more complex.  If status report is prohibited before retransmission of the previous NACK(s) finishes, the situation is easier to handle.  Currently, status prohibit function is configurable.  We propose to make it mandatory.

Proposal 1: Status prohibit function is mandatorily supported. 

Some improvements to the status prohibit function are possible.  For example, after a status report containing no NACK is sent, there is no concern of double NACKs with the next status report.  Therefore, the next status report, if triggered, need not be prohibited so that ARQ delay can be minimized.

Proposal 2: After a status report containing only ACK, i.e. no NACK is contained in a status report, the next status report is not prohibited.

Besides, if all the NACKs in the previous status report are received, there is no need to prohibit status report anymore so that the prohibit timer can be stopped.

Proposal 3: if all the NACKs in a status report, which triggered the status prohibit timer, are received, stop the status prohibit timer.

3.2
NACK list

One straightforward way to solve the problem is to add TSN in MAC or RLC so that HARQ reordering can base on TSN. However, the impact to the data format is so high that we don’t think this is a good solution at this time frame.

Under the constraint of no TSN, i.e. no information of RLC transmission sequence, the receiver can still handle HARQ reordering for retransmissions and new transmissions separately because the transmitter schedules both retransmissions and new transmissions in sequential order.  In other words, the receiver can maintain a NACK list, which contains SNs of missing AMD PDUs and SNs and byte positions of missing segments that have been NACKed in a previous status report. The SNs and byte positions in the NACK list are in sequential order.  When an RLC data PDU is received and some sequentially earlier segments (i.e. gaps) are not received, a timer is started.  When the timer expires, if the gaps are not received yet, the gap is NACKed in a status report.  To distinguish from T_reordering for new transmission, the timer for retransmission is named as T_reordering_retransmit, or simply, T2, which has the same duration as T_reordering.

With the NACK list to perform HARQ reordering for RLC retransmissions, double NACKs can be avoided robustly. In addition, the maintenance of VR(MS) is simplified because only receiving new AMD PDUs triggers update of VR(MS).

Proposal 4a: The receiver maintains a NACK list to perform HARQ reordering for RLC retransmissions.

One alternative of Proposal 4a is to rely upon status prohibit timer.  Rather than performing HARQ reordering for retransmissions, i.e. those in the NACK list, the receiver checks whether there are still missing AMD PDUs or PDU segments inside the status transmitting window when the status prohibit timer expires.  It there are, the missing parts are NACKed in a status report. 

Proposal 4b: After status prohibit timer expires or stops, all missing AMD PDUs and PDU segments inside the status transmitting window are NACKed in a status report.

Proposal 4a and Proposal 4b are two options to choose.  We prefer Proposal 4b because it is simpler.  However, with Proposal 4b, configuration of the duration for the status prohibit timer need ensure that retransmission of the NACKs should finish before the status prohibit timer expires.

4. Conclusions

The group is asked to evaluate the issue itself and the presented proposals.  A text proposal based on Proposal 1, 2, 3 and 4b is attached herein.

5.


References

[1] R2-080624  “E-mail discussion on RLC AM receive operations”, E-mail Rapporteur, RAN2 #61.

6. 

Text Proposal

5.1.3
AM data transfer

5.1.3.1
Transmit operations

5.1.3.1.1
General

The transmitting side of an AM RLC entity shall maintain a transmitting window according to state variables VT(A) and VT(MS) as follows:

· a SN falls within the transmitting window if VT(A) <= SN < VT(MS);

· a SN falls outside of the transmitting window otherwise.

The transmitting side of an AM RLC entity shall maintain a STATUS receiving window according to state variables VT(A) and VT(S) as follows:

· a SN falls within the STATUS receiving window if VT(A) <= SN < VT(S);

· a SN falls outside of the STATUS receiving window otherwise.

The transmitting side of an AM RLC entity shall not deliver to MAC any RLC data PDU whose SN falls outside of the transmitting window.

When delivering a new AMD PDU to MAC, the transmitting side of an AM RLC entity shall:

· set the SN of the AMD PDU to VT(S), and then increment VT(S) by one.

The transmitting side of an AM RLC entity can receive a positive acknowledgement (confirmation of successful reception by its peer AM RLC entity) for a RLC data PDU by the following:

· STATUS PDU from its peer AM RLC entity.

When receiving a positive acknowledgement for an AMD PDU with SN = VT(A), the transmitting side of an AM RLC entity shall:
· if positive acknowledgements have been received for all other AMD PDUs whose SN fall within the STATUS receiving window, set VT(A) equal to VT(S);

· otherwise, set VT(A) equal to the SN of the AMD PDU with the smallest SN, whose SN falls within the STATUS receiving window and for which a positive acknowledgment has not been received yet.

5.1.3.2
Receive operations

5.1.3.2.1
General

The receiving side of an AM RLC entity shall maintain a receiving window according to state variables VR(R) and VR(MR) as follows:

· a SN falls within the receiving window if VR(R) <= SN < VR(MR);

· a SN falls outside of the receiving window otherwise.

The receiving side of an AM RLC entity shall maintain a STATUS transmitting window according to state variables VR(R) and VR(MS) as follows:

· a SN falls within the STATUS transmitting window if VR(R) <= SN <= VR(MS);

· a SN falls outside of the STATUS transmitting window otherwise.

When receiving a RLC data PDU from lower layer, the receiving side of an AM RLC entity shall:

· either discard the received RLC data PDU or place it in the reception buffer (see sub clause 5.1.3.2.2);

· if the received RLC data PDU was placed in the reception buffer:

· advance the receiving window (i.e. update VR(R) and VR(MR)) and update VR(R-SO) as needed (see sub clause 5.1.3.2.3);

· advance the STATUS transmitting window (i.e. update VR(MS)) as needed (see sub clause 5.1.3.2.4);

· start/stop T_reordering and update VR(X) as needed (see sub clause 5.1.3.2.5).

When T_reordering expires, the receiving side of an AM RLC entity shall:

· advance the STATUS transmitting window (i.e. update VR(MS)) as needed (see sub clause 5.1.3.2.4);

· start T_reordering if needed and update VR(X) as needed (see sub clause 5.1.3.2.5).

Whenever possible, the receiving side of an AM RLC entity shall:

· reassemble RLC SDUs from any byte segments of AMD PDUs with SN < VR(R) and byte segments numbers 0 to VR(R-SO) – 1 of the AMD PDU with SN = VR(R), remove RLC headers when doing so and deliver the reassembled RLC SDUs to PDCP.

5.1.3.2.2
Discarding of received RLC data PDU

When a RLC data PDU is received from lower layer, where the RLC data PDU contains byte segment numbers y to z of an AMD PDU with SN = x, the receiving side of an AM RLC entity shall:

· if x falls outside of the receiving window; or

· if byte segment numbers y to z of the AMD PDU with SN = x have been received before:

· discard the received RLC data PDU;

· otherwise:

· place the received RLC data PDU in the reception buffer;

· if some byte segments of the AMD PDU contained in the RLC data PDU have been received before:

· discard the duplicate byte segments.

5.1.3.2.3
Advancing the receiving window and updating VR(R-SO)

When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if all byte segments of the AMD PDU with SN = VR(R) are received:

· update VR(R) to the SN of the first not (completely) received AMD PDU with SN > current VR(R).

The receiving side of an AM RLC entity shall:

· always set VR(MR) to VR(R) + AM_Window_Size;

· always set VR(R-SO) to the byte segment number of the first not received byte segment of the AMD PDU with SN = VR(R).
5.1.3.2.4
Advancing the STATUS transmitting window

When an AMD PDU with SN = x is placed in the reception buffer, the receiving side of an AM RLC entity shall:
-
if x = VR(MS1);

-
update VR(MS1) to the SN of the first not received AMD PDU with SN > current VR(MS1);
· 
· 
· 
When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS1) to the SN of the lowest not received AMD PDU with SN > VR(X).

NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
5.1.3.2.5
Starting/stopping T_reordering and updating VR(X)
When an AMD PDU with SN = x is placed in the reception buffer, after any necessary advancing of the receiving window, the receiving side of an AM RLC entity shall:

· if T_reordering is not running:

· if x > VR(MS1): /* comment: if there are one or more gaps in the reordering window. */
· start T_reordering;

· otherwise (i.e. if T_reordering is running):

· if VR(X) falls outside of the receiving window; or

· if VR(X) falls inside of the status transmitting window (i.e. if VR(R) <= VR(X) < VR(MS1) ):

· stop and reset T_reordering;

· if the SN of any received RLC data PDU > VR(MS1); or

· 
· start T_reordering;

· 
·  /*comment: If T_reordering is not running, VR(X) will not be used. Therefore, whether VR(X) is set to NULL or not makes no difference. */
When T_reordering expires, the receiving side of an AM RLC entity shall:

· if the SN of any received RLC data PDU > VR(MS1); or /* Comment: if there are one or more gaps in the reordering window. */
· 
· start T_reordering;

· 
· 
When starting T_reordering, the receiving side of an AM RLC entity shall:

· update VR(X) to the SN of the AMD PDU with the highest SN among received AMD PDUs.


· 
· 
· 
· 
· 
· 
Editor's note: With the current text, T_reordering can be triggered even for a missing AMD PDU for which a status report has already been triggered. E.g. when T_reordering expires and SN = VR(R) is detected as lost, T_reordering will be triggered again with the reception of another AMD PDU with SN > VR(R). It should be discussed if this is the desired behaviour or not.

Editor's note: It is intended to specify details regarding RLC data PDU generation and delivery to lower layer at the transmitter and RLC data PDU reassembly, duplicate detection, reordering and loss detection, and RLC SDU reassembly and delivery to upper layers at the receiver in this section.

5.2
ARQ procedures

ARQ procedures are only performed by an AM RLC entity.

5.2.1
Retransmission

The transmitting side of an AM RLC entity can receive a negative acknowledgement (notification of reception failure by its peer AM RLC entity) for an AMD PDU or a portion of an AMD PDU by the following:

· STATUS PDU from its peer AM RLC entity;

· HARQ delivery failure from the transmitting MAC entity.

Editor's note: It is reminded that the word "can" was deliberately chosen in the past since there were some doubts on whether HARQ deliver failure from the transmitting MAC entity should really trigger a retransmission or not. This phrase will be rephrased later when agreements are reached on this issue.

When receiving a negative acknowledgement for an AMD PDU or a portion of an AMD PDU, the transmitting side of the AM RLC entity should:

· If the SN of the corresponding AMD PDU falls within the STATUS receiving window:
· Consider the AMD PDU or the portion of the AMD PDU for which a negative acknowledgement was received for retransmission.
Editor's note: Conditions when the RLC data PDU should not be considered for retransmission should be specified when identified. Also, the word "consider" is not appropriate as a specification text, and will be improved once the RLC architecture model is agreed.

When retransmitting an AMD PDU, the transmitting side of an AM RLC entity shall:

· If the AMD PDU can entirely fit into the TB of the particular transmission opportunity, deliver the AMD PDU as it is except for the P field (the P field should be set according to sub clause 5.2.2);

· Otherwise, segment the AMD PDU and form a new AMD PDU segment which will fit into the TB of the particular transmission opportunity, in which case:

When retransmitting a portion of an AMD PDU, the transmitting side of an AM RLC entity shall:

· Segment the portion of the AMD PDU as necessary and form a new AMD PDU segment which will fit into the TB of the particular transmission opportunity, in which case:

When forming a new AMD PDU segment, the transmitting side of an AM RLC entity shall:

· Only map the Data field of the original AMD PDU to the Data field of the new AMD PDU segment;

· Set the header of the new AMD PDU segment in accordance with the description in sub clause 6.:

Editor's note: It is intended to specify more details as necessary regarding which RLC PDUs (or portions of them) should be considered for retransmission at the transmitter in this section.

5.2.2
Polling

An AM RLC entity can poll its peer AM RLC entity in order to trigger STATUS reporting at the peer AM RLC entity.

Triggers to initiate polling include:

· Transmission of last data in the buffer:

· The transmitting side of an AM RLC entity shall set the P field of an RLC data PDU to "1" if both the transmission buffer and the retransmission buffer becomes empty (excluding transmitted RLC data PDU awaiting for acknowledgements) after the transmission of the RLC data PDU;

· Expiry of poll retransmit timer:

· The transmitting side of an AM RLC entity shall:

· start T_poll_retransmit upon setting the P field for a RLC data PDU to "1", and store the SN of the corresponding RLC data PDU in memory;

· stop T_poll_retransmit when it receives either a positive or negative acknowledgement for the corresponding RLC data PDU with the SN it stored in memory;

· when T_poll_retransmit expires:

· if both the transmission buffer and the retransmission buffer are empty (excluding transmitted RLC data PDU awaiting for acknowledgements):

· construct an AMD PDU segment without any data field (i.e. only header) and set the P field to “1”;

· else:

· set the P field of the RLC data PDU to be transmitted in the next transmission opportunity to “1”.

· Every Poll_PDU PDUs:

· The transmitting side of an AM RLC entity shall set the P field of an AMD PDU to “1” for every Poll_PDU new AMD PDUs that it forms.

Editor's note: Whether or not the polling trigger “Every Poll_PDU PDU” is configurable or not is FFS. It has been decided that other polling triggers are always enabled.

5.2.3
Status reporting

An AM RLC entity sends STATUS PDUs to its peer AM RLC entity in order to provide positive and/or negative acknowledgements of RLC PDUs (or portions of them).

 /*Comment: Proposal 1.*/
Triggers to initiate STATUS reporting include:

· Polling from its peer AM RLC entity:

· The receiving side of an AM RLC entity shall trigger a STATUS report when it receives a RLC data PDU with the P field set to "1" and after the RLC data PDU is inside the status transmitting window.  /*Comment: change this stage-2 statement to a stage-3 statement.*/
· Detection of reception failure of an RLC data PDU when T_reordering expires:

· The receiving side of an AM RLC entity shall trigger a STATUS report when T_reordering expires.

· Detection of reception failure of an RLC data PDU when T_status_prohibit expires:

· The receiving side of an AM RLC entity shall trigger a STATUS report if VR(R)≠VR(MS1) when T_reordering expires. /*Comment VR(R)≠VR(MS1) implies reception failure inside status transmitting window. This is due to Proposal 4b. */
NOTE:
The expiry of T_reordering triggers both VR(MS) to be updated and a STATUS report to be triggered, but the STATUS report shall be triggered after VR(MS) is updated.
When STATUS reporting has been triggered, the receiving side of an AM RLC entity shall:

· if T_status_prohibit is not running:

· at the first transmission opportunity indicated by lower layer (i.e. MAC), construct a STATUS PDU and deliver it to lower layer (i.e. MAC);

· else:

· at the first transmission opportunity indicated by lower layer (i.e. MAC) after T_status_prohibit expires, construct a STATUS PDU and deliver it to lower layer (i.e. MAC);

NOTE:
If T_status_prohibit is not running at the time STATUS reporting was triggered, the STATUS PDU size shall be accounted for in the Buffer Status Report [3] from the time STATUS reporting was triggered. If T_status_prohibit is running at the time STATUS reporting was triggered, the STATUS PDU size shall be accounted for in the Buffer Status Report [3] from the time T_reordering expires.
When a STATUS PDU has been delivered to lower layer (i.e. MAC), the receiving side of an AM RLC entity shall:

· if the STATUS PDU contains at least a NACK_SN field:  /*Comment: Proposal 2.*/
· start T_status_prohibit;

· if all RLC data PDUs that were negatively acknowledged in the STATUS PDU are received:

· stop T_status_prohibit. /*Comment: Proposal 3.*/
When constructing a STATUS PDU, the AM RLC entity shall:

· set ACK_SN to VR(MS);

· for each AMD PDU with SN which falls within the STATUS transmitting window and have not been completely received yet:

· if no byte segments have been received yet for an AMD PDU:

· include in the STATUS PDU a NACK_SN which is set to the SN of the AMD PDU;

· else

· include in the STATUS PDU a set of NACK_SN, SOstart and SOend for each consecutive byte segments of the AMD PDU that has not been received yet.

7
Variables, constants and timers

7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables (i.e. VT(A), VT(MS), VT(S), VR(R), VR(MR) and VT(US)) are non-negative integers.

All state variables related to AM data transfer (i.e. VT(A), VT(MS), VT(S), VR(R) and VR(MR)) can take values from 0 to 1023. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 1024).

All state variables related to UM data transfer (i.e. VT(US)) can take values from 0 to [2[configured UM SN field length] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[configured UM SN field length]).

AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 1023 for AMD PDU and 0 to [2[configured UM SN field length] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used. VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 1024 <= [SN – VR(R)] modulo 1024 < [VR(MR) – VR(R)] modulo 1024).

The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window and the STATUS receiving window). It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU, and it serves as the higher edge of the STATUS receiving window. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window and the STATUS transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(R-SO) – Receive state variable (segment offset)

This state variable holds the position of the lowest not received byte segment of the AMD PDU with SN = VR(R). It is initially set to 0.

c) VR(MR) – Maximum acceptable receive state variable

This state variable equals VR(R) + AM_Window_Size, and it serves as the higher edge of the receiving window.

d) VR(X) – T_reordering state variable

This state variable holds the value of the SN of the RLC data PDU which triggered T_reordering or those following which are received in-sequence. It is initially set to NULL.



f) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the value of the highest SN that can be included in a STATUS report, i.e. it serves as the higher edge of the STATUS transmitting window. It is initially set to 0.

g) VR(MS1) – Maximum STATUS transmit higher edge state variable

This state variable holds the value of the SN following the highest SN that can be included in a STATUS report, i.e. it serves as the higher edge of the STATUS transmitting window. It is initially set to 0. /*Comment: VR(MS1) = VR(MS) + 1.  The intention of introducing VR(MS1) is to keep the window higher edges being consistent, i.e. the higher edge is the first SN that is outside the window.*/
Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering, i.e. it serves as the lower edge of the reordering window. It is initially set to 0.

b) VR(UMR) – UM maximum acceptable receive state variable

This state variable equals VR(UR) + UM_Window_Size, and it serves as the higher edge of the reordering window.

c) VR(UX) – UM T_reordering state variable

This state variable holds the value of the SN of the UMD PDU which triggered T_reordering. It is initially set to NULL.

7.2
Constants

a) AM_Window_Size

This constant is used by both the transmitting side and the receiving side of each AM RLC entity to calculate VT(MS) from VT(A), and VR(MR) from VR(R). AM_Window_Size = 512.

b) UM_Window_Size

This constant is used by the receiving UM RLC entity to calculate VR(UMR) from VR(UR). UM_Window_Size = 16 when a 5 bit SN is configured and UM_Window_Size = 512 when a 10 bit SN is configured.

c) Poll_PDU

This constant is used by the transmitting side of each AM RLC entity for which the polling trigger “Every Poll_PDU PDU” has been configured (see sub clause 5.2.2).

7.2
Timers

a) T_poll_retransmit

This timer is used by the transmitting side of an AM RLC entity in order to retransmit a poll (see sub clause 5.2.2).

b) T_reordering

This timer is used by the receiving side of an AM RLC entity and receiving UM RLC entity in order to detect loss of RLC PDUs at lower layer (see sub clauses 5.12.2 and 5.1.3.2). If T_reordering is running, T_reordering shall not be started additionally, i.e. only one T_reordering is running at a given time.

b) T_status_prohibit

This timer is used by the receiving side of an AM RLC entity in order to prohibit transmission of a STATUS PDU (see sub clause 5.2.3).

Editor's note: It is intended to specify necessary details in this section as discussions proceed, but it is foreseen that at least discussions regarding transmit/receive/reordering window state variables, polling/STATUS reporting related state variables, polling/STATUS reporting/reordering/SDU discard related timers are needed.








NACK SN = 2



Figure 1



T_reordering expires

 



T_reordering starts

 



Reordering queue when receiving 9 



Receiving stream 





Tx 























