
3GPP TSG RAN WG2 #61
R2-081180
11th – 15th February 2008
Sorrento, Italy
Agenda item:

5.1.2.4
Source:
NTT DoCoMo, Inc. (E-mail rapporteur)
Title:
E-mail discussion on RLC AM receive operations
Document for:

Discussion and Decision
1
Introduction

The intention of this email discussion was to review the current description in TS 36.322 regarding RLC AM receive operations, especially on the updating of VR(X) and VR(MS), and starting / stopping of T_reordering.
The email rapporteur kicked-off the email discussion with 4 specific questions on January 28th, and further raised 3 more questions on January 29th. The 7 questions are described in section 2 of this document. Discussion took place until February 4th on the 7 questions raised by the email rapporteur and some other issues raised during the email discussion by participating companies. The summary of the discussion and the suggested way forwards are provided in section 3 of this document.

Samsung, ASUSTeK, LGE, NTT DoCoMo, and Ericsson contributed to this email discussion.

2
Questions to answer
The figures in this section provide the basis for the email discussion. Some questions are provided after each figure.

In the figures, the status of received AMD PDUs at different time instants are shown, where white boxes indicate that the PDU is not received and blue boxes indicate that the PDU is received. Also, the corresponding values of VR(R), VR(MS) and VR(X), and the status of T_reordering which results from the current text in TS 36.322 are shown below each time instants.

2.1 On Figure 1: Basic behaviour and “small issues”

[image: image1.emf]SN = 0

VR(R) = 0

VR(MS) = 0

VR(X) = NULL

T_reordering inactive

SN = 1

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

SN = 7

SN = 0

VR(R) = 1

VR(MS) = 0

VR(X) = NULL

T_reordering inactive

SN = 1

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

SN = 7

SN = 0

VR(R) = 1

VR(MS) = 0

VR(X) = 3

T_reordering started

SN = 1

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

SN = 7

SN = 0

VR(R) = 1

VR(MS) = 0

VR(X) = 4

T_reordering running

SN = 1

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

SN = 7

SN = 0

VR(R) = 2

VR(MS) = 1

VR(X) = 4

T_reordering running

SN = 1

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

SN = 7

SN = 0

VR(R) = 5

VR(MS) = 4

VR(X) = NULL

T_reordering stopped

SN = 1

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

SN = 7

time = t0time = t1time = t2time = t3time = t4time = t5

VR(R) = 5

VR(MS) = 4

VR(X) = 6

T_reordering started

SN = 4

SN = 5

SN = 6

SN = 7

SN = 8

SN = 9

VR(R) = 5

VR(MS) = 4

VR(X) = 6

T_reordering running

VR(R) = 5

VR(MS) = 4

VR(X) = 6

T_reordering running

VR(R) = 5

VR(MS) = 6

VR(X) = 9

T_reordering expires

T_reordering restarted

VR(R) = 5

VR(MS) = 6

VR(X) = 10

T_reordering running

VR(R) = 7

VR(MS) = 6

VR(X) = 10

T_reordering running

time = t6time = t7time = t8time = t9time = t10time = t11

SN = 4

SN = 5

SN = 6

SN = 7

SN = 8

SN = 9

SN = 4

SN = 5

SN = 6

SN = 7

SN = 8

SN = 9

SN = 4

SN = 5

SN = 6

SN = 7

SN = 8

SN = 9

SN = 4

SN = 5

SN = 6

SN = 7

SN = 8

SN = 9

SN = 8

SN = 9

SN = 8

SN = 9

SN = 8

SN = 9

SN = 8

SN = 9

SN = 8

SN = 9

SN = 8

SN = 9

SN = 10

SN = 11

SN = 10

SN = 11

SN = 10

SN = 11

SN = 10

SN = 11

SN = 10

SN = 11

SN = 12

SN = 13

SN = 12

SN = 13

SN = 12

SN = 13

SN = 12

SN = 13

SN = 12

SN = 13

SN = 4

SN = 5

SN = 6

SN = 7

SN = 8

SN = 9

SN = 10

SN = 11

SN = 12

SN = 13


Figure 1
From Figure 1, some questions with regards to the handling of VR(MS) and VR(X) are:

· time = t0

· Question 1: Is it okay to initialise VR(MS) to 0 (which is the case currently in TS 36.322), or should it be initialised to something else, e.g. NULL?
· E.g. time = t1

· There are times that VR(MS) becomes less than VR(R) (actually, at these times VR(MS) equals VR(R) – 1).

· Question 2: Is it okay to define VR(R) as the lower edge of the STATUS transmitting window (which is the case currently in TS 36.322)?
· E.g. time = t3
· Question 3: Is it okay to update VR(X) when PDU with SN = VR(X) + 1 is received (which is the case currently in TS 36.322), or should it be updated only when T_reordering expires?
Other than the Q1) to Q3) above, the handling of VR(MS), VR(X) and T_reordering in Figure 1 seems to be non-controversial. Furthermore, it seems Q1) to Q3) above are more or less related to definition / modelling, and they do not impact the behavioural aspects of the RLC AM receive operation.

2.2 On Figure 2: Handling of VR(X) / T_reordering w.r.t. PDU that has been once detected to be lost


[image: image2.emf]VR(R) = 7

VR(MS) = 6

VR(X) = 11

T_reordering running

SN = 6

SN = 7

SN = 8

SN = 9

VR(R) = 7

VR(MS) = 11

VR(X) = NULL

T_reordering expires

VR(R) = 7

VR(MS) = 12

VR(X) = 12

T_reordering started

time = t12time = t13time = t14a

SN = 6

SN = 7

SN = 8

SN = 9

SN = 6

SN = 7

SN = 8

SN = 9

SN = 10

SN = 11

SN = 10

SN = 11

SN = 10

SN = 11

SN = 12

SN = 13

SN = 12

SN = 13

SN = 12

SN = 13

SN = 14

SN = 15

SN = 14

SN = 15

SN = 14

SN = 15

VR(R) = 7

VR(MS) = 11

VR(X) = 13

T_reordering started

SN = 6

SN = 7

SN = 8

SN = 9

VR(R) = 7

VR(MS) = 13

VR(X) = 13

T_reordering runnning

time = t14btime = t15b

SN = 6

SN = 7

SN = 8

SN = 9

SN = 10

SN = 11

SN = 10

SN = 11

SN = 12

SN = 13

SN = 12

SN = 13

SN = 14

SN = 15

SN = 14

SN = 15


Figure 2

In Figure 2, 2 similar cases are illustrated. The first case is shown through the following time sequence: time = t12, t13, t14a. The second case is shown through the following time sequence: time = t12, t13, t14b, t15b.

In the first case shown in Figure 2, at time = t13, T_reordering expires when VR(X) was 11. This triggers a STATUS report with the PDU with SN = 7 being NACKed. Since when T_reordering expires at time = t13, there are no PDUs with SN > VR(X) that are received, VR(X) is updated to NULL and T_reordering is not restarted. Then, at time = t14a, PDU with SN = 12 is received. With the current text in TS 36.322, this triggers VR(X) to be updated to 12 and T_reordering to be started since the SN of the received PDU is not equal to VR(R). But at this time, the only missing PDU is the PDU with SN = 7 for which a STATUS report was already triggered due to earlier T_reordering expiry.
In the second case shown in Figure 2, the situation is the same as for the first case described above until time = t13. Then, at time = t14b, PDU with SN = 13 is received, and this triggers VR(X) to be updated to 13 and T_reordering to be started. Then, at time = t15b, PDU with SN = 12 is received, and this triggers VR(MS) to be updated. With the current text in TS 36.322, T_reordering will not be stopped at this time (i.e. it will be still running), since not all PDUs with SN < VR(X) has been received yet. However, the only PDU with SN < VR(X) that is still missing is the PDU with SN = 7 for which a STATUS report was already triggered due to earlier T_reordering expiry.

From Figure 2, some questions with regards to the handling of VR(X) and T_reordering are:

· time = t14a
· Question 4: Is it okay to start T_reordering at time = t14a (which will be the result of the current text in TS 36.322)?
· time = t15b

· Question 5: Is it okay not to stop T_reordering at time = t15b (which will be the result of the current text in TS 36.322)?
2.3 On Figure 3: VR(MS) updating


[image: image3.emf]VR(MS) = 20

SN = 20

SN = 21

VR(MS) = 21

time = t00time = t01

SN = 20

SN = 21

SN = 22SN = 22

SN = 23SN = 23

VR(MS) = 21

time = t02

SN = 20

SN = 21

SN = 22

SN = 23


Figure 3

In Figure 3, where a box is partly white and partly blue indicate that only a part of the PDU (the blue part) has been received.

In Figure 3, VR(MS) = 20 at time = t00. Then, at time = t01, a segment of the PDU with SN = 21 is received. With the current text in TS 36.322, VR(MS) is updated to 21 since a byte segment has been received for both PDU with SN = VR(MS) and PDU with SN = VR(MS) + 1. However, some companies have indicated that (other than T_reordering expiry) VR(MS) should be updated only when the all byte segments of the PDU with SN = VR(MS) and PDU with SN = VR(MS) + 1 has been received.

In Figure 3, PDU with SN = 23 is further received at time = t02. With the current text in TS 36.322, VR(MS) is not updated (i.e. VR(MS) remains at 21) since no byte segments of the PDU with SN = VR(MS) + 1 have been received. However, some companies have indicated that VR(MS) should be updated also when byte segments of the PDU with SN > VR(MS) + 1 are received even when no byte segments have been received for the PDU with SN = VR(MS) + 1.

From Figure 3, some questions with regards to the handling of VR(MS) are:

· time = t01

· Question 6: Is it okay to start update VR(MS) when a byte segment has been received for PDUs with SN = VR(MS) and SN = VR(MS) + 1 (which is the case currently in TS 36.322), or should VR(MS) be updated only when PDUs with SN = VR(MS) and SN = VR(MS) + 1 have been completely received?
· time = t02
· Question 7: If no byte segments have been received for the PDU with SN = VR(MS) + 1, is it okay not to update VR(MS) when a byte segment has been received for PDU with SN > VR(MS) + 1 (which will be the result of the current text in TS 36.322)?
3
Discussion and suggested way forward
On Question 1 and Question 2:

It has been suggested by ASUSTeK to redefine the value of VR(MS) to the value which would be VR(MS) + 1 in the current TS 36.322. With this change, VR(MS) will always be equal to or greater than VR(R) and the concern raised in Question 2 is resolved. It has been further suggested by Ericsson to redefine ACK_SN to indicate the SN of the first AMD PDU which has not been received nor been detected as lost by the receiver. I.e. a STATUS PDU acknowledges AMD PDUs with SN up to but not including SN = ACK_SN. This change in the definition of ACK_SN together with the change in the definition of VR(MS) resolves the concern raised in Question 1, as it would now be fine to initialize VR(MS) to 0 (if a STATUS PDU needs to constructed at this initial state, ACK_SN = 0 and nothing is acknowledged).
LGE supported the suggestion from ASUSTeK to redefine VR(MS). ASUSTeK support the suggestion from Ericsson to redefine ACK_SN. No companies objected to these suggestions. A text proposal to TS 36.322 to reflect this suggestion is provided in the Annex A.1.
Suggested way forward 1: It is proposed to agree on the new definitions of VR(MS) and ACK_SN (see Annex A.1 for text proposal).
On Question 3:

It has been indicated by Samsung, ASUSTeK and LGE that their preference is to update VR(X) only when T_reordering starts/expires. No companies objected to this. Also, it is the general consensus that whether VR(X) is updated only when T_reordering starts/expires or not is more a modeling issue (i.e. it only affects the internal updating of VR(X) and that it will not result in any behavioral changes which would be tested, e.g. timing to trigger STATUS report). A text proposal to TS 36.322 would revise the text so as to update VR(X) only when T_reordering starts/expires is provided in the Annex A.2.
It is noted that the revision provide in Annex A.2 results in some behavioral change compared to [1]. However, there is no behavioral change compared to [2]. This is a result of an unintended change in VR(X-SO) updating which [3] brought about. So, it is noted that compared to the intended behavior (as in [2]), there is no behavioral changes which results from the revision provided in Annex A.2.
Suggested way forward 2: It is proposed to agree on updating VR(X) only when T_reordering starts/expires (see Annex A.2 for text proposal).
On Question 4 and Question 5:

The discussion focused on the following point: Should a PDU which was once detected to be missing due to T_reordering expiry still influence start/expiry of T_reordering or not?

Samsung and ASUSTeK indicated their preference that such a PDU should no longer influence T_reordering start/expiry. On the other hand, LGE and NTT DoCoMo indicated their preferences that such a PDU should still influence T_reordering start/expiry.

The following arguments were provided for not having such a PDU influence T_reordering start/expiry any longer:

· T_reordering is the mechanism to judge whether a certain missing RLC PDU will be recovered from HARQ, and after T_reordering, the RLC PDU will no longer be recovered by HARQ

· The other approach may produce unnecessary STATUS reports (it has been argued in the other direction that these STATUS reports will not be transmitted most of the time due to T_status_prohibit)

The following arguments were provided for having such a PDU still influence T_reordering start/expiry:

· T_reordering should also be used to detect RLC PDU loss for RLC retransmissions

· RLC retransmission delay can be minimized when the retransmission of the PDU also fails (it has been argued in the other direction that the probability of an RLC PDU being lost also for retransmission is very low)
Suggested way forward 3: It is proposed to agree in this meeting on which approach to take.
On Question 6 and Question 7:

LGE suggested that VR(MS) should only be updated when all byte segments of PDU with SN = VR(MS) is received and when the first byte segment of PDU with SN = VR(MS) + 1 is received (here, the reference to VR(MS) is based on the current definition of VR(MS) in TS 36.322, i.e. not the new definition proposed in Annex A.1). The reasoning being as follows: with the current description in TS 36.322, (1) VR(MS) is updated to VR(X) at T_reordering expiry, (2) while T_reordering is running VR(X) is updated only when all byte segments of PDU with SN = VR(X) is received and when the first byte segment of PDU with SN = VR(X) + 1 is received, (3) so the updating of VR(MS) should be aligned to this behavior.
NTT DoCoMo indicated that they share the same view. No companies objected to this. A text proposal to TS 36.322 to reflect this suggestion is provided in the Annex A.3.
Suggested way forward 4: It is proposed to agree on revising the VR(MS) updating procedure as suggested above (see Annex A.3 for text proposal).
Other issues:

Samsung and LGE have indicated their preference to remove the STATUS transmitting window terminology. Ericsson suggested to rephrase the definition of VR(MR). No companies objected to these points. A text proposal to TS 36.322 to reflect these suggestions are provided in Annex A.4.

Suggested way forward 5: It is proposed to agree on removing the reference to “STATUS transmitting window and to rephrase the definition of VR(MR) (see Annex A.4 for text proposal).

On the text proposals:

The text proposals in Annex A.1 to A.4 have been prepared independently from each other. I.e. each of them show suggested changes from [1] that only pertain to the issues they address. A combined text proposal has been provided in Annex A.5.

Suggested way forward 6: If the suggested way forwards 1, 2, 4 and 5 above can be agreed, it is proposed to agree on the text proposal in Annex A.5. Otherwise, it is proposed to agree on the text proposals in Annex A.1 to A.4 individually.
3
Conclusion
As the outcome of the e-mail discussion, the following way forwards are suggested:

Suggested way forward 1: It is proposed to agree on the new definitions of VR(MS) and ACK_SN (see Annex A.1 for text proposal).

Suggested way forward 2: It is proposed to agree on updating VR(X) only when T_reordering starts/expires (see Annex A.2 for text proposal).

Suggested way forward 3: It is proposed to agree in this meeting on which approach to take.

Suggested way forward 4: It is proposed to agree on revising the VR(MS) updating procedure as suggested above (see Annex A.3 for text proposal).
Suggested way forward 5: It is proposed to agree on removing the reference to “STATUS transmitting window and to rephrase the definition of VR(MR) (see Annex A.4 for text proposal).

Suggested way forward 6: If the suggested way forwards 1, 2, 4 and 5 above can be agreed, it is proposed to agree on the text proposal in Annex A.5. Otherwise, it is proposed to agree on the text proposals in Annex A.1 to A.4 individually.
References
[1] R2-081172 “Draft CR001 for 36322-800”, NTT DoCoMo, Inc. (TS 36.322 Editor)
[2] TS 36.322 v8.0.0

[3] R2-080547 “Draft CR001 for TS 36.322 V8.0.0”, NTT DoCoMo, Inc. (TS 36.322 Editor)
Annex A – Text proposals to TS 36.322
It is noted that the revision marks in the text proposals below are relative to R2-080632 (of which the contents are equivalent to “Draft CR001 for 36322-800” which was distributed to the RAN2 email reflector on January 28th, 2008). Text proposals in A.1 to A.4 were prepared independently (i.e. changes suggested in one text proposal is not reflected in the other text proposal). The combined text proposal which takes into account all the changes from text proposals in A.1 to A.4 are provided in A.5.
A.1


Text proposal based on the discussion on Q1 and Q2
=== Start of text proposal ===
5.1.3.2.1
General
The receiving side of an AM RLC entity shall maintain a receiving window according to state variables VR(R) and VR(MR) as follows:

· a SN falls within the receiving window if VR(R) <= SN < VR(MR);

· a SN falls outside of the receiving window otherwise.

The receiving side of an AM RLC entity shall maintain a STATUS transmitting window according to state variables VR(R) and VR(MS) as follows:

· a SN falls within the STATUS transmitting window if VR(R) <= SN < VR(MS);

· a SN falls outside of the STATUS transmitting window otherwise.

When receiving a RLC data PDU from lower layer, the receiving side of an AM RLC entity shall:

· either discard the received RLC data PDU or place it in the reception buffer (see sub clause 5.1.3.2.2);

· if the received RLC data PDU was placed in the reception buffer:

· advance the receiving window (i.e. update VR(R) and VR(MR)) and update VR(R-SO) as needed (see sub clause 5.1.3.2.3);

· advance the STATUS transmitting window (i.e. update VR(MS)) as needed (see sub clause 5.1.3.2.4);

· start/stop T_reordering and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

When T_reordering expires, the receiving side of an AM RLC entity shall:

· advance the STATUS transmitting window (i.e. update VR(MS)) as needed (see sub clause 5.1.3.2.4);

· start T_reordering if needed and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

Whenever possible, the receiving side of an AM RLC entity shall:

· reassemble RLC SDUs from any byte segments of AMD PDUs with SN < VR(R) and byte segments numbers 0 to VR(R-SO) – 1 of the AMD PDU with SN = VR(R), remove RLC headers when doing so and deliver the reassembled RLC SDUs to PDCP.

=== Next modified sub clause ===
5.1.3.2.4
Advancing the STATUS transmitting window
When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if any byte segment of the AMD PDU with SN = VR(MS) – 1 is received; and

· if any byte segment of the AMD PDU with SN = VR(MS) is received:

· update VR(MS) to the SN of the first AMD PDU with SN > current VR(MS), for which no byte segments are received.

When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) to VR(X) + 1.

NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
=== Next modified sub clause ===
6.2.2.14
Acknowledgement SN (ACK_SN) field

Length: 10 bits.

The ACK_SN field indicates the higher edge of the STATUS transmitting window. The ACK_SN field indicates the lowest SN among the AMD PDUs which have not been received nor been detected as lost at the receiving side of an AM RLC entity. When the transmitting side of an AM RLC entity receives a STATUS PDU, it interprets that all AMD PDUs up to but not including the AMD PDU with SN = ACK_SN have been received by its peer AM RLC entity, excluding those AMD PDUs indicated in the STATUS PDU with NACK_SN and portions of AMD PDUs indicated in the STATUS PDU with NACK_SN, SOstart and SOend.

=== Next modified sub clause ===
7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables (i.e. VT(A), VT(MS), VT(S), VR(R), VR(MR) and VT(US)) are non-negative integers.

All state variables related to AM data transfer (i.e. VT(A), VT(MS), VT(S), VR(R) and VR(MR)) can take values from 0 to 1023. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 1024).

All state variables related to UM data transfer (i.e. VT(US)) can take values from 0 to [2[configured UM SN field length] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[configured UM SN field length]).
AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 1023 for AMD PDU and 0 to [2[configured UM SN field length] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used. VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 1024 <= [SN – VR(R)] modulo 1024 < [VR(MR) – VR(R)] modulo 1024).
The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window and the STATUS receiving window). It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU, and it serves as the higher edge of the STATUS receiving window. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window and the STATUS transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(R-SO) – Receive state variable (segment offset)

This state variable holds the position of the lowest not received byte segment of the AMD PDU with SN = VR(R). It is initially set to 0.

c) VR(MR) – Maximum acceptable receive state variable
This state variable equals VR(R) + AM_Window_Size, and it serves as the higher edge of the receiving window.

d) VR(X) – T_reordering state variable

This state variable holds the value of the SN of the RLC data PDU which triggered T_reordering or those following which are received in-sequence. It is initially set to NULL.

e) VR(X-SO) – T_reordering state variable (segment offset)

This state variable holds the position of the highest received byte segment of the AMD PDU with SN = VR(X). It is initially set to NULL.

f) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the value of the SN to be indicated by “ACK_SN” when a STATUS PDU needs to be constructed. It is initially set to 0.

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering, i.e. it serves as the lower edge of the reordering window. It is initially set to 0.

b) VR(UMR) – UM maximum acceptable receive state variable
This state variable equals VR(UR) + UM_Window_Size, and it serves as the higher edge of the reordering window.

c) VR(UX) – UM T_reordering state variable

This state variable holds the value of the SN of the UMD PDU which triggered T_reordering. It is initially set to NULL.

=== End of text proposal ===
A.2


Text proposal based on the discussion on Q3

=== Start of text proposal ===
5.1.3.2.4
Advancing the STATUS transmitting window
When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if any byte segment of the AMD PDU with SN = VR(MS) is received; and

· if any byte segment of the AMD PDU with SN = VR(MS) + 1 is received:

· update VR(MS) to the SN of the first AMD PDU with SN > current VR(MS), for which no byte segments are received, subtracted by 1.

When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) to the SN of the first AMD PDU with SN >= VR(X), for which not all byte segments have been received.

NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
5.1.3.2.5
Starting/stopping T_reordering and updating VR(X) and VR(X-SO)
When a RLC data PDU is placed in the reception buffer, where the RLC data PDU contains byte segment numbers y to z of an AMD PDU with SN = x, after any necessary advancing of the receiving window, the receiving side of an AM RLC entity shall:

· if T_reordering is not running:

· if x falls within the receiving window, unless x = VR(R) and z < VR(R-SO):

· start T_reordering;

· otherwise (i.e. if T_reordering is running):

· if VR(X) falls outside of the receiving window; or

· if VR(X) = VR(R) and byte segment numbers 0 to VR(X-SO) of the AMD PDU with SN = VR(X) are received:

· stop and reset T_reordering;

· if the SN of any received RLC data PDU > VR(R); or

· if the byte segment number of any received byte segment of the AMD PDU with SN = VR(R) is greater than VR(R-SO):

· start T_reordering;

· otherwise:

· update VR(X) and VR(X-SO) to NULL.
When T_reordering expires, the receiving side of an AM RLC entity shall:

· if there exists any missing byte segment between the byte segment corresponding to byte segment number = VR(X-SO) of the AMD PDU with SN = VR(X) and the byte segment with the highest byte segment number among received byte segments of the RLC data PDU with the highest SN among received RLC data PDUs:
· 
· start T_reordering;

· otherwise:

· update VR(X) and VR(X-SO) to NULL.

When starting T_reordering, the receiving side of an AM RLC entity shall:

· set VR(X) to the SN of the RLC data PDU with the highest SN among received RLC data PDUs.

· set VR(X-SO) to the highest byte segment number among received byte segments of the AMD PDU with SN = VR(X).


· 
· 
· 
· 
· 
· 
Editor's note: With the current text, T_reordering can be triggered even for a missing AMD PDU for which a status report has already been triggered. E.g. when T_reordering expires and SN = VR(R) is detected as lost, T_reordering will be triggered again with the reception of another AMD PDU with SN > VR(R). It should be discussed if this is the desired behaviour or not.
Editor's note: It is intended to specify details regarding RLC data PDU generation and delivery to lower layer at the transmitter and RLC data PDU reassembly, duplicate detection, reordering and loss detection, and RLC SDU reassembly and delivery to upper layers at the receiver in this section.
=== Next modified sub clause ===
7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables (i.e. VT(A), VT(MS), VT(S), VR(R), VR(MR) and VT(US)) are non-negative integers.

All state variables related to AM data transfer (i.e. VT(A), VT(MS), VT(S), VR(R) and VR(MR)) can take values from 0 to 1023. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 1024).

All state variables related to UM data transfer (i.e. VT(US)) can take values from 0 to [2[configured UM SN field length] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[configured UM SN field length]).
AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 1023 for AMD PDU and 0 to [2[configured UM SN field length] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used. VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 1024 <= [SN – VR(R)] modulo 1024 < [VR(MR) – VR(R)] modulo 1024).
The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window and the STATUS receiving window). It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU, and it serves as the higher edge of the STATUS receiving window. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window and the STATUS transmitting window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(R-SO) – Receive state variable (segment offset)

This state variable holds the position of the lowest not received byte segment of the AMD PDU with SN = VR(R). It is initially set to 0.

c) VR(MR) – Maximum acceptable receive state variable
This state variable equals VR(R) + AM_Window_Size, and it serves as the higher edge of the receiving window.

d) VR(X) – T_reordering state variable

This state variable holds the value of the SN of the RLC data PDU which triggered T_reordering. It is initially set to NULL.

e) VR(X-SO) – T_reordering state variable (segment offset)

This state variable holds the position of the highest received byte segment of the AMD PDU with SN = VR(X) at the time T_reordering was triggered. It is initially set to NULL.

f) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the value of the highest SN that can be included in a STATUS report, i.e. it serves as the higher edge of the STATUS transmitting window. It is initially set to 0.

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering, i.e. it serves as the lower edge of the reordering window. It is initially set to 0.

b) VR(UMR) – UM maximum acceptable receive state variable
This state variable equals VR(UR) + UM_Window_Size, and it serves as the higher edge of the reordering window.

c) VR(UX) – UM T_reordering state variable

This state variable holds the value of the SN of the UMD PDU which triggered T_reordering. It is initially set to NULL.

=== End of text proposal ===
A.3


Text proposal based on the discussion on Q6 and Q7
=== Start of text proposal ===
5.1.3.2.4
Advancing the STATUS transmitting window
When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if all byte segments of the AMD PDU with SN = VR(MS) are received; and

· if the first byte segment of the AMD PDU with SN = VR(MS) + 1 is received:

· update VR(MS) to VR(MS) + 1.

NOTE:
This update of VR(MS) shall be recursive, i.e. the above conditions shall be evaluated again after the VR(MS) is updated (incremented) and VR(MS) shall be further updated (incremented) if the above conditions are satisfied again
When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) to VR(X).

NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
=== End of text proposal ===
A.4


Text proposal based on discussion on other issues
=== Start of text proposal ===
5.1.3.2.1
General
The receiving side of an AM RLC entity shall maintain a receiving window according to state variables VR(R) and VR(MR) as follows:

· a SN falls within the receiving window if VR(R) <= SN < VR(MR);

· a SN falls outside of the receiving window otherwise.


· 
· 
When receiving a RLC data PDU from lower layer, the receiving side of an AM RLC entity shall:

· either discard the received RLC data PDU or place it in the reception buffer (see sub clause 5.1.3.2.2);

· if the received RLC data PDU was placed in the reception buffer:

· advance the receiving window (i.e. update VR(R) and VR(MR)) and update VR(R-SO) as needed (see sub clause 5.1.3.2.3);

· update VR(MS) as needed (see sub clause 5.1.3.2.4);

· start/stop T_reordering and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) as needed (see sub clause 5.1.3.2.4);

· start T_reordering if needed and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

Whenever possible, the receiving side of an AM RLC entity shall:

· reassemble RLC SDUs from any byte segments of AMD PDUs with SN < VR(R) and byte segments numbers 0 to VR(R-SO) – 1 of the AMD PDU with SN = VR(R), remove RLC headers when doing so and deliver the reassembled RLC SDUs to PDCP.

=== Next modified sub clause ===
5.1.3.2.4
Updating VR(MS)
When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if any byte segment of the AMD PDU with SN = VR(MS) is received; and

· if any byte segment of the AMD PDU with SN = VR(MS) + 1 is received:

· update VR(MS) to the SN of the first AMD PDU with SN > current VR(MS), for which no byte segments are received, subtracted by 1.

When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) to VR(X).

NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
=== Next modified sub clause ===
5.2.3
Status reporting

An AM RLC entity sends STATUS PDUs to its peer AM RLC entity in order to provide positive and/or negative acknowledgements of RLC PDUs (or portions of them).
RRC configures whether or not the status prohibit function is to be used an AM RLC entity.
Triggers to initiate STATUS reporting include:

· Polling from its peer AM RLC entity:

· The receiving side of an AM RLC entity shall trigger a STATUS report when it receives a RLC data PDU with the P field set to "1" and the HARQ reordering of the corresponding RLC data PDU is completed.

· Detection of reception failure of an RLC data PDU:

· The receiving side of an AM RLC entity shall trigger a STATUS report when T_reordering expires.

NOTE:
The expiry of T_reordering triggers both VR(MS) to be updated and a STATUS report to be triggered, but the STATUS report shall be triggered after VR(MS) is updated.
When STATUS reporting has been triggered, the receiving side of an AM RLC entity shall:

· if T_status_prohibit is not running:

· at the first transmission opportunity indicated by lower layer (i.e. MAC), construct a STATUS PDU and deliver it to lower layer (i.e. MAC);

· else:

· at the first transmission opportunity indicated by lower layer (i.e. MAC) after T_status_prohibit expires, construct a STATUS PDU and deliver it to lower layer (i.e. MAC);

NOTE:
If T_status_prohibit is not running at the time STATUS reporting was triggered, the STATUS PDU size shall be accounted for in the Buffer Status Report [3] from the time STATUS reporting was triggered. If T_status_prohibit is running at the time STATUS reporting was triggered, the STATUS PDU size shall be accounted for in the Buffer Status Report [3] from the time T_reordering expires.
When a STATUS PDU has been delivered to lower layer (i.e. MAC), the receiving side of an AM RLC entity shall:

· start T_status_prohibit.

When constructing a STATUS PDU, the AM RLC entity shall:
· set ACK_SN to VR(MS);

· for each AMD PDU with SN such that VR(R) <= SN <= VR(MS) that has not been completely received yet:

· if no byte segments have been received yet for an AMD PDU:

· include in the STATUS PDU a NACK_SN which is set to the SN of the AMD PDU;

· else

· include in the STATUS PDU a set of NACK_SN, SOstart and SOend for each consecutive byte segments of the AMD PDU that has not been received yet.

=== Next modified sub clause ===
6.2.2.14
Acknowledgement SN (ACK_SN) field

Length: 10 bits.

When the transmitting side of an AM RLC entity receives a STATUS PDU, it interprets that all AMD PDUs up to and including the AMD PDU with SN = ACK_SN have been received by its peer AM RLC entity, excluding those AMD PDUs indicated in the STATUS PDU with NACK_SN and portions of AMD PDUs indicated in the STATUS PDU with NACK_SN, SOstart and SOend.

=== Next modified sub clause ===
6.2.2.16
Negative Acknowledgement SN (NACK_SN) field

Length: 10 bits.

The NACK_SN field indicates the SN of the AMD PDU (or portions of it) that has been detected as lost at the receiving side of the AM RLC entity.

=== Next modified sub clause ===
7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables (i.e. VT(A), VT(MS), VT(S), VR(R), VR(MR) and VT(US)) are non-negative integers.

All state variables related to AM data transfer (i.e. VT(A), VT(MS), VT(S), VR(R) and VR(MR)) can take values from 0 to 1023. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 1024).

All state variables related to UM data transfer (i.e. VT(US)) can take values from 0 to [2[configured UM SN field length] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[configured UM SN field length]).
AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 1023 for AMD PDU and 0 to [2[configured UM SN field length] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used. VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 1024 <= [SN – VR(R)] modulo 1024 < [VR(MR) – VR(R)] modulo 1024).
The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window and the STATUS receiving window). It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU, and it serves as the higher edge of the STATUS receiving window. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(R-SO) – Receive state variable (segment offset)

This state variable holds the position of the lowest not received byte segment of the AMD PDU with SN = VR(R). It is initially set to 0.

c) VR(MR) – Maximum acceptable receive state variable
This state variable equals VR(R) + AM_Window_Size, and it holds the value of the SN of the first AMD PDU that is beyond the receiving window.

d) VR(X) – T_reordering state variable

This state variable holds the value of the SN of the RLC data PDU which triggered T_reordering or those following which are received in-sequence. It is initially set to NULL.

e) VR(X-SO) – T_reordering state variable (segment offset)

This state variable holds the position of the highest received byte segment of the AMD PDU with SN = VR(X). It is initially set to NULL.

f) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the value of the highest SN that can be included in a STATUS report. It is initially set to 0.

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering, i.e. it serves as the lower edge of the reordering window. It is initially set to 0.

b) VR(UMR) – UM maximum acceptable receive state variable
This state variable equals VR(UR) + UM_Window_Size, and it serves as the higher edge of the reordering window.

c) VR(UX) – UM T_reordering state variable

This state variable holds the value of the SN of the UMD PDU which triggered T_reordering. It is initially set to NULL.

=== End of text proposal ===
A.5


Combined text proposal
=== Start of text proposal ===
5.1.3.2.1
General
The receiving side of an AM RLC entity shall maintain a receiving window according to state variables VR(R) and VR(MR) as follows:

· a SN falls within the receiving window if VR(R) <= SN < VR(MR);

· a SN falls outside of the receiving window otherwise.


· 
· 
When receiving a RLC data PDU from lower layer, the receiving side of an AM RLC entity shall:

· either discard the received RLC data PDU or place it in the reception buffer (see sub clause 5.1.3.2.2);

· if the received RLC data PDU was placed in the reception buffer:

· advance the receiving window (i.e. update VR(R) and VR(MR)) and update VR(R-SO) as needed (see sub clause 5.1.3.2.3);

· update VR(MS) as needed (see sub clause 5.1.3.2.4);

· start/stop T_reordering and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) as needed (see sub clause 5.1.3.2.4);

· start T_reordering if needed and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

Whenever possible, the receiving side of an AM RLC entity shall:

· reassemble RLC SDUs from any byte segments of AMD PDUs with SN < VR(R) and byte segments numbers 0 to VR(R-SO) – 1 of the AMD PDU with SN = VR(R), remove RLC headers when doing so and deliver the reassembled RLC SDUs to PDCP.

=== Next modified sub clause ===
5.1.3.2.4
Updating VR(MS)
When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if all byte segments of the AMD PDU with SN = VR(MS) – 1 are received; and

· if the first byte segment of the AMD PDU with SN = VR(MS) is received:

· update VR(MS) to VR(MS) + 1.

NOTE:
This update of VR(MS) shall be recursive, i.e. the above conditions shall be evaluated again after the VR(MS) is updated (incremented) and VR(MS) shall be further updated (incremented) if the above conditions are satisfied again
When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) to the SN following the SN of the first AMD PDU with SN >= VR(X), for which not all byte segments have been received.

NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
=== Next modified sub clause ===
5.1.3.2.5
Starting/stopping T_reordering and updating VR(X) and VR(X-SO)
When a RLC data PDU is placed in the reception buffer, where the RLC data PDU contains byte segment numbers y to z of an AMD PDU with SN = x, after any necessary advancing of the receiving window, the receiving side of an AM RLC entity shall:

· if T_reordering is not running:

· if x falls within the receiving window, unless x = VR(R) and z < VR(R-SO):

· start T_reordering;

· otherwise (i.e. if T_reordering is running):

· if VR(X) falls outside of the receiving window; or

· if VR(X) = VR(R) and byte segment numbers 0 to VR(X-SO) of the AMD PDU with SN = VR(X) are received:

· stop and reset T_reordering;

· if the SN of any received RLC data PDU > VR(R); or

· if the byte segment number of any received byte segment of the AMD PDU with SN = VR(R) is greater than VR(R-SO):

· start T_reordering;

· otherwise:

· update VR(X) and VR(X-SO) to NULL.
When T_reordering expires, the receiving side of an AM RLC entity shall:

· if there exists any missing byte segment between the byte segment corresponding to byte segment number = VR(X-SO) of the AMD PDU with SN = VR(X) and the byte segment with the highest byte segment number among received byte segments of the RLC data PDU with the highest SN among received RLC data PDUs:
· 
· start T_reordering;

· otherwise:

· update VR(X) and VR(X-SO) to NULL.

When starting T_reordering, the receiving side of an AM RLC entity shall:

· set VR(X) to the SN of the RLC data PDU with the highest SN among received RLC data PDUs.

· set VR(X-SO) to the highest byte segment number among received byte segments of the AMD PDU with SN = VR(X).


· 
· 
· 
· 
· 
· 
Editor's note: With the current text, T_reordering can be triggered even for a missing AMD PDU for which a status report has already been triggered. E.g. when T_reordering expires and SN = VR(R) is detected as lost, T_reordering will be triggered again with the reception of another AMD PDU with SN > VR(R). It should be discussed if this is the desired behaviour or not.
Editor's note: It is intended to specify details regarding RLC data PDU generation and delivery to lower layer at the transmitter and RLC data PDU reassembly, duplicate detection, reordering and loss detection, and RLC SDU reassembly and delivery to upper layers at the receiver in this section.
=== Next modified sub clause ===
5.2.3
Status reporting

An AM RLC entity sends STATUS PDUs to its peer AM RLC entity in order to provide positive and/or negative acknowledgements of RLC PDUs (or portions of them).
RRC configures whether or not the status prohibit function is to be used an AM RLC entity.
Triggers to initiate STATUS reporting include:

· Polling from its peer AM RLC entity:

· The receiving side of an AM RLC entity shall trigger a STATUS report when it receives a RLC data PDU with the P field set to "1" and the HARQ reordering of the corresponding RLC data PDU is completed.

· Detection of reception failure of an RLC data PDU:

· The receiving side of an AM RLC entity shall trigger a STATUS report when T_reordering expires.

NOTE:
The expiry of T_reordering triggers both VR(MS) to be updated and a STATUS report to be triggered, but the STATUS report shall be triggered after VR(MS) is updated.
When STATUS reporting has been triggered, the receiving side of an AM RLC entity shall:

· if T_status_prohibit is not running:

· at the first transmission opportunity indicated by lower layer (i.e. MAC), construct a STATUS PDU and deliver it to lower layer (i.e. MAC);

· else:

· at the first transmission opportunity indicated by lower layer (i.e. MAC) after T_status_prohibit expires, construct a STATUS PDU and deliver it to lower layer (i.e. MAC);

NOTE:
If T_status_prohibit is not running at the time STATUS reporting was triggered, the STATUS PDU size shall be accounted for in the Buffer Status Report [3] from the time STATUS reporting was triggered. If T_status_prohibit is running at the time STATUS reporting was triggered, the STATUS PDU size shall be accounted for in the Buffer Status Report [3] from the time T_reordering expires.
When a STATUS PDU has been delivered to lower layer (i.e. MAC), the receiving side of an AM RLC entity shall:

· start T_status_prohibit.

When constructing a STATUS PDU, the AM RLC entity shall:
· set ACK_SN to VR(MS);

· for each AMD PDU with SN such that VR(R) <= SN < VR(MS) that has not been completely received yet:

· if no byte segments have been received yet for an AMD PDU:

· include in the STATUS PDU a NACK_SN which is set to the SN of the AMD PDU;

· else

· include in the STATUS PDU a set of NACK_SN, SOstart and SOend for each consecutive byte segments of the AMD PDU that has not been received yet.

=== Next modified sub clause ===
6.2.2.14
Acknowledgement SN (ACK_SN) field

Length: 10 bits.

The ACK_SN field indicates the lowest SN among the AMD PDUs which have not been received nor been detected as lost at the receiving side of an AM RLC entity. When the transmitting side of an AM RLC entity receives a STATUS PDU, it interprets that all AMD PDUs up to but not including the AMD PDU with SN = ACK_SN have been received by its peer AM RLC entity, excluding those AMD PDUs indicated in the STATUS PDU with NACK_SN and portions of AMD PDUs indicated in the STATUS PDU with NACK_SN, SOstart and SOend.

=== Next modified sub clause ===
6.2.2.16
Negative Acknowledgement SN (NACK_SN) field

Length: 10 bits.

The NACK_SN field indicates the SN of the AMD PDU (or portions of it) that has been detected as lost at the receiving side of the AM RLC entity.

=== Next modified sub clause ===
7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables (i.e. VT(A), VT(MS), VT(S), VR(R), VR(MR) and VT(US)) are non-negative integers.

All state variables related to AM data transfer (i.e. VT(A), VT(MS), VT(S), VR(R) and VR(MR)) can take values from 0 to 1023. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 1024).

All state variables related to UM data transfer (i.e. VT(US)) can take values from 0 to [2[configured UM SN field length] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[configured UM SN field length]).
AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 1023 for AMD PDU and 0 to [2[configured UM SN field length] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used. VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 1024 <= [SN – VR(R)] modulo 1024 < [VR(MR) – VR(R)] modulo 1024).
The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window and the STATUS receiving window). It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU, and it serves as the higher edge of the STATUS receiving window. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(R-SO) – Receive state variable (segment offset)

This state variable holds the position of the lowest not received byte segment of the AMD PDU with SN = VR(R). It is initially set to 0.

c) VR(MR) – Maximum acceptable receive state variable
This state variable equals VR(R) + AM_Window_Size, and it holds the value of the SN of the first AMD PDU that is beyond the receiving window.

d) VR(X) – T_reordering state variable

This state variable holds the value of the SN of the RLC data PDU which triggered T_reordering. It is initially set to NULL.

e) VR(X-SO) – T_reordering state variable (segment offset)

This state variable holds the position of the highest received byte segment of the AMD PDU with SN = VR(X) at the time T_reordering was triggered. It is initially set to NULL.

f) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the value of the SN to be indicated by “ACK_SN” when a STATUS PDU needs to be constructed. It is initially set to 0.

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering, i.e. it serves as the lower edge of the reordering window. It is initially set to 0.

b) VR(UMR) – UM maximum acceptable receive state variable
This state variable equals VR(UR) + UM_Window_Size, and it serves as the higher edge of the reordering window.

c) VR(UX) – UM T_reordering state variable

This state variable holds the value of the SN of the UMD PDU which triggered T_reordering. It is initially set to NULL.

=== End of text proposal ===












































_1263135565.vsd
VR(MS) = 20


SN = 20


SN = 21


VR(MS) = 21


SN = 22


time = t00


time = t01


SN = 22


SN = 20


SN = 21


SN = 23


SN = 23


VR(MS) = 21


time = t02


SN = 20


SN = 21


SN = 22


SN = 23



_1263747619.vsd
SN = 0


VR(R) = 1
VR(MS) = 0
VR(X) = NULL
T_reordering inactive



SN = 1


SN = 2


SN = 0


SN = 1


SN = 4


SN = 5


SN = 3


SN = 6


SN = 4


SN = 7


SN = 5


SN = 6


SN = 7


SN = 0


VR(R) = 0
VR(MS) = 0
VR(X) = NULL
T_reordering inactive



VR(R) = 1
VR(MS) = 0
VR(X) = 3
T_reordering started



SN = 1


SN = 2


SN = 3


SN = 4


SN = 5


SN = 6


SN = 7


SN = 0


VR(R) = 1
VR(MS) = 0
VR(X) = 4
T_reordering running



SN = 1


SN = 2


SN = 3


SN = 4


SN = 5


SN = 6


SN = 7


SN = 0


VR(R) = 2
VR(MS) = 1
VR(X) = 4
T_reordering running



SN = 2


SN = 3


SN = 1


SN = 2


SN = 3


SN = 4


SN = 5


SN = 6


SN = 7


SN = 0


VR(R) = 5
VR(MS) = 4
VR(X) = NULL
T_reordering stopped



SN = 1


SN = 2


SN = 3


SN = 4


SN = 5


SN = 6


SN = 7


time = t0


time = t1


time = t2


time = t3


time = t4


time = t5


SN = 12


VR(R) = 5
VR(MS) = 4
VR(X) = 6
T_reordering started



SN = 13


SN = 4


SN = 5


SN = 6


SN = 7


SN = 8


SN = 9


SN = 12


VR(R) = 5
VR(MS) = 4
VR(X) = 6
T_reordering running



SN = 13


SN = 4


SN = 5


SN = 6


SN = 7


SN = 8


SN = 9


SN = 12


VR(R) = 5
VR(MS) = 4
VR(X) = 6
T_reordering running



SN = 13


SN = 4


SN = 5


SN = 6


SN = 7


SN = 8


SN = 9


SN = 4


VR(R) = 5
VR(MS) = 6
VR(X) = 9
T_reordering expires
T_reordering restarted


SN = 5


SN = 6


SN = 7


SN = 8


SN = 9


SN = 10


SN = 11


SN = 12


VR(R) = 5
VR(MS) = 6
VR(X) = 10
T_reordering running



SN = 13


SN = 4


SN = 5


SN = 6


SN = 7


SN = 8


SN = 9


SN = 12


VR(R) = 7
VR(MS) = 6
VR(X) = 10
T_reordering running



SN = 13


SN = 4


SN = 5


SN = 6


SN = 7


SN = 8


SN = 9


time = t6


time = t7


time = t8


time = t9


time = t10


time = t11


SN = 8


SN = 9


SN = 8


SN = 9


SN = 8


SN = 9


SN = 8


SN = 9


SN = 8


SN = 9


SN = 8


SN = 9


SN = 10


SN = 11


SN = 10


SN = 11


SN = 10


SN = 11


SN = 12


SN = 13


SN = 10


SN = 11


SN = 10


SN = 11



_1263134448.vsd
VR(R) = 7
VR(MS) = 6
VR(X) = 11
T_reordering running



SN = 14


SN = 15


SN = 6


SN = 7


SN = 8


SN = 9


VR(R) = 7
VR(MS) = 11
VR(X) = NULL
T_reordering expires



VR(R) = 7
VR(MS) = 12
VR(X) = 12
T_reordering started



VR(R) = 7
VR(MS) = 11
VR(X) = 13
T_reordering started



SN = 6


SN = 7


time = t12


time = t13


time = t14a


SN = 8


SN = 9


VR(R) = 7
VR(MS) = 13
VR(X) = 13
T_reordering runnning



SN = 14


SN = 15


time = t14b


time = t15b


SN = 14


SN = 15


SN = 6


SN = 7


SN = 8


SN = 9


SN = 6


SN = 7


SN = 8


SN = 9


SN = 6


SN = 7


SN = 8


SN = 9


SN = 10


SN = 11


SN = 10


SN = 11


SN = 10


SN = 11


SN = 10


SN = 11


SN = 10


SN = 11


SN = 12


SN = 13


SN = 12


SN = 13


SN = 12


SN = 13


SN = 12


SN = 13


SN = 12


SN = 13


SN = 14


SN = 15


SN = 14


SN = 15



