Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2#60bis
Tdoc R2-080033
Sevilla, Spain, January 14-18th, 2008

Agenda Item:
5.1.2.6
Source:
ZTE
Title:
RLC AM receiving window management
Document for:
Discussion, Decision
1 Introduction

In [1], the MAC-hs T1/TSN like reordering mechanism is specified for RLC-AM and RLC-UM HARQ reordering. For RLC AM, a status report will be triggered on the expiry of T_reordering. However, the delivery of successfully received RLC PDUs is not completely defined. For example, if VR(R) (the lower edge of the receiving window) is still missing after status reports have been triggered several times, whether the receiving RLC entity can deliver the consequent RLC PDUs that are successfully received in sequence. According to UTRAN specification, the receiving side has to wait until the corresponding RLC PDU is received or an explicit signalling of “MRW” is received, or a “RESET” signalling is received. In LTE, the above procedures have not been decided yet. The complexity of “MRW” mechanism is the concern of many contributions and the need of this mechanism is in question. In this contribution, a mechanism to advance the receiving window and consequently to advance the transmitting window which has equivalent effect as the “MRW” mechanism is put forward for discussion.
2 Discussion
In [2] and [3], a timer T_Release is proposed to be started on the expiry of T_reordering to advance the receiving window and to declare the PDU permanently lost. It is beneficial of this proposal to avoid buffer overflow and window stalling. However, further details for consequent operations are not provided yet.
2.1 How to use T_Release timer
There are 2 ways to set the T_Release timer: one is single T_Release instance, the other is multiple T_Release instances.
Single T_Release instance
A single T_Release timer associated with the lower edge of receiving window VR(R) is started when T_reordering expires and status report has been triggered. In this case, if T_reordering expires and VR(R) is still not fit, T_Release is started. When T_Release expires, VR(R) is updated and the subsequent RLC PDUs with “SN >= VR(R)” up to the next not received RLC PDU that are received in sequence are delivered even if RLC PDU with “SN = VR(R)” is not (completely) received. After VR(R) has been updated, if the above situation happens again, T_Release is started again, and so on. T_Release is stopped if RLC PDUs with SN = VR(R) have been completely received before T_Release expires.

This solution is simple but there is unfairness. If there are missing RLC PDUs other than VR(R) when T_Reordering expires and T_Release is started, the next not received SN will have already been waiting for a length of T_Release time when T_Release expires and VR(R) is updated to it. It may have to wait for another length of T_Release time to be delivered because the T_Release is started again. Some missing RLC PDUs may even have to wait for several times of T_Release time. So this solution is unacceptable if T_Release mechanism is intended to replace the “MRW” mechanism.

[image: image1.emf]√√Ｘ

√

√Ｘ

√

123456789

101112

Step 1

Step 2

Step 3

Ｘ√

Ｘ

√√Ｘ√√

Ｘ

Ｘ

√√

√√

Figure 1: Single T_Release instance
For example, in figure 1: step 1 and step 2 represents the status when T_reordering expires and status report is triggered. Step 3 represents the status when T_release expires and VR(R) is updated regardless of whether it has been received or not. Red rectangular with “X” represents VR(R). Green rectangular with “√” represents the updated VR(X). The blue framework represents the status transmitting window. The yellow framework represents the RLC PDUs included in which should be delivered when T_release expires and status report is triggered after that.
Step 1: Assuming current VR(R) = 1; VR(X) = VR(MS) = 2;

A status report has just been triggered and T_Release is started, T_reordering is restarted.
Step 2: T_reordering expires again; VR(R) has not been fit; a status report is triggered; current VR(R) = 1; VR(MS) = 5; updated VR(X) = 7; T_reordering is restarted. Notice that RLC PDU with SN = 6 has already been waiting before T_Release expires.
Step 3: T_release expires, Received segments of VR(R) and the other RLC PDUs that are received in sequence (from SN = 1 to SN = 5) are delivered to upper layers even if VR(R) is not (completely) received.
VR(R) is updated to 6 after status report has been sent. Assuming the status is like what exemplified in step 3 when T_reordering expires again, T_Release is started for the updated VR(R).
So we can see that the RLC PDU with SN = 6 will have to wait for another T_Release time before it can be delivered if not (completely) received before T_Release expires. Extra delay exists, it is unfair for the RLC PDU with SN = 6.
Multiple T_Release instances

T_Release is associated with the updated VR(X) (SN of the RLC data PDU which triggered T_reordering or those following which are received in sequence) when T_reordering expires. If T_reordering expires for another time, a new T_Release instance associated with the newly updated VR(X) is started. Since T_Release may be several times the length of T_reordering, there may be multiple T_Release instances running simultaneously. The RLC PDUs with SN below the corresponding VR(X) and after which are received in sequence, and within the status transmitting window are delivered to upper layers when the related T_Release instance expires even if some RLC PDUs are still missing, VR(R) is also updated accordingly. T_Release instance is stopped when all RLC PDUs below the corresponding VR(X) are completely received in sequence. New state variables are needed to be defined to record the corresponding VR(X)s each time T_reordering expires and T_Release is started. For example, VR(X)_1 corresponds to T_Release instance 1, VR(X)_2 corresponds to T_Release instance 2, etc. This solution is fair and there would not be too many T_Release instances need to be maintained simultaneously.

[image: image2.emf]√Ｘ

√

√Ｘ

√

123456789

101112

Step 1

Step 2

Step 4

Ｘ

√

Ｘ

√√

Ｘ

Ｘ√

Step 3

Ｘ

√√Ｘ

√

√Ｘ

Ｘ√√√Ｘ

√

√

Figure 2: Multiple T_Release instances
Take figure 2 for example:

Step 1: T_reordering expires; T_Release instance 1 is started; VR(R) = 1; VR(MS) = 2; VR(X)_1 = 4;

Step 2: T_reordering expires again; new T_Release instance 2 is started; VR(R) = 1; VR(MS) = 5; VR(X)_2 = 7;

Step 3: T_reordering expires again; new T_Release instance 3 is started; T_Release instance 1 expires; RLC PDUs with SN below VR(X)_1 and after which are received in sequence are delivered to upper layers. The updated values of the state variables are: VR(R) = 6; VR(MS) = 8; VR(X)_3 = 10;

Notice that RLC PDU with SN = 3 is also delivered although not completely received, and VR(R) is updated to the next not received SN after that.
Step 4: T_reordering expires again; new T_Release instance 4 is started; T_Release instance 2 expires; RLC PDUs with SN below VR(X)_2 and after which are received in sequence are delivered to upper layers. The updated values of the state variables are: VR(R) = 9; VR(MS) = VR(X)_4 = 12;
And so on…
Proposal 1: Multiple T_Release instances are needed, individual T_Release instance is associated with the updated VR(X) when T_reordering expires. RLC PDUs with SN below the corresponding VR(X) and after which are received in sequence, and within the status transmitting widow can be delivered to upper layers even if some RLC PDUs are still missing.
Note: New state variables need to be defined to record the VR(X)s, such as VR(X)_1, VR(X)_2 etc.
2.2 Behaviours when T_Release expires

There are several options on the expiry of T_Release as described below.
Option 1: After the delivery of RLC PDUs to the SDU reassembly entity when T_Release expires, the receiving AM RLC entity uses an explicit signalling to notify the transmitting side not to try to transmit the corresponding RLC PDUs any more. Extra procedures and control PDU formats are needed for the transmission and acknowledgement of the signalling. And it would also be careful to consider SDU discard mechanisms of the transmitting side. They should cooperate with each other to work well which will bring significant complexity. We couldn’t see its optimisations over “MRW” mechanism.
Option 2: After the delivery of RLC PDUs to the SDU reassembly entity when T_Release expires, the receiving AM RLC entity does not use an explicit signalling to notify the transmitting side. The transmitting AM RLC may be still trying to retransmit the corresponding RLC PDUs in vain which is a waste of radio resources. Eventually the SDU discard timer will expire in the transmitting side and “send MRW” procedure will be triggered if defined. It doesn’t reduce any complexity compared with sole “MRW” mechanism. However, if T_Release mechanism is specified in the receiving side, “MRW” mechanism can be not specified in the transmitting side. The drawback is that the transmitting side may unnecessarily retransmit some RLC PDUs before SDU discard timer expires even if the receiving side has already advance its window, these RLC PDUs will be discarded in the receiving side if received. And it is not clear yet what is the behaviour of the transmitting side when the SDU discard timer expires and this situation will surely happen.
Option 3: After the delivery of RLC PDUs to the SDU reassembly entity when T_Release expires, a status report is triggered which does not contain NACK_SN of the corresponding still missing RLC PDUs. That is, to consider these still missing RLC PDUs as successfully received. Since T_Release can be configured as integer times of T_reordering, status report will be triggered on the expiry of T_reordering, so no additional mechanisms need to be defined. When the transmitting side receives the status report containing acknowledgement information of the corresponding RLC PDUs, it will advance the transmitting window consequently. No “MRW” mechanism is needed any more, and the SDU discard timer will be stopped before expires if both the SDU discard timer and the T_Release timer are configured appropriately. Even if the RLC RESET procedure is triggered after SDU discard timer expires in some rare cases, it is not caused by this mechanism itself. Both the transmitting RLC entity and the receiving RLC entity can work normally as the corresponding RLC PDUs are successfully transmitted and received. If the status report is missed, anyway the transmitting side will trigger polling when the polling conditions are met. It doesn’t matter if the status transmitting window has already been updated when polling is triggered. The required SNs are under the ACK_SN in the new status PDU so that they can be considered as acknowledgement. For example, in step 3 of figure 2, NACK_SN 1 and 3 are not included in the status report, they are considered as correctly received if T_Release expires. It is the same in step 4 of figure 2, in which NACK_SN of 6 are not included in the status report.

Option 3 is preferred among the above three options.
Proposal 2: When T_Release expires, NACK_SNs of the still missing RLC PDUs which are below the corresponding VR(X) and within the status transmitting widow are not contained in the status PDU in the following triggered status report.
3 Conclusion
In this contribution, a RLC AM window management mechanism equivalent to “MRW” mechanism is described. It is proposed that:
Proposal 1: Multiple T_Release instances are needed, individual T_Release instance is associated with the updated VR(X) when T_reordering expires. RLC PDUs with SN below the corresponding VR(X) and after which are received in sequence, and within the status transmitting widow can be delivered to upper layers even if some RLC PDUs are still missing.

Note: New state variables need to be defined to record the VR(X)s, such as VR(X)_1, VR(X)_2 etc.
Proposal 2: When T_Release expires, NACK_SNs of the still missing RLC PDUs which are below the corresponding VR(X) and within the status transmitting widow are not contained in the status PDU in the following triggered status report.
4 References

[1] 3GPP TS36.322 V2.0.0, Radio Link Control (RLC) protocol specification (Release 8)

[2] R2-074634,
RLC Re-ordering Operations, Motorola

[3] R2-074895, Re-ordering function for RLC AM/UM, Alcatel-Lucent

1/4
2008-01-08

_1261295926.vsd
�

√

√

Ｘ

√

√

Ｘ

√

1

2

3

4

5

6

7

8

9

10

11

12

Step 1

Step 2

Step 3

Ｘ

√

Ｘ

√

√

Ｘ

Ｘ

√

√

Ｘ

√

√

√

√

_1261311001.vsd
�

√

Ｘ

Ｘ

√

√

Ｘ

√

Ｘ

1

2

3

4

5

6

7

8

9

10

11

12

√

Step 1

Step 2

Step 4

Step 3

Ｘ

√

Ｘ

√

√

√

Ｘ

√

√

Ｘ

√

Ｘ

Ｘ

√

√

√

Ｘ

√

√

