3GPP TSG-RAN WG 2 meeting #60

R2-074807
Jeju, Korea, November 5– 9, 2007

Agenda item:
4.5
Source:
Qualcomm Europe
Title:
HFN handling at inter-eNB handover
Document for:

Discussion and decision
1 Introduction
In the RAN2 meeting #59-bis in Shanghai, HFN de-synchronization issue at mobility was discussed [1]. One solution presented was to move forward the point of “PDCP SN wraparound” when there is a risk of HFN de-synchronization.
During the discussion, we also raised another possible solution. The purpose of this document is to further discuss the details of the solution.
2 Discussions
2.1 HFN de-synchronization at inter-eNB handover
The risk of HFN de-synchronization arises from the fact that the transmitter and the receiver may have different understanding on the point (PDCP Sequence Number) that HFN should be considered equal to zero after the handover. This is with the assumption that HFN would be reset and start from zero at the target eNB in every inter-eNB mobility, while keeping PDCP sequence numbers.

In a sense this seems a natural design choice since the eNB key is changed at every inter-eNB handover. PDCP sequence number is kept for RBs using RLC-AM for a separate reason (we will not discuss this point in this document).

The solution in [1] suggests moving forward or delaying the point of HFN increment, which is usually at the point of PDCP SN being zero. It was also suggested that some form of over the air signalling is necessary per radio bearer.
Instead, we propose a scheme in which HFN is also kept at the mobility, which is described in the following section.
2.2 Proposed solution: HFN and PDCP SN transfer at inter-eNB handover
In our proposal, the following are transferred from the source eNB to the target eNB along with the “next PDCP SN to use”:

A. The latest HFN and PDCP SN used for ciphering in the source eNB

B. The latest HFN and PDCP SN used for deciphering in the source eNB

For DL ciphering, the target eNB performs the normal COUNT maintenance for ciphering based on the SN of the PDCP SDU to be transmitted and the transferred info A above. For DL deciphering, the target eNB performs the normal COUNT maintenance (as described in [2]) for deciphering based on the SN of the PDCP SDU received and the transferred info B above.
The following shows an example for DL ciphering:

· Source eNB uses x || 4093 for ciphering before HO

· Source transfers x, 4093, and “Next PDCP SN to use = 2” to the target eNB

· Source transfers PDCP PDUs with SNs 4094, 4095, 0, 1 to the target eNB
· Target eNB then sends the following:

· x || 4094

· x || 4095

· (x +1) || 0 (COUNT maintenance requires increment of HFN)

· (x +1) || 1
· (x +1) || 2

Note even if 4094 and 4095 were lost in X2 and never reached the target eNB, the target eNB still knows when to increment HFN since it knows the last PDCP SN reported by the source eNB was 4093.

Proposal 1: The source eNB transfer the following info to the target eNB along with the “next PDCP SN to use”:

A. The latest HFN and PDCP SN used for ciphering in the source eNB

B. The latest HFN and PDCP SN used for deciphering in the source eNB
2.3 Handling of COUNT in the network
One implication of keeping HFN is that we would need to introduce a special handling to avoid COUNT-C/I re-use for a given security key. In UTRAN the handling corresponds to avoiding the COUNT-C/I wraparound by having THRESHOLD value. (Note that there are cases COUNT-C/I value becomes larger than THRESHOLD. We only discuss the basic principles and will not go into that detail in this document.)

[image: image1.emf]COUNT = 0

Key life time

THRESHOLD

Figure-1: Handling of key life time in UTRAN
Once we assume HFN is kept at inter-eNB handover, the wraparound of COUNT does not necessarily mean the expiry of key life time. This is because the eNB key is always changed at inter-eNB handover and the COUNT value starts from an arbitrary value. The following figure shows an example when an inter-eNB handover occurs at a given COUNT value.

[image: image2.emf]COUNT = 0

Handover

(eNB key change)

Network implementation

dependent offset

Key life time

Figure-2: Proposed key life time handling in E-UTRAN
It is expected that the network would need to apply a backwards offset from the initial COUNT value as described in the figure 2. It should be noted that the above key life time handling is necessary per radio bearer using RLC-AM in the network.
The proposed special handling of COUNT does not require standardization and can be completely transparent to the UE. The UE specification should allow the wraparound of COUNT value, but the UE does not have to be aware of possible COUNT value reuse. It is up to the network to take appropriate action (i.e. re-keying) in order to avoid the reuse of COUNT value for the same key.
Proposal 2: The network applies a backward offset from the initial COUNT value after handover.
3 Conclusion

In this document we described an alternative solution to address the issue discussed in [1]. The proposed solution has the following advantages.
· Does not require a standardization of the network behaviour

· No over the air signalling

· Key life time maintenance is completely transparent to the UE

It should be noted that the solution relies on the following network internal actions. However we believe the network complexity is at reasonable level and advantages of the proposed solution well justifies the network complexity.
· Per radio bearer maintenance of COUNT value at which key life time should expire, including the application of a network dependent backwards offset from the initial COUNT value

It is proposed that RAN2 discuss the issue and agree on the proposed solution.
Reference

[1]

R2-074096

Key and sequence number handling at mobility

Ericsson
[2]

TS36.323

Packet Data Convergence Protocol (PDCP) specification

1
3

_1254753683.vsd
￼

_1254752607.vsd
￼

COUNT = 0

Handover
(eNB key change)

Network implementation dependent offset

Key life time

