Error! No text of specified style in document.
5
Error! No text of specified style in document.

3GPP TSG-RAN WG2 #60

R2-074663
5-9 November 2007

Jeju, Korea
Agenda item:
5.2.1.8
Source:
Qualcomm Europe
Title:
Towards 36.921: ASN.1 Coding Principles
Document for:
Discussion
Discussion

Discussions at recent RAN2 meetings, and particularly the review process for the Rel-7 ASN.1, have made it clear that many companies perceive a need for LTE to adopt clearer and in some cases more stringent ASN.1 structures and coding practices. A brief informal discussion took place offline among interested companies after RAN2#59bis, resulting in the attached draft document which might form the core of a future “36.921” document with a similar rôle to TR 25.921 in UMTS.

Conclusion

We ask that RAN2 discuss the attached draft document and consider possible ways forward.
1. Usage of ASN.1

The following clauses contain guidelines for specification of protocol messages with ASN.1.

1.1. General principles and practices

Message (PDU) names should be ordinary mixed case without hyphenation and match the message names used in the procedural text and tabular, e.g., the PDU for the RRC CONNECTION MODIFICATION COMMAND message should be RRCConnectionModificationCommand. No abbreviations!
IE type names should be ordinary mixed case, with hyphenation used to set off acronyms only where an adjacent letter is a capital, e.g., ThingOne, ThingTwoABC (not ThingTwo-ABC, since the “o” in “Two” is lowercase), ThingABC-Three, ThingABC-DEF-Four. They should match the name used in the corresponding tabular section.
Field names should start with a lowercase letter and use mixed case thereafter, e.g., thingOne. If a field name begins with an acronym, the entire acronym is lowercase (abcThingOne, not aBCThingOne) and not set off with a hyphen (abcThingOne, not abc-ThingOne). They should match the field name used in the corresponding tabular section.

Where versions of an IE need to be distinguished by release, a suffix of the form “-rX” is used, e.g., “Foo-r9” for the Rel-9 version of the IE “Foo”. (See Section 1.5 for details on the versioning of IEs to accommodate extensions.)
Identifiers that are likely to be keywords of some language, especially widely used languages such as C++ or Java, should be avoided to the extent possible.

Comments are free-form (within the restrictions of the language). They should be kept as brief as possible while maintaining clarity. Section headings within IEs (e.g., the “Physical channel IEs”/”Transport channel IEs” groupings in the UMTS reconfiguration messages) should be reflected in comments in the ASN.1. In general, the principles from Section 10.6 of 25.921 apply.
A mandatory boolean field may be described either by the BOOLEAN type or as an optional enumerated value. In general, the boolean type should be used in cases where the field has meaningful semantics for both true and false values, the “enum-true” form for cases with semantics of the form “presence of this field indicates X”.
1.2. High-level structure

[This approach is based on Annex A of 25.921.]

The top level of RRC messages is defined as an ASN.1 class, with message ID values specified in a table and each message type as a sequence of IEs. The resulting structure is as follows:

RRC-MESSAGE ::= CLASS {

&id
RRCMessageID
UNIQUE,

&msgType

}

WITH SYNTAX {

&id &msgType

}

RRCMessageID ::= Integer (0..63)

-- range FFS

RRCMessages RRC-MESSAGE ::= {

{ messageA-id MessageA } |

{ messageB-id MessageB } |

{ messageC-id MessageC },

...

-- Extension marker
}
messageA-id RRCMessageID ::= 1
messageB-id RRCMessageID ::= 2
messageC-id RRCMessageID ::= 3

RRCMessage ::= SEQUENCE {

id

RRC-MESSAGE.&id ({RRCMessages}),

contents
RRC-MESSAGE.&msgType ({RRCMessages}{@id})

}

MessageA ::= SEQUENCE {

-- IEs for the message contents

}

MessageB ::= SEQUENCE {

-- IEs for the message contents

}
MessageC ::= SEQUENCE {

-- IEs for the message contents

}

Note that this structure makes the addition of a new RRC message type relatively easy, specifically by using the extension marker for the table associating message IDs with associated types. [Error handling should then be considered for the case where a legacy receiver encounters a new message type.] In addition, the use of the class concept opens the possibility of message behaviour taking into account information from the “container” class, e.g., the ASN.1 code could explicitly capture conditional behaviours like the “CV-CCCH” idiom that appears in the UTRAN tabular.
In UTRAN, the message ID is unique only within a particular logical channel. The example shown above does not take the logical channel into account, but could be modified to do so if it is considered desirable to separate messages by logical channel always.

1.3. Use of ASN.1 features

[The major restriction in UMTS was “no user-defined constraints”. Consider whether this is still a needed restriction, whether guidelines need to be designed for the use of classes, and so on.]
1.4. Relation to tabular

Tabular and ASN.1 versions of data units (both PDUs and IEs) are interleaved, thus (using the MEASUREMENT REPORT message from the current draft of 36.331):

Tabular:

	Name
	Need
	Multi
	Type/ reference
	Semantics description
	Ver

	Message Type
	MP
	
	<ref>
	
	

	Measured results list
	MP
	
	<ref>
	
	

ASN.1:

MeasurementReport ::= SEQUENCE {

measuredResultsList

MeasuredResultsList
}

(Note that MessageType is in the general RRC message container, as shown above, rather than in this ASN.1 snippet. [Should it even appear in the tabular? FFS.])

In a later section defining the MeasuredResultsList IE:
Tabular:

	Name
	Need
	Multi
	Type/ reference
	Semantics description
	Ver

	Measured results list
	MP
	1 to <maxResults>
	
	
	

	Measured result
	MP
	
	Measured result

<ref>
	
	

ASN.1:

MeasuredResultsList ::= SEQUENCE (SIZE (1..maxResults)) OF {

measuredResult

MeasuredResult

}

[It would probably be desirable to bracket the ASN.1 code snippets with identifiable character strings to aid machine-processing, e.g., simple scripts to extract the ASN.1 snippets from the spec and concatenate them into a compilable ASN.1 source file.]
The order of IEs in the tabular and ASN.1 versions should match to the extent possible. Where the order must be different (e.g., if an extension changes the type of a field in the middle of a message), the fact should be noted in a comment (exact organisation TBD).

An entry of “MD” in the “Need” column should correspond to a DEFAULT keyword in ASN.1. Where a “default value” is needed that is not compatible with the DEFAULT keyword (e.g., type “Enumerated (TRUE)” with a default of “false”, or “same as previous value”), the field should be indicated in the Need column as “OP” with the default value specified in the procedural text. (FFS.) Note that it follows that a default value described in the tabular must have the same type as the IE itself, i.e., an IE of type INTEGER can never have a default of “infinity”. (This construction could instead be captured with an optional INTEGER field, together with a semantics description or procedural text saying “absence of this IE means the value is infinity”.)
An IE should have its own definition in the tabular if and only if it has its own definition in the ASN.1.

One possible handling of extended versions of an IE would be to combine the “Version” column in the tabular with multiple versions of the IE in ASN.1. For instance, if an IE (with the inspired name “Sample IE”) were extended in Rel-9, the tabular/ASN.1 combination might look as shown below. (This example uses the convention that IEs that only extend, as opposed to replacing, earlier versions are marked with the suffix “ext”, e.g., “Sample-IE-r9ext” below. If the IE entirely replaced the old version of “Sample-IE”, it would instead be named “Sample-IE-r9”.)
Tabular:

	Name
	Need
	Multi
	Type/ reference
	Semantics description
	Ver

	Original IE 1
	MP
	
	OriginalIE1

<ref>
	
	

	Original IE 2
	OP
	
	OriginalIE2

<ref>
	
	

	New IE 3
	MP
	
	NewIE3
	
	REL-9

ASN.1:

Sample-IE ::= SEQUENCE {

originalIE-1

Original-IE-1,

originalIE-2

Original-IE-2
OPTIONAL
}
Sample-IE-r9ext ::= SEQUENCE {

newIE-3

New-IE-3

}
(Note that this example does not show any particular extension mechanism; it is only intended to illustrate the relation of tabular and ASN.1. The detailed relationship between extensions and tabular formats is FFS.)

1.5. Extensions

[This is still largely an open area. There seems to be a general feeling that the existing extension mechanism is functional but difficult to maintain; however, no one has yet suggested a better alternative. Use of the ellipsis mechanism in ASN.1 is straightforward in many cases, but introduces some overhead and does not help with some situations such as a field that changes type between releases.]

[A particular goal here should be to resolve the ambiguity that led to issue 0046 in the Rel-7 ASN.1 review, i.e., when to duplicate fields from earlier releases in an extension container.]

General principles that have been suggested for ongoing work:

· In messages where critical extensions are used, the non-critical extensions should be avoided, as far as possible. (Having both alternatives implemented in a message means that multiple ways to convey the same information. It increases the complexity, both in the ASN.1 code as such, and also in the receiver, which have to cope with all the variants.) It may not be possible to follow this principle in some cases, e.g., late corrections and "release independent" features.
· Consider using the ASN.1 extension markers both at the message level and in IEs of a certain level of complexity [exact definition FFS]. However, since the extension marker has a certain overhead, it is desirable to avoid their use in “low level” IEs that are included frequently in many different contexts. [There is a problem with this approach in the case of a “low level” IE that changes its type between releases, such as the UTRAN DRX cycle length coefficient in UMTS, which went from an integer to a three-field structure in Rel-7. How to handle such changes in an extension-friendly manner is FFS.]
In addition to the existing UTRAN mechanisms for extension of messages, LTE could accommodate critical extensions in the uplink direction. This ability might be useful, e.g., in measurement reporting, where there is an opportunity for a “handshake” in which the network could indicate the appropriate protocol level to the UE, apart from the network capabilities in general.
1.6. Other things

[General container section for whatever other issues come up.]
· FDD/TDD branches: keep the CHOICE structure existing in UTRAN, use the class structure so that a message “knows” whether it is an FDD or TDD instantiation, or some other solution entirely?
3GPP

