Page 1

3GPP TSG-RAN WG2#59bis
R2-074401
Shanghai, P.R. China
8 - 12 October, 2007
Agenda Item:

Souce:

NEC
Title:

Content Synchronisation in eMBMS
Document for:

Discussion
1 Introduction
In several previous RAN2 and RAN3 meetings, the issue of MBMS content synchronization in an MBFSN area has already been discussed. Several concepts such as timestamp, packet sequence numbering, and byte level sequence number have been introduced.

This paper reviews some of the options which have been proposed, examining how they cope with lost packets on S1, and proposes a war forward that takes the best from each proposal. The contribution also addresses the issue of idle gaps and proposes an efficient way of implementing the previously proposed concept of dummy packets.
2 Generalities
2.1 Purpose of MBSFN content synchronization
When SFN technology is used for MBMS delivery, within each MBSFN area, the signal transporting the service data must be identical between all its transmitting eNodeBs. This requires time synchronisation between the transmitters and a common resource allocation scheme so that transmit opportunities overlap perfectly (within a tolerance). It is also necessary for each transmit opportunity to encode the same block of data. This is called content synchronisation. To achieve it, all the eNodeBs in an MBSFN area receive the service data packets from a single source, the Multi-cell Coordination Entity (MCE), which delivers the packets using the SYNC protocol. The details of SYNC still have to be agreed, but some concepts were already discussed (see e.g. [1], [2], [3]).
2.2 Constraints & assumptions for MBSFN content synchronization
Fixed Transport Block size - Fixed MAC overhead - Fixed RLC PDU size

There are first basic assumptions to consider in the context of content synchronization. It is assumed that the air-interface resources, and associated L1 parameters, allocated for an eMBMS service are fixed, at least throughout a session. Furthermore, it is assumed they are divided into transport blocks of identical capacity. Furthermore, it is assumed that the MAC layer consumes a fixed overhead. The net result of these assumptions being that the RLC in the eNodeB produces RLC PDUs of a fixed, known size per service session, which map to transmit opportunities.
Basics of the SYNC protocol

To allow content synchronisation, it is generally admitted that the SYNC protocol (between the MCE and the eNB) will provide each eNB with:

· A timestamp, at least at the beginning of the burst for each service (this aspect is not addressed in this contribution),

· a packet counter information associated to each RLC SDU,

· a byte counter information associated to each RLC SDU, counting the number of elapsed octets cumulatively.
Note that Section 3 of this document argues that a packet counter will not be needed if the byte counter is properly designed.

The RLC packing scheme must be specially designed to cope with loss of packets on S1.
Further to the information provided by the SYNC protocol, the content synchronisation is maintained provided that all eNodeBs participating to the MBSFN transmissions pack packets according to the same rules. This constraint has important implications on how to handle the case when an eNodeB detects that it has missed one or more packets. Although it cannot transmit any of the blocks affected by the loss (as blocks cannot be partially transmitted to avoid damage to the SFN combination effect), it must determine when precisely to resume transmission in order to stay synchronized with the eNodeBs which did not suffer any loss.
This is a priori not obvious because the exact timing where to resume transmission depends on how much RLC header overhead was introduced by the other eNodeBs. Hence the RLC packing scheme must be such that the amount of overhead is predictable by any eNodeB. Thus it is generally admitted that the design of RLC packing will be specific to MBSFN transmission, i.e. distinct from that of unicast. Section 3 of this document possible RLC packing schemes able to keep synchronization when packets are lost.
3 Analysis of some previously proposed schemes

Two previously proposed schemes are examined here: [2] & [3]. The important underlying principle in both proposals is that each RLC SDU is associated with a Length Indicator LI (and only one, even if the SDU is segmented). This packing rule ensures that each eNB can be aware of the overhead produced in the other eNBs, and so where to resume the transmission in case of packet loss.
3.1 Scheme with byte counter, packet counter, special LI values

The scheme proposed in [3] is summarized in the figure below.

[image: image6.bmp]
Figure 1
Each RLC SDU arrives into the eNB associated with a Packet Counter (PC) and a Byte Counter (BC). As mentioned above, there is one LI per SDU. Besides, the scheme defines special packing rules for segmented SDUs, and associated special LI values when e.g. a PDU is exactly filled by an SDU segment. In this case no LI is included in the first PDU, and a special LI is included in the following PDU to characterize the second SDU segment. The way those special LI values are set keeps the property of one LI per SDU, while at the same time it ensures the desirable property that the un-packing of a given PDU does not depend on the correct reception of the previous PDU.

This scheme relies on the packet counter which, in case of lost packets, allows the eNB to know how many packets were lost. Namely, if we assume that SDU #i+1 and SDU #i+2 were lost, thanks to the packet counter (from i to i+3), the eNB knows that 2 packets were lost, and so can deduce how many LI’s have been introduced by the other eNBs. Additionally, thanks to the byte counter, the eNB knows the total size of lost packets, and so can calculate where to resume retransmission.
3.2 Scheme with enhanced byte counter, no packet counter, no special LI values
The scheme proposed in [2] is summarized in the figure below.

[image: image2]
Figure 2
The key point is that the byte counter information associated to each RLC SDU is ‘augmented’ by the length of the LI, i.e. 2 bytes. With this concept, in case an eNB looses some packets, there is no need for it to know how many packets are lost, because the byte counter of the packet correctly received after the loss gives the total shift (i.e. payload + overhead) to be applied to resume transmission. So, in turn, it means that the packet counter is not needed in this scheme.
However, the problem with this scheme is that the association between LI’s and RLC SDU’s is less elaborated than in [3] in the case of segmentation (no special LI values). The consequence is that, for example, in the figure above, if the first RLC PDU is not received correctly by the receiving entity, the second one cannot be un-packed because the receiving entity cannot know that the PDU begins with the last segment of SDU#i+1. And subsequently, the unpacker will be unable to decode any of the following PDUs.
3.3 Summary and way forward
· Pro of solution 3.1 : Each PDU can be unpacked independently.

· Con of solution 3.1 : The packet counter is a redundant information if the byte counter is designed as in solution 3.2.

· Pro of solution 3.2: No need of a packet counter, the byte counter accumulates also the length of the LI’s.
· Con of this solution 3.2: The un-packing of each PDU depends on the previous one.
In conclusion of this section, it is proposed that the ideal scheme would be the one mixing the pros of both solutions above, i.e.:
· design of LI as proposed in [3] (section 3.1 of this document)

· No Packet Counter, but Byte Counter including length of overhead as proposed in [2] (section 3.2 of this document).
4 Handling of idle gaps

Idle gaps are necessary for rate matching, i.e. flexibility, over a packet routed network. Concretely, as the MBMS data may be bursty, there might be idle gaps between bursts of packets transmitted from the MCE to the eNBs.
In case of packet loss over S1, the corresponding eNB is not allowed to transmit the affected packets (in order to avoid interference), but in case of idle gaps, the eNBs can transmitted the partially filled PDU without any damage. So, in order for the eNB to distinguish between lost packets and idle gaps, it has been proposed in [2] that the MCE could send dummy packets as shown on the figure below.

[image: image1]

[image: image3]
Figure 3
These regularly transmitted dummy packets contain only the “header” consisting of the information needed to increase the byte counter (i.e. they do not contain a data part).
The problem with this scheme is that there is still a chance that part of the gap actually includes one or several lost packets and it is therefore not guaranteed that it is right for the eNodeB to transmit a partially filled PDU. As a graphical example, the eNB would handle the case represented in Figure 3 exactly in the same way as the case represented in Figure 4 below. In the latter case, there is a lost packet (SDU #i+1) between the last dummy packet and the next non lost packet (SDU #i+2), and the eNB is not aware of it. But inversely to what happens in figure 3, the eNB must not send the last Transport Block on the radio, because the beginning of it should not be padding.

[image: image4]

Figure 4
The structure of the dummy PDU can be enhanced to cope with this problem. The dummy PDU would be the same as a normal PDU but with its payload (what should be the packet or RLC SDU) replaced with a length indicator set to the size the payload should be (the virtual size of the dummy packet). This is shown in the figure below.

[image: image5]re 5
The byte counter is still set as with proper PDUs, except that the offset of any packet following a dummy PDU (whether itself dummy or not) is incremented by the virtual size of the previous packet, not its actual size. The dummy PDUs are distinguished from normal PDUs by their actual size as the size required for a length indicator is smaller than the minimum packet size.
With this modification, the eNB can know how whether any packets were lost following dummy packets, and thus refrain from sending the corresponding TB on the radio.

5 Conclusion
In the case of MBSFN transmission, it is proposed that for the RLC packing scheme a mixed solution taking benefits from solutions presented in [2] and [3] is adopted, as explained in section 3.3 of this document:

· design of LI as proposed in [3],

· No Packet Counter, but Byte Counter including length of overhead as proposed in [2].

Regarding the handling of idle gaps, it is proposed that the solution of dummy packets presented in [2] is enhanced as explained in section 4, by assigning to the dummy packet a payload containing the length of the virtual packet. With this enhancement, a packet loss after the last dummy packet can be detected.
References
[1] R3-070708, “Text proposal for MBMS content synchronization”, NTT DoCoMo, IPWireless, Ericsson, Panasonic, Siemens Networks, Nokia, Alcatel-Lucent, RAN3#55bis, St Julian, Malta, March 27-30, 2007.
[2] R3-070630 “MBMS L2 content synchronization”, Ericsson, RAN3#55bis, St Julian, Malta, March 27-30, 2007
[3] R2-072360, “Multiple packets loss recovery and RLC PDU format in eMBMS”, Alcatel-Lucent, RAN2#58bis, Orlando, US, June 25-19, 2007
No transmission because detected loss

2

2

2

LI

LI

LI

Idle Gap

LOST

X

BC=4S

No transmission

padding

BC=3S

BC=2S

Payload size : 2S bytes

Payload size : 2S bytes

S

SDU #i+2

Payload size : 2S bytes

RLC SDUs

BC=4S+X

BC=S

S

BC=0

SDU #i

LI

No transmission

padding

padding

dummy

BC=3S

dummy

Idle Gap

dummy

SDU #i+1

RLC SDUs

BC=4S+X

BC=3S

BC=S

dummy

Payload size : 2S bytes

padding

S

BC=0

S

Payload size : 2S bytes

Payload size : 2S bytes

Payload size : 2S bytes

dummy

BC=2S

padding

No transmission

BC=2S

SDU #i

RLC PDUs

RLC SDUs

BC=1030+2

PC=i+1

BC=772+2

PC=i+2

BC=258+2

PC=i+3

BC=256

BC=768

512

512

256

256

BC=0+2

RLC SDUs

BC=1024

LI

LI

LI

SDU #i+3

SDU #i+2

SDU #i+1

SDU #i

RLC PDUs

512

512

256

256

BC=0

PC=i

LI

LI

LI

SDU #i+3

SDU #i+2

SDU #i+1

SDU #i

Payload size : 2S bytes

S

SDU #i+2

Payload size : 2S bytes

dummy

RLC SDUs

BC=4S+X

BC=S

S

BC=0

SDU #i

Thanks to the value (LI) of the last dummy packet, 4S was expected here -> loss is detected

BC=4S

X

LOST

Idle Gap

� But there is still the issue of dependency on the following PDU. The last portion of an RLC PDU will always be dropped by the unpacker, when the following PDU is not decodable. Of course, in most of these cases, it would have been a segment and therefore the SDU is lost anyway because of the failure of the next RLC PDU, but in a few cases, it will be a complete SDU and the unpacker does not know it. If this is considered as an annoying error case to be resolved, there is solution that can be explained in a future contribution. Also, this is much less important than the flaw in the other scheme (see section 3.2) of loosing the ability to unpack any further PDUs.

