Page 4
Draft prETS 300 ???: Month YYYY


3GPP TSG-RAN WG2 #59bis
Tdoc R2-074059
Shanghai, China, 8.-12. October 2007

Agenda Item:
5.1.1.5
Source: 
Ericsson 

Title:  
MAC Happy Bits for UL
Document for:
Discussion, Decision

1 Introduction

In LTE, the uplink MAC scheduler resides in the eNodeB and assigns transmission resources (resource blocks) to terminals in that cell. Furthermore, the eNodeB selects the Transport Format (TF) to be used by the terminal. 
In order to perform these tasks the scheduler needs information about the terminals’ current buffer state, i.e., if and how much data the terminal buffers in its priority queues. It may also need further information such as the available power headroom or the transmit power used to estimate the UL gain and select a suitable TF. Very precise and up-to-date scheduling information allows accurate scheduling decisions. Providing this information from the terminal towards the eNodeB comes at a certain cost which must be compared to the gain it offers.
A detailed buffer status report may be quite large in number of bits and if transmitted frequently would cost considerable overhead. For many applications
 the buffer status is continuously changing and a rough buffer indication that is frequently updated is more useful. 
We therefore suggest to include an indication similar to the “happy bit” for EUL consisting of two bits in the MAC header. As we show in this contribution, the happy bit comes at a very low cost in terms of overhead as there are two spare bits in almost all MAC headers (see also [3]). Furthermore we present some simulation results indicating that the two bits provide accurate and up-to-date information to quickly utilize the available transmission resources and to achieve good performance. 
2 Discussion
If a terminal has uplink data to transmit, it needs a valid UL scheduling grant. If it neither has one, nor can expect to receive one, it must use the scheduling request channel (or a RACH in case it has no SR resources) to obtain an initial grant. See [1] for details about the initial scheduling request. In response to the scheduling request which does not contain any precise buffer information, the eNodeB will issue an initial UL grant in order to give the UE the possibility to send some data and to find out more information about the amount of data available for transmission and its scheduling priority (label) 
. 
The UE schedules data from its logical channels when receiving a valid uplink grant. In most cases it does that according to strict priorities. If the total amount of data in all queues is less than the first scheduled UL grant the UE will include the available data into the MAC PDU and fill the remaining space with padding when applicable. Most of the time the existence of padding bits is an implicit indication that all buffers of that UE are empty. However, there are some cases where padding occurs although the UE has more data available. Also, there may be no padding even though the UE has no data left, i.e., when the remaining data exactly fits into the transport block. In order to detect these cases it is preferable to explicitly report an empty buffer. 
If the total amount of data in all queues exceeds the number of bits in a scheduled UL grant the UE will fill the MAC PDU starting with data from the logical channel with the highest scheduling priority. If a queue gets empty, the UE multiplexes an RLC PDU from the logical channel with the second highest priority. If there would have been data with higher priority that would have been sent instead. The UE may, however, have more data in a lower priority queue, but that is (by definition) less important than the data in the high priority queue. Thus, if strict priority scheduling is performed
, the eNodeB knows the queue with the highest priority containing data. It does however not know implicitly the number of bytes per priority queue and not even the cumulative buffer size. As argued before, precise information consumes UL capacity and is likely to be outdated when used by the scheduler (new data may have arrived, or data may have been dropped by active queue management from the buffer). However, without any additional information the scheduler has no indication if the previously scheduled grant was almost enough or if a large amount of data is still left in the buffer. A too large grant results in potentially excessive padding, which may reduce the system capacity whereas a too small grant causes extra delays for this user and consequently worse performance. 

We therefore propose to include a two-bit buffer information element in all UL MAC PDUs (transport blocks). As mentioned above, one code-point should be used to indicate that the UE’s buffer does not contain any further data. The remaining three code-points may be used to report the cumulative non-zero buffer size of all radio bearers. In order to artificially increase the granularity of the report we propose to put the report in relation to the size of the transport block in which it is sent. Configurable factors to be multiplied with the transport format size have shown good performance in simulations (see section 5).

For example the UE could be configured to set the happy bit according to the following table

	Buffer Size
	Code Point

	0
	00

	≤ 2 * Transport Format
	01

	≤ 9 * Transport Format
	10

	> 9 * Transport Format
	11


The eNodeB may estimate the actual size of the UE’s buffer by multiplying the size of the transport format with the factor associated with the reported code-point. The algorithm for decoding the received happy-bit code point and for converting it into a buffer size estimate is eNodeB implementation specific. Our simulations (see section 5) indicate that the following mapping performs well when the UE is configured as shown in the table above:

	Reported Code Point
	Estimated Buffer Size

	00
	0

	01
	0.5 * Transport Format

	10
	2 * Transport Format

	11
	9 * Transport Format


One may argue that this level of buffer reporting is not sufficient for services that have typically only a few bytes of data in flight and little data in the buffer. Examples of this kind of traffic are services mapped to a Guaranteed-Bit-Rate (GBR) bearer. In theory, more precise buffer status information would improve link adaptation, and reduce padding. But as long as the served traffic does not exceed the GBR the scheduler is expected to avoid extensive buffering and to serve all the queued data. 
When all queues were served, a buffer report indicates an empty buffer and the terminal is expected to send a new scheduling request upon arrival of new data. Then, the scheduler must anyway guess a suitable TF as it does not have any up-to-date buffer information. We think that TF selection for such GBR bearers will typically be derived from the pre-configured GBR. If a GBR bearer is multiplexed with a Non-GBR bearer, the two-bit buffer status report suggested above provides good enough information to the scheduler. 
It might be argued that including two bits for the happy bit field in each MAC PDU creates significant header overhead. However, for our proposal of the Uplink MAC header [3], there effectively occurs no overhead at all, since there are spare bits in the header due to the header byte alignment requirement for all important MAC PDU formats, i.e., the MAC PDU comprising a single RLC PDU, the combination of one RLC PDU and one MAC Control Element, and two RLC PDUs multiplexed. Another group of important MAC PDUs are those that require padding to fill the transport block size. Also for these MAC PDUs the happy bit field does not require any extra overhead, since padding is present anyway.

Thus we conclude that the happy bit field does not cause any overhead for the most frequent cases.
This is different for the detailed buffer report. Even if we assume that the MAC header requires only a LCID and E field and that the L field can be omitted, because the buffer status report has a fixed length, these 5 or 6 bits do often lead to one additional byte in the MAC header. Furthermore, the length of buffer status reports will probably be in the order of 2-3 bytes. Thus, the total overhead for each MAC PDU that carries a detailed buffer status report will be around 3-4 bytes.

Looking at the performance results shown in section 5, we think that an almost identical performance can be achieved with the happy bit approach compared to the detailed buffer status reports with essentially no overhead.

3 Conclusion

In this contribution, we discussed the uplink buffer status reporting in LTE. 
We have shown that the Happy Bit approach offers a mechanism that can achieve almost the same performance of the detailed buffer status reports at basically no overhead costs. In addition, the mechanism is very simple to implement in the UE. 
As a complement to a detailed buffer status report we propose to include a small two bit buffer report in all UL MAC PDUs similar to the Happy Bit in EUL [2]. The UE may set these two bits according to a mapping table. The values are set in relation to the currently used transport block size. One code-point identifies an empty buffer. 
The mapping table should preferably be configurable by RRC. 
4 References

[1] Ericsson, R2-074048, “Scheduling request triggering criterions”, RAN WG2 #59bis, October 2007.
[2] 3GPP TS 25.321 “Medium Access Control (MAC) protocol specification”, http://www.3gpp.org/ftp/Specs/html-info/25321.htm. 
[3] Ericsson, R2-074062, “MAC header structure”, RAN WG2 #59bis, October 2007.
5 Simulations
We performed simulations to investigate the efficiency of the 2-bit buffer report and to compare with a more detailed report included less frequently, i.e., not in all UL MAC PDUs. The simulator models the HARQ round trip delay (8 ms), which has a significant impact on the performance of both reporting schemes, since the scheduler requires up-to-date information for accurate decisions. In the simulations we assumed that the detailed buffer report comprises 5 bits representing the UE’s buffer size in 32 steps with a logarithmic distribution {0, …, 290 kByte}.
The detailed buffer status reports (BSR) are sent when a) the buffer size increases, b) the buffer size exceeds one of the 31 thresholds or when no report was sent for “Period” number of TTIs. The simulations show that the period has little impact on the results as long as the other criteria are used to trigger a buffer status update, because reports are typically sent much more frequently.
The comparison considers both approaches are applied individually. The results do not reflect the case when the happy bit approach complements the detailed buffer status report.
 [image: image1.emf]File Size [byte]File Size [byte]


Figure 5.1: Upload performance (Object Bit Rate) with happy bit (BSR=false) and detailed buffer status report (BSR=true) for various data rates.

It can be seen from Figure 5.1 that the upload performance (file size / upload delay) is almost equivalent for the two reporting schemes. Only for very high data rates and large files (see upper right corner) a detailed report provides the scheduler faster with accurate buffer information. The happy bit requires that the transport format increases in order to report such a large buffer. 
One should however note that these high data rates occur quite seldom, typically only in low load scenarios. The scheduler may in such cases increase the transport format faster before having accurate information as over-allocation and padding does not matter.
 [image: image2.emf]Detailed Buffer at  lowdata rates

Happy Bit (2 kbps or 0 kbps)

Detailed Buffer at  highdata rates

File Size [byte]

Detailed Buffer at  lowdata rates

Happy Bit (2 kbps or 0 kbps)

Detailed Buffer at  highdata rates

File Size [byte]


Figure 5.2: Overhead Comparison with happy bit (BSR=false) and detailed buffer status report (BSR=true) for various data rates.

Figure 5.2 depicts the absolute overhead that occurs for both mechanisms. The detailed buffer status reporting overhead depends on the link speed and is in the order of a few bits per TTI. However, in this simulation the optimistic assumption of only 10 bits overhead (5 bits in the MAC header and 5 bits for the buffer status report) for the detailed buffer report has been used. As mentioned before, with a realistic overhead of 3-4 bytes, the results given in the figure would need to be scaled with a factor ~3. 
Example: For a file size of 100 Kbyte (0.1x10-6 in the figure) and a data rate of 10 Mbit/s, on average 4.5 bits per TTI have been used for the buffer reporting. This means that roughly every second TTI a status report was sent, because a threshold had been passed. More realistic would have been an overhead of 13.5 bits/TTI or 13.5 kbit/s.

The nominal overhead of the happy bit is 2 bits/TTI or 2 kbit/s. However, since spare bits in the MAC header [3] are used, the effective overhead is 0 kbit/s.
Figure 5.3 shows the amount of padding in UL MAC PDUs in relation to the entire file being uploaded. Both, Happy Bit and the detailed buffer status report cause some amount of padding for small files in particular. However, the happy bit approach leads to significantly less padding overhead than the detailed report which is due to the reporting in relation to the transport format. The second reason for the over-allocation with the detailed buffer report is that the reports always refer to the next larger threshold in order to avoid that the scheduler stops scheduling too early. This could potentially be optimized to some extend. 
[image: image3.emf]
Figure 5.3: Relative padding overhead for large file uploads with happy bit (BSR=false) and detailed buffer status report (BSR=true).

� E.g. TCP continuously increases its congestion window and decreases it when experiencing a packet drop. 

� Note that it is quite unlikely that a UE has data in more than one queue when sending the scheduling request. If multiplexing is performed it is more likely that one bearer gets active after the other.

� The UE does e.g. not perform strict priority scheduling if a high priority bearer exceeds its prioritized bitrate. In those cases it may be necessary to provide information about the data in the higher priority queue. This can be done in a  MAC Control Element. 




2/6
2007-10-01

