Page 1

3GPP TSG-RAN2 Meeting #58bis
Tdoc R2-072845
Orlando, U.S, 25th – 29th June 2007

Agenda Item:

5.2.3
Souce:

LG Electronics Inc., Samsung
Title:

PDCP layering (the location of reordering function)
Document for:

Discussion/Decision
1 Introduction

The current working assumption is that the reorderign function in UE PDCP reorders PDCP PDUs during handover. Since selective retransmission scheme has been adopted for the uplink as well, the reordering should be done in target ENB’s PDCP also. Theoritically, there are three options in locating PDCP reordering function within PDCP. This contribution analyses the options, and propose RAN2 to take one option based on the analysis.
2 Discussion
Figure 1 shows the possible locations of PDCP reordering functions.

[image: image1.emf]Decompression

Deciphering

reordering

Decompression

Deciphering

reordering Decompression

Deciphering

reordering

Option 1 Option 2 Option 3

Fig 1. Possible location of PDCP reordering function
Option 1: below the deciphering block
This option is most straightforward, but has three problems.
The PDCP PDUs are firstly reordered and then deciphered. Therefore if ciphering key/algorithm changes after handover, deciphering block should distinguish PDUs received from the source cell and those from the target cell to apply proper key/algorithm. For example in the figure 2, PDCP PDU [0], [1] and [3] are received from the source cell and PDCP PDU [127], [2] and [4] are received from the target cell. Deciphering function in UE/target ENB should use old ciphering key/algorithm to PDU [0], [1], [3] and new key/algorithm to PDU [127], [2], [4].

[image: image2.emf]PDCP PDU [0] PDCP PDU [1] PDCP PDU [3]

Received from the source cell

PDCP PDU [127] PDCP PDU [2] PDCP PDU [4] PDCP PDU [5]

Received from the target cell

Reordering buffer

Figure 2. Example of reordering
The second problem is that the header compression efficiency could be degraded especially when the context is initialized in the target cell. In such a case, number of IR packets are transmitted in serise to ensure that the decompressor has the right context. Coming back to the example in figure 2, the IR packets will be sent in PDU [127], [2] and [4]. This is clearly not the behaviour we are expecting, and if the first IR packet is not received successfully, the PDUs before the next IR packets e.g. PDU [0], [1] could be failed in decompression.
The last problem is that the target ENB should compress and cipher the forwarded uplink PDCP SDUs before reordering. When handover is executed, not reordered uplink PDCP SDUs are forwarded to the target ENB and reordered there. Since the reordering unit in option 1 is compressed/ciphered PDCP PDUs, the forwarded PDCP SDUs should be transformed to such PDUs. This is strange behaviour because the target ENB is required to have ciphering key/algorithm used in the source cell.
As a summary, option 1 has following three drawbacks.

D1.
Increased complexity in deciphering block
D2.
Inefficient ROHC operation

D3.
Increased processing load in target ENB to compress/cipher forwarded SDUs

Option 2: above the deciphering block and below the decompressor
In this option, deciphering function does not need to distinguish PDUs from the source cell and those from the target cell, but it should handle the out-of-sequence reception by itself. This could be done by a simple window mechanism such as the HSDPA reordering window. Samsung assumes the deciphering block need to handle out-of-sequence reception anyway, because the damage is too severe.
Inefficient ROHC operation is still a problem, and the target ENB needs to compress the forwarded PDUs before they are stored in the reordering buffer.
As a summary, option 2 has following three drawbacks.

D4.
Window operation in deciphering block

D2.
Inefficient ROHC operation

D5.
Increased processing load in target ENB to compress forwarded SDUs

Option 3: above the decompressor
Drawbacks D1, D2, D3 and D5 do not exist in option 3, but following two drawbacks are observed.
D4.
Window operation in deciphering block

D6.
Decompression failure when more than 16 PDCP PDUs are lost during HO
To explain D6, let’s go back to the example illustrated in figure 2. Let’s assume PDU[0] and PDU[17] are received successfully in the source cell and all the PDUs in between are lost. The PDU[17] then will be decompressed in the source cell, amd the decompression will fail due to the consecutive loss exceeding the limit that ROHC can handle.
3 Summary & Proposal
Samsung believes that the third option is the most efficient approach, but taking option 3 could be a bit strange because the PDCP reordering is originally intended to provide in-sequence delivery to the decompressor block. PDCP reordering funciton in option 3 does not provides in-sequence delivery to decompressor but to the upper layer, therefore PDUs from the source cell and PDUs from the target cell could be mixed. This poses one fundamental problem for the option 3 in that it is not working with the context transfer option.
It is proposed in another contribution [1] that ROHC context transfer option is only allowed for the RBs over RLC UM, where the older PDUs are not retransmitted in the target cell. If the proposal is agreed, the incompatibiility problem of option 3 does not exist anymore.
Considering above, the proposal can be summarized as below.

Proposals:

If context transfer option is not allowed, option 3 is agreed.

If context transfer option is allowed only for RBs using RLC UM, optio 3 is agreed.

If context transfer option is allowed for any RBs, option 2 is agrred.

Reference
[1]

R2-072468
ROHC context transfer
Samsung

_1243686869.vsd
Decompression

Deciphering

Decompression

reordering

Deciphering

reordering

Decompression

Deciphering

reordering

Option 1

Option 2

Option 3

_1243688145.vsd
PDCP PDU [0]

PDCP PDU [1]

PDCP PDU [3]

Received from the source cell

PDCP PDU [127]

PDCP PDU [2]

PDCP PDU [4]

PDCP PDU [5]

Received from the target cell

Reordering buffer

