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1. Introduction

We present some methods to provide a cryptosync to the receiver.
2. Discussion

2.1. Background on Ciphering 
In order to perform encryption and decryption with a block cipher algorithm such as f8 or AES:
· PDCP needs a ciphering sequence number – a cryptosync - associated with each PDCP PDU. The same ciphering sequence number shall be used to decipher the PDU. 
· For a given 
key, the same sequence number shall be used only once to avoid security weaknesses.

· Using the same sequence number twice would generate the same key stream that is XORed onto to the data to encrypt it. Knowing one set of data that was encrypted by that key stream means it is possible to work out the second set of data
· The length of the cryptosync is 4 bytes for f8. 
Below we describe methods to provide a cryptosync to the receiver.
3. Appending the Cryptosync to PDCP PDUs
The easiest method for transporting the cryptosync to the PDCP receiver is to append it to each PDCP PDU, in the following subsections we describe two mechanisms to achieve this.

3.1. Full cryptosync

The cryptosync used to cipher each block is piggy backed to the PDCP PDU. That represents a cost of 4 bytes for each IP packet. For AMR 12.2Kbps this represents more than 10% overhead and obviously is not reasonable. 
3.2. Partial cryptosync
Assuming the cryptosync is synchronized each time PDCP is reset, it is possible to separate the cryptosync in HFN and PDCP SN to transmit only the PDCP SN as shown below (similar to what is done in WCDMA). 
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Figure 1: 32-bit cryptosync broken into HFN and PDCP SN

The number of bits required for the PDCP SN depends on the maximal run-length of lost IP packets which may call for only a few bits. However if the PDCP PDU needs to be byte aligned, 8 least significant bits can be transmitted. For AMR 12.2Kbps this represents about 3% overhead.  For packet flows with higher data rates, 16 least significant bits can be transmitted however since the IP packets tend to be larger, the overhead is also smaller (0.13% for a 1500 bytes IP packet).
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Figure 2 PDCP PDU containing PDCP SN and ciphered SDU

This method is simple and requires no support from RLC, however it costs 3% overhead with 12.2Kbps AMR traffic.
4. Getting help from RLC
The approach here is to save overheads by sending only one sequence number over the air which is used by PDCP and RLC. Similarly to the partial cryptosync approach we initially synchronize the cryptosync and then rely on some additional properties of the RLC service to derive the subsequent cryptosyncs at the receiver. This approach requires a one-to-one mapping between the RLC sequence number and the count of PDCP PDUs. In other words there is exactly one RLC sequence number used for each PDCP PDU. This approach puts additional requirements on RLC.
· RLC receiver must be able to tell PDCP how many PDCP PDUs were submitted between the delivery of two RLC SDUs. If RLC fails to do this, the de-ciphering will fail due to out of sync

· The above implies that one sequence number must be used to count RLC SDUs. However that sequence number is likely not enough to properly address the RLC data that needs to fit in the given Transport Blocks. Therefore an additional header containing means to address within the RLC SDU is required. There is additional overhead incurred to support that addressing which may in some cases negate the gains.  

It should also be noted that defining the RLC SN to count the RLC PDUs (instead of SDUs as described above) and relying on the Length Indicators provided by RLC to provide the RLC to PDCP PDU count mentioned above is not reliable. Indeed if RLC loses a PDU containing a Length Indicator, the PDCP PDU count will get out of synchronization which breaks the de-ciphering. In this case requiring PDCP to re-synchronize the cryptosync every time RLC loses a PDU containing a LI is not appropriate; instead, using the RLC sequence number proposed above allows counting the number or RLC SDUs lost.
Two methods for carrying the cryptosync in the RLC SN are described below: 
4.1.1. Identical PDCP and RLC SN
A first approach is to force RLC SN to match the least significant bits of the cryptosync.
One drawback of this method is if RLC needs to be restarted with the RLC SN starting at zero, the PDCP must be informed to use a cryptosync with the least significant bits set to zero in order to set the RLC SN to zero. This means PDCP sequence numbers have a gap, and the re-ordering function; if implemented; may incur additional delay when waiting for the packets in the artificially created gap.
Given the latest agreement in RAN58, whereby the PDCP SDUs are forwarded with their SN this approach is not well suited. The target eNB must use the given PDCP SN but at the same time RLC is expected to be reset right after handoff; these are contradicting requirements therefore this is not an option.
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Figure 3 PDCP forcing RLC to use the cryptosync as RLC Sequence number. RLC using a Sequence number and Segment information to address data.
4.1.2. Offset PDCP and RLC SN
Another approach is to let PDCP and RLC run their sequence numbers independently while the PDCP SN is never attached to the PDCP PDU. Initially a synchronization message takes a snapshot of the RLC SN and PDCP SN. Given the snapshot and the RLC SN, the receiver can reconstruct the cryptosync for all subsequent PDCP PDUs.
This approach requires a synchronization procedure but allows RLC to restart whenever required, including at handoff. The synchronization procedure must be used whenever a PDCP entity (re)starts the corresponding RLC entity (re)starts. 
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Figure 4 RLC and PDCP Sequence numbers with an offset (L-N here). RLC using a Sequence number and Segment information to address data.

This approach works with the requirement to have continuous PDCP SN as agreed in RAN2-58. We illustrate the operation on the stage 2 handoff flowchart. Additions are shown in bold.
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This method is more complex than attaching partial cryptosync to each PDCP PDU. It requires the target eNB to send a snapshot message after a handoff which adds to the latency. However it saves up to 3% overheads.
5. Conclusion

We listed some options to transport the cryptosync in LTE:

1) A simple solution adds 3% overhead with AMR assuming 1 byte PDCP SN
2)  Optimized solutions, that reduce the overhead but require constraints on RLC and a message to synchronize PDCP and RLC sequence numbers.
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