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1. Introduction

It is currently agreed that RRC messages should be ciphered and integrity protected in LTE. This requires that RRC keys need to be used in the eNode B. This paper discusses assumptions regarding the RRC key management in SAE / LTE.

2. Assumptions
The following assumptions are made regarding the RRC security:

1. The RRC keys are cryptographically separated from the CN keys used for NAS and end user data protection (making it impossible to use the RRC key to figure out a CN key).
2. The RRC keys are either generated directly by a NAS (CN/UE) level AKA procedure, or derived in the CN/UE from key material that was generated by a NAS (CN/UE) level AKA procedure.

3. The RRC keys are sent from the CN to the eNode B when the UE is entering LTE_ACTIVE state (i.e. during RRC connection or S1 context setup)

4. Key material for the RRC keys is sent between the eNode Bs during active mode intra-LTE mobility.

5. A sequence number will be used as input to the ciphering and integrity protection of RRC. A given sequence number must only be used once for a given RRC key (except for identical re-transmission). The same sequence number can be used for both ciphering and integrity protection.
6. A hyper frame number (HFN) (i.e. an overflow counter mechanism) is used in the eNode B and UE in order to limit the actual number of sequence number bits that is needed to be sent over the radio with each RRC message. The HFN needs to be synchronized between the UE and eNode B.

It is proposed to adopt the assumptions above as a working assumption for RRC security.

3.  Managing the sequence number for RRC security
3.1. Problem
In order to fulfill assumption number 5 in the case of intra-LTE mobility and during UE state transitions, it is required to maintain some additional information related to an existing RRC key. The information will make it possible to resume using the same RRC security in the new cell, without compromising security due to re-use of RRC key and/or sequence number.

Below are three different solutions for this problem. For all solutions it is assumed that a long enough HFN value is used in order to avoid that the sequence number is re-used during the lifetime of the RRC keys. 

3.2. Alternative Solution 1

In UTRAN this problem is solved by using a START value stored in the UE/USIM, which contains information on where the HFN should start when the UE returns to active transmission. The rest of the sequence number bits (which are sent over the radio) are all set to zero. The HFN is incremented whenever the shorter sequence number rolls over (overflow counter).
A similar mechanism could be applied for SAE / LTE. This procedure is illustrated in Figure 1. 

1. The UE sends up a START value to the eNode B when it enters LTE_ACTIVE. This START value is higher than the latest used (HFN).

2. The CN sends down the RRC key to the eNode B.

3. The eNode B and UE initiates the HFN (MSB of the security sequence number) to the START value.

4. During handover the RRC keys and the HFN is forwarded to the target system. Potentially could the forwarded HFN be incremented in order to avoid that the target use a sequence number that has been used before.

5. The target eNode B starts using the new HFN setting all sequence number bits to zero.

6. The UE is informed in the handover command about the latest HFN in order to make sure the sequence number for security is synchronized.
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Figure 1: START based security procedure

Note: The procedure above only illustrates the high-level procedure, different variation of this procedure above could also be considered.
The procedure above would however lead to some drawbacks with regards to signaling overhead and complexity. 

· In the state transition case, the UE would need to transmit the START value in UL at every state transition leading to extra signaling overhead. Furthermore the UE need to maintain a START value whenever going to IDLE or entering another RAT, which could lead to additional complexities in the UE.
· In the handover case there would be a need to transfer and increment the HFN numbers in a synchronized way between the eNode Bs and the UE, which also leads to extra complexities. This may be complex since the HFN needs to be incremented both due to mobility and sequence number roll over which could be independent events. 
· Since the START value is provided by the UE there is also a need for the network to provide a FRESH value to be used as input to the integrity protection mechanism in order to protect against replay attacks. 

As an alternative to the procedure above it could be considered to store the START value in the CN, however this would require that the eNode B need to keep the MME updated with the START value every time it changes and this sounds unnecessary complex. Therefore that solution is excluded. 

3.3.  Alternative Solution 2
Given the drawbacks with the START based solution (Alternative 1) it should be considered to use an alternative solution in LTE where the Sequence Number Rollover Events is separated from Mobility Events (handovers, state transitions). A solution could be envisioned where there are 3 different counters which all provide input to the RRC security algorithm. One overflow counter for the sequence number (Counter3) and one handover counter (Counter2) both managed in RAN (and only maintained in LTE_ACTIVE) and one state transition counter (Counter1) managed by the CN (maintained in LTE_IDLE). The counters would be hierarchical, i.e. when the state transition counter is incremented the handover and overflow counters are re-set to zero, and when the handover counter is incremented the overflow counter is re-set to zero.

The proposal is illustrated in the Figure 2. For every state transition Counter1 is incremented in the CN and UE, the current value of this counter is provided to the RAN with the RRC keys (Step 1). Counter2 and Counter3 are re-set to zero (Step 2). Counter3 is similar to the HFN and is incremented every time the short sequence number (sent over the air) rolls over. Counter3 is re-set during handover when Counter2 is increment (Step 3). In this solution it would be technically possible increment Counter 1 and Counter 2 implicitly in the UE, however since the overhead of synchronizing these counter at state transition and handover is probably quite small, it could still be worth synchronizing the counters in order to completely avoid the risk that the terminal and network looses synchronization.
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Figure 2: Multi-counter based security procedure

The advantage with this solution is that no START value need to be maintained in the UE and transmitted to the eNode B during the IDLE to ACTIVE state transition and the sequence number synchronization at handover is trivial. In addition no FRESH parameter is needed since both the network and UE will be aware of the latest counter values.
3.4. Alternative Solution 3

If it is desired to avoid additional counters in the RRC ciphering / integrity protection algorithm it would be possible to realize the effect of the state transition and handover counter by instead performing a function F(…) in the CN/UE on the RRC key at every state transition and then perform a different function in the RAN/UE on every handover. In such way the RRC key would be new at every mobility event making it possible to re-set the overflow counter (HFN) to zero. An added benefit of this approach (compared to alternative 2) would be to make it difficult to trace back to the original RRC key (used in the CN or source eNode B) if a subsequent RRC key gets compromised (assuming a secure enough “function” is used). 
This procedure is illustrated in Figure 3. The CN maintains an RRC key which never leaves the CN and a Counter1 (Step 1). When the UE performs the state transition to LTE_IDLE the CN will send down a new RRC key to the eNode B which is calculated using a function F(…) of the CN RRC key and Counter1 (Step 2). This makes the RRC key used in the RAN unique after every state transition, making it possible to re-set HFN to zero (Step 3). During handover the RRC key is modified using a function G(…) (Step 4). This makes it possible to start with HFN = 0 in the target cell.
The exact cryptographic requirements (e.g properties such as being one-way functions, pseudo-random functions, etc) on F() and G() are for further study
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Figure 3: Function based security procedure

4. Proposal

It is proposed to adopt the assumptions listed in section 2 as working assumptions for RRC security in SAE / LTE, and to capture them in 36.300.
Furthermore it is proposed to consider the alternatives outlined in section 3 for RRC sequence number management in SAE / LTE and if necessary send an LS to SA3 regarding the feasibility of the proposals.
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