3GPP TSG-RAN WG2 meeting #46bis

R2-050854
April 4th –8th, 2005

Beijing, CHINA
Agenda item:
11.2 (Open Item 2.7)
Source:
LG Electronics Inc.
Title:
Signaling for lower delay delivery
Document for:

Discussion, Decision

1.
Introduction
To achieve maximum throughput, unnecessary delay should be minimized in overall HSUPA operation. In HSUPA, delay components consist of scheduling at UE, HARQ retransmission, Iub delay, and re-ordering at SRNC.

In this document, we focus on the re-ordering delay and propose signalling to prevent unnecessary waiting in the reordering queue as much as possible.
2.
Problem Description

As shown in [1], worst case HARQ jitter is quite big. Accordingly, UTRAN should try to avoid ambiguity in performing reordering operation for the received MAC-e PDUs and UTRAN should try to prevent unnecessarily early PDU discard.

But, if it is evident that there is no need to wait lower numbered PDUs of a certain PDU, re-ordering entity should immediately process and deliver the PDUs to upper layer. It’s because unnecessary delay can eventually cause discard in upper layers or cause longer time in ACKing or NACKing of RLC PDUs, impacting throughput.

With current signalling from Node-b to SRNC, there seems to be a case where unnecessary delay occurs. Let’s look at following example.

[image: image1.wmf]

TTI

Process1

0

20

25

30

Process2

Process3

Process4

Process5

X

X

X

X

5

10

15

PDU 1

PDU 2

PDU 3

PDU 4

PDU 5

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

O

#0

#0

#0

#0

#1

#1

#1

#1

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#

0

PDU 0

X

#1

O

#2

O

#3

Fig 1 Example reception status at Node-b
Here we assume 5 processes for a UE. HARQ processes from 1 to 4 start new transmission at TTI from 0 to 3 and process 5 starts new transmission at TTI 19. Let’s assume that MAC-e PDU 5 is correctly received at TTI 19 and MAC-e PDUs from 1 to 4 reach maximum number of retransmission at TTI from 20 to 23 without successful reception at Node-b.

For simplicity, let’s further assume that MAC-e PDUs from 1 to 5 contains MAC-es PDUs from same logical channel. With this assumption, it’s natural to assume that all the MAC-es PDUs included in the MAC-e PDUs from 1 to 4 precede all the MAC-es PDUs included in the MAC-e PDU 5.

In this example, at TTI 24, smart Node-b implementation may know that MAC-es PDUs in MAC-e PDU 5 does not have to wait MAC-es PDUs in MAC-e PDU 1-4, i.e previous MAC-es PDUs. It’s because all the MAC-e PDUs that started transmission before MAC-e PDU 5 have failed. Furthermore, even if MAC-e PDUs 1-4 included MAC-es PDUs from other logical channels, it’s hard to imagine that MAC-es PDUs preceding MAC-es PDUs in MAC-e PDU 5 will be received at TTI later than 24. That will happen only when TSN setting entity works backward.

Currently in the specification, there is no signalling from Node-b to SRNC except the number of retransmission required for the received PDU for re-ordering operation and the CFN and subframe number. SRNC may know which HARQ process has succeed in decoding MAC-e PDU by using subframe number. But SRNC does not know which HARQ process has failed in decoding MAC-e PDU with maximum number of re-transmission, or at what TTI the last unsuccessful re-transmission has occurred.

Thus, according to current specification, in the above example, MAC-es PDUs in MAC-e PDU 5 should wait in the reordering queue in SRNC quite longer time than actually needed, because SRNC re-ordering queue has no information about whether previous MAC-es PDUs can be received in the future or not.
In other words, at the reception of MAC-es PDUs in MAC-e PDU 5, SRNC may know that process 5 has succeed in decoding MAC-e PDU 5 at TTI 19 by using subframe number and CFN. Furthermore by using number of retransmission, the SRNC may know that initial transmission of MAC-e PDU 5 occurred at TTI 19 and that transmission of MAC-e PDU preceding MAC-e PDU 5 may have occurred at least before TTI 19. But because the SRNC does not know the exact time of initial transmission, the re-ordering entity in SRNC has to wait under the assumption that MAC-es PDUs preceding MAC-es PDU included in MAC-e PDU 5 has been initially transmitted between TT15 and TTI 19 even though this happened actually long timer before that. On the other hand, Node-b knows that reordering entity in SRNC don’t have to wait beyond TTI 24.
Actually, for SRNC, its operation is not strictly described in the specification. Whether to use timer mechanism or window mechanism or other mechanism is implementation dependent. But the problem described here is that without information from UE to SRNC or from Node-b to SRNC, the smart and efficient operation that will minimize delay and throughput increase will be limited.
3.
Proposed Solution
Two possible solutions are foreseen. One is signaling from UE to SRNC and the other one is signaling from Node-b to SRNC.

3.1
From UE to SRNC
In this method, UE gives SRNC the information that indicates what TSN the SRNC can wait for or what TSN the SRNC should stop waiting for. Specifically, when MAC-e PDU transmission fails after the allowed number of retransmission has been done, UE informs SRNC the TSN of MAC-es PDUs that was included in the failed MAC-e PDU.

Such TSN information can be included in the control information part of subsequent MAC-e PDU and transferred from Node-b to SRNC.

But the demerit of this mechanism is that it takes another long TTIs to inform SRNC, even though we use minimal size MAC-e PDU that includes only control information.
3.2
From Node-b to SRNC
In this mechanism, Node-b HARQ entity gives more information related to HARQ operation to SRNC. For example situation in above section 2, if Node-b informs SRNC the reception status per process, SRNC can optimize re-ordering operation, reducing unnecessary delay.
In fact, as said before, SRNC is able to know which process has succeed in MAC-e PDU reception by using subframe number. But currently, SRNC has no means to know at which TTI what process has failed in reception. In above example, if the Node-b informs SRNC of reception failure of process 1 to 4 at TTI 20 to 23, then SRNC can immediately process previously received MAC-es PDUs that was included in the MAC-e PDU 5.
Thus, it is proposed that when Node-b detects that reception of a MAC-e PDU failed or stopped or started, it notifies SRNC the subframe number or process ID that was related to.

By using this information of each process and its status information from Node-b, SRNC is able to know whether to wait for lower numbered MAC-es PDU for a certain received MAC-es PDU in reordering queue. This eventually leads to reduced waiting at SRNC.

Another possibility is to enhance Node-b. If Node-b use the time of successfully or unsuccessfully received MAC-e PDU of each HARQ process, it can tell directly SRNC when there is no needs for SRNC.

4.
Conclusion

In this document, we discussed the area where more optimization is possible. It’s proposed to discuss problem in section 2. And if any solution is needed, it is further proposed to have Node-b to report unsuccessful transmission to RNC.
5.
References

[1] 3GPP R2-041966, EUDCH: Requirements for Re-ordering Control Input, Samsung

1
2

_1173166874.doc

TTI

Process1

10

PDU 2

15

PDU 4

PDU 3

PDU 5

0

Process5

Process4

20

Process3

25

Process2

30

5

#3

X

X

X

X

PDU 1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

O

O

#0

#0

#0

#0

#1

#1

#1

#1

#2

#2

#2

#2

#3

#3

#3

#3

#4

#4

#4

#4

#0

PDU 0

X

#1

#2

O

