1

3GPP TSG RAN WG2 #43
R2-041559
Prague, Czech August 16 - 20, 2004
Agenda Item:
10.2.2.2
Source: 
Samsung
Title: 
Regarding logical channel starvation problem of EUDCH
Document for:
Discussion & Decision

1 Introduction
Some companies has raised their concern on the current TFC selection rule that a high priority logical channel would starve  low priority logical channels. 

Starving logical channels is certainly a problem in theory, but it would not be in reality. 

We analyze the likeliness of the problem, assuming what we call ‘priority’ here is ‘MAC Logical channel Priority’ of Release 99.
2 Analysis: MLPs of SRBs and traffic classes
In 34.108 chapter 9 Default Message Contents, MLPs are allocated like the following table.

	SRB/RAB
	MLP
	SRB/RAB
	MLP

	SRB 0/ SRB 1
	1
	CS RAB
	6

	SRB 2
	2
	PS RAB
	8

	SRB 3
	3
	
	

	SRB 4
	4
	
	


We have only 8 MLPs, and probably 4 ~ 5 of them will be allocated to the signaling radio bearers. One could argue why SRBs need that many priorities, but allocating different priorities to the different SRBs looks reasonable considering their different importance. 

So even not reserving MLP 5 for further SRB, we have at most 4 priorities (MLP 5 ~ MLP 8) regardless of how many RABs we run on the UE. 

Then how many RABs or what kind of RAB combinations can we have at one time?

Let’s check it over traffic classes. 

The only conversational service we have today is CS voice call, and a potential application for the class is VoIP service. The application which belongs to the conversational class requires user’s instantaneous reactions, which means more than 2 applications of the conversational class are not likely to run at the same time. It is hard to imagine you have 2 voice calls at the same time. 

Streaming class is similar to the conversational class but is different in a sense that streaming class has much less delay restriction and that user’s instantaneous reaction is not always required. If streaming service is multimedia service, then we would have 2 RABs for the service. One of them for voice and the other for video.

Interactive and Background services are very similar in a sense that both do not have delay requirements and do not require guaranteed bit rate. Web browsing and FTP download are often quoted as typical services for those classes. Users are free to run multiple interactive or background services, because those services do not require user’s instantaneous reactions. For example, you can surf World Wide Web while connecting to several FTP sites and your e-mail server. 

Considering each class’s requirement for instantaneous user reaction, followings would be realistic combinations of RABs being simultaneously run on a UE. 

· SRBs + conversational RAB or streaming RABs or I/B RABs

· SRBs + conversational RAB + one or more I/B RABs

· SRBs + streaming RABs + one or more I/B RABs 
3 Analysis: When logical channel starvation take place?
The preconditions for starvation problem being serious are;

· Higher priority traffic takes more resources than what is granted for.

· And the above situation continue for a relatively long time to disturb user perception.

Then, conversational/streaming services are free from the first precondition thanks to the GBR attribute of those services. A service having GBR attribute, by the definition, would not take more resource than what is granted for in long term. If a services are mapped to the common transport channel like EUDCH, we can have some difficulties to guarantee the bit rate, but even in this case absolute priority seems more reasonable. SRBs have to go first always, and conversational/ streaming service has to be go next. Interactive/ Background service shall not go ahead of conversational/ steaming services. 

Then one problematic situation would be when number of conversational/ streaming services with different priorities are multiplexed at the same time. But even in that situation, breaking absolute priority concept seems not help much. If you have 2 delay sensitive services and you don’t have enough resource (which is already abnormal configuration) to serve both of them, then the only sensible thing you have to do would be focusing on one service only, probably low bit rate one. Providing insufficient resource to delay sensitive traffic is not wise thing to do in QoS standpoint.

Then, the traffic class possibly causing logical channel starvation would be I/B class. If 2 services of the interactive or background class are having different priorities, and if allocated resource is insufficient even to serve higher priority, then logical channel starvation problem will certainly happen. 

But do we really concern about I/B services’ starvation? For interactive, the answer would be yes. But for background, you may not care long delay caused by starvation. Background service is by its definition running without user’s noticing it. 

The starvation problem of I/B services would be solved using the same priority to the services of the same traffic class. You may note that this is kind of priority handling to ensure the same opportunity for the services, which could be implemented without specification impact.
4 Conclusions
Throughout the analysis given above, we observe followings;

· At most 4 priorities are available for RABs running at the same time. So allocating different priorities to the services of the same traffic class is not realistic.

· Logical channel starvation across traffic classes is not an issue. If you have high bit rate streaming RABs and low bit rate background RABs simultaneously, and consequently your background RABs are starved, that is what is supposed to be. You shall not deter delay sensitive traffic just to ensure fairness for the delay insensitive traffic.

· Logical channel starvation within a traffic class could be an issue. But you can solve the problem by allocating the same priority to the services of the same traffic class, which could be kind of de facto behaviour of current specification. 

Then our recommendation is that we shall not change our standard to solve the problem which hardly exist and which could be solved by smart implementation.






















