
TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3)
 TSGR2#26(02)0132

Sophia-Antipolis, France, 7th to 11th Jan, 2002

Agenda Item:

Source: Philips

Title: A pointer approach to avoid stalling of the h-ARQ protocol due to missing data blocks

Document for:
Decision

__

1. Introduction

It was decided that the UE provide in-sequence delivery to the RLC layer by storing the correctly received data blocks in reordering buffers. Providing in-sequence delivery per priority class also implies in-sequence delivery per logical channel. Hence, logically, one buffer per priority class is needed to allow for in-sequence delivery. Roughly speaking, the data blocks are delivered to higher layers in-sequence, i.e. a data block with TSN (transmission sequence number) = x is only delivered to higher layers when all data blocks with TSN up to and including x - 1 have been received correctly. When a data block is missing (i.e. not yet correctly received), all received data blocks with higher TSN are kept in the reordering buffer. Without additional means, this would mean that data blocks could be kept in the reordering buffer forever, meaning that the HARQ protocol would be stalled.

2. Situations, where the requirement of in-sequence delivery cause protocol stalling without additional means

Gaps in the received TSNs go back to the fact that different data blocks can need different numbers of retransmissions. In this case, the reordering entity can maintain the received data blocks in the reordering buffer until all data blocks with lower SN have been received. However, there two cases where the missing data blocks are permanently lost or will not be received in a predictable reasonable time. These situations include:

1) Node B has mis-interpreted a NACK for data block X as an ACK. In this case, the Node B will not retransmit data block X and will instead start transmitting the succeeding data block.

2) The Node B has interrupted the retransmission of a data block, because the number of required retransmissions has become too big or there exist data with higher priority, for which lower priority data transmission has to be aborted. In this case the Node B may (optionally) resume retransmissions at a later time, or start with transmission of a new data block.

In these two situations, assuming a continuous data stream in progress, a missing data block will never be received in case of UM and, in AM will only be received with involvement of the RLC layer (i.e. much later).

3. Strategies to avoid stalling

In continuous data streams, with only little and rare gaps in the stream of data blocks per priority class, the receiving side can base the decision on when to deliver data blocks still stored in the reordering buffer, because at least one data block is missing to deliver a set of data blocks observing in-sequence to RLC, on the reception of later data blocks. Such a mechanism is the window based approach as described in [1].

In discontinuous data streams (as well as when a continuous data stream terminates), where there are longer and frequent gaps in the stream of data blocks per priority class, it is required to base the decision, not to wait for further data blocks to achieve in-sequence delivery, on a timer approach. If the timer has elapsed, all data blocks stored are delivered to RLC, ignoring, that they are not in sequence.

3.1 Need for a timer and its limitations

The case, that a continuous data stream comes to an end, clearly shows that a timer is needed as a minimum to avoid that e.g. the last data block is kept in the reordering buffer, if the last but one data block was lost, and will never be sent again. For the operation during a continuous data stream, a timer approach might also help, but determining the timer duration is problematic:

On the one hand, the timer has to be long enough, so that data blocks needing many retransmissions are definitely not received, after the receiving side has decided (due to the elapsing timer) that they will never be received, and hence delivers data blocks to the upper layer, which are already received, but come after these missing data blocks. If they are still received after the timer has elapsed, the receiving side would again receive data blocks, which break the sequence.

If the timer is set long enough, it could very well happen that the receiving side still waits for missing data blocks (because the timer has not yet elapsed), but the sending side already has new packets to send, which would get TSNs, which are still used on the receiving side for older packets. Hence, in-sequence delivery would no longer be guaranteed, if these new packets were sent, and it is even possible that the receiving side receives a new packet with a TSN, which is equal to the TSN of a packet that is still waiting in the reordering buffer.

Controlling the transmission of such packets on the sending side by means of a timer would also be an option, however this would again cause the sending side be blocked for as long as the timer runs, which is not desirable.

In order to solve the shortcomings of the timer-only approach the following mechanism, which is an alternative to the window based one described in [1], could be used:

4. Reordering pointer approach to avoid stalling in continuous stream phases

At the sending side, a state-of-the-art transmission window is used, whose size is not bigger than half the maximum transmission sequence number TSNmax. The transmission sequence numbers (TSNs) are 0, 1, 2, …, TSNmax, SNS:=TSNmax+1 (SNS is the size of the sequence number space). The sending side must not retransmit any data block outside the Transmission Window which is given by the consecutive list of TSNs (TSNbegin, [TSNbegin + 1]mod SNS , …, TSNend) to avoid sequence number ambiguity at the receiving side, i.e. an on-going retransmission of a data block, whose TSN is no longer within the Transmission Window, should be aborted. As usual, the transmission window is updated, if the successful transmission of the packet with TSNbegin is acknowledged, i.e. the transmission window becomes ([TSNbegin + 1]mod SNS , [TSNbegin + 2]mod SNS …, [TSNend + 1]mod SNS), or it is updated to ([TSNbegin + a]mod SNS , [TSNbegin + a +1]mod SNS …, [TSNend + a]mod SNS), if the transmitting side decides that packets with TSN=[TSNbegin + 1]mod SNS, [TSNbegin + 2]mod SNS, …, [TSNbegin + a – 1]mod SNS should no longer be transmitted or retransmitted. One reason for this could be that the maximum number of retransmissions for these packets was reached.

At the receiving side, the mechanism can be described by means of a reordering buffer, which has as many buffer places (“buffer positions”) as there are TSNs, and the buffer positions are numbered using the TSNs, hence generating a cyclically numbered buffer. In-sequence delivery is achieved by

identifying the sequence number TSNex of the next expected packet, which fulfils the requirement of in-sequence delivery, and therefore can be delivered directly to the next higher layer, and controlling in-sequence delivery according to the rules, where the “reordering pointer” always points to the position TSNex:

Rule Continuous-Stream-1:

a) If a data block with TSN = x1 is received, it is stored at position x1 (expressed by a TSN) in the reordering buffer. If the reordering pointer points to this position (i.e. the distance between the reordering pointer position and the TSN of the received data block is zero), the data block is delivered to the upper layer, and the reordering pointer is shifted to the next position ([x1+1]mod SNS).

b) If the reordering pointer is shifted into a position x2 (expressed by a TSN), in which there is already a data block stored, this data block is delivered to the upper layer, and the reordering pointer is moved to the next position ([x2+1]mod SNS).

c) As soon as the reordering pointer points to a position x3 (expressed by a TSN), at which there is no data block waiting, no data block is delivered to the upper layer, and the reordering pointer stays in this position x3, until a data block with the corresponding TSN = x3 is received, or the scenario described in Rule Continuous-Stream-2 happens:

Rule Continuous-Stream-2:

If a data block with TSN = z is received, and

[z - Pointer_Position]mod SNS + 1 > TxWin-Size (Distance computation)

(TxWinSize=[TSNend – TSNbegin]SNS + 1, where TSNbegin equals the lower edge and TSNend the upper edge of the transmission window), the reordering pointer is moved to the position [z – TxWinSize]mod SNS + 1. All stored data blocks in positions between the old and the new position are delivered to the upper layer.

Rule Continuous-Stream-3:

Any newly received data block with a TSN, that equals a buffer position, where a data block is already stored, is ignored (and discarded).

5. Reordering pointer to describe the timer approach

Using the reordering pointer, the timer approach as given in [1] can be described more precisely. Some variations are also discussed, which are not covered by [1].

In addition to Rule Continuous-Stream-1 the timer approach is described using the reordering pointer as follows:

Rule Timer-1:

a) Whenever on the receiving side, with the reordering pointer pointing to a position y (expressed by a TSN), in which there is no data block stored, a new data block is received with a TSN = y’, with y (y’, and no timer T1 is already running, a timer T1 is started (and associated with this position y’).

b) If no timer is already running, a timer is also started and associated for a position y’, if the reordering pointer moves to a position y, in which there is no data block stored, while y’ is the first position following y, in which a data block is stored.

Rule Timer-2: T1 is stopped, as soon as the data block with TSN = y’ can be delivered, i.e. as soon as the reordering pointer moves to this position y’. After the data block with TSN = y’ is delivered to the upper layer, the reordering pointer is moved to the next following position [y’ + 1]mod SNS, and the pointer operation is continued according to Rule Continuous-Stream-1, and the timer control is done according to Rule Timer-1 b).

Rule Timer-3: If T1 elapses, the reordering pointer is moved to the next following position [y + 1]mod SNS, and the pointer operation is continued according to Rule Continuous-Stream-1, and the timer control is done according to Rule Timer-1 b).

(Due to this rule, the sojourn time of a data block in the reordering buffer increases linearly with the distance between the reordering pointer position and the position of the data block, to which the running timer is associated.)

Remark: Not necessarily all data blocks until the position y’, to which the timer is associated, are delivered to the upper layer, when the timer elapses, since according to Rule Timer-1, the timer can also be started, if the pointer only moves to a new position. This is required, in order to avoid different timer durations, depending on whether y’ is quite far away from the pointer position, (then it would be required to start a long timer) or close to it.

Using only one timer, and restarting the timer T1 associated with the position, to which it was previously associated or with another position closer to the pointer position has the following effect for the period of time, which a data block stays in the reordering buffer: The longer the distance between the position of the pointer and the position y’ of a data block, to which the timer is associated, the longer the time controlled by T1, which the data block spends in this position y’.

Alternatives to Rule Timer-3:

A) If T1 elapses, all data blocks between the position of the pointer and the position of the next gap (after a data block) following the pointer position are delivered to the upper layer, and the pointer is moved to the position of this gap. Rule Timer-1 b) clarifies, when a new timer T1 is started.

B) If T1 elapses, all data blocks between the position of the pointer and the position y’ of the data block, to which the timer was associated, including the data block in position y’ are delivered to the upper layer, and the pointer is moved to the following position [y’+1]mod SNS . The pointer operation is continued according to Rule Continuous-Stream-1, and the timer control is done according to Rule Timer-1 b).

(This rule allows guaranteeing that if a data block is received and causes starting a timer, this data block is not kept longer in the reordering buffer than given by the timer duration. If a data block is received, while a timer is still running, it might be kept longer in the reordering buffer.)

5.1 Does the timer approach suffice alone?

Both the timer based rules as well as the rules for the distance computation should be applied together:

The case of the “end of a continuous data stream” clearly shows that a timer is needed as a minimum to avoid that e.g. the last data block is kept in the reordering buffer, if the last but one data block was lost, and will never be sent again. For the operation during a continuous data stream, a timer approach might also help, but determining the timer duration is problematic:

On the one hand, the timer has to be long enough, so that data blocks needing many retransmissions are definitely not received, after the receiving side has decided (due to the elapsed timer) that they will never be received, and hence delivers data blocks to the upper layer, which are already received, but come after these missing data blocks. If they were still received after the timer has elapsed, the receiving side would again receive data blocks, which break the sequence.

If the timer is set long enough, it could very well happen that the receiving side still waits for missing data blocks (because the timer has not yet elapsed), but the sending side already has new packets to send, which would get TSNs, which are still used on the receiving side for older packets. Hence, in-sequence delivery would no longer be guaranteed, if these new packets were sent. Controlling the transmission of such packets on the sending side by means of a timer would also be an option, however this would again cause the sending side be blocked for as long as the timer runs, which is not desirable.

6. Examples to illustrate the mechanism defined by the above rules

The following figures Fig. 1 to 4 describe the behaviour of the mechanism in for the case of continuous data streams. Here, the upper layer is the RLC (radio link control) layer, which is in charge or controlling retransmissions for error protection.

[image: image1.wmf]0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

DB

rcv

‘d

DB

rcv

‘d

DB

with

TSN=2

is received

.

No

data

block (DB)

is delivered

to RLC

reordering

pointer

(RP)

DB

rcv

‘d

TX

Win

= {0, 1, 2, 3, 4, 5}

Reordering buffer

at

Rx

:

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

DB

rcv

‘d

DB

rcv

‘d

DB

with

TSN=2

is received

.

No

data

block (DB)

is delivered

to RLC

reordering

pointer

(RP)

reordering

pointer

(RP)

DB

rcv

‘d

TX

Win

= {0, 1, 2, 3, 4, 5}

Reordering buffer

at

Rx

:

Fig. 1: TSNex=0, i.e. the RP points to TSN=0. First DB (=Data Block) with TSN=1 is received, then DB with TSN=4 is received, then DB with TSN=1 is received. In all three cases no DB is delivered to the upper layer, since the DB with TSN=0 is missing.

[image: image2.wmf]0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

DB

rcv

‘d

DB

rcv

‘d

Data

block

with

TSN=0

is received

.

Data

block

with

TSN=0

is delivered

to RLC, RP

is moved

to

location

1

Data

block

with

TSN=1

is delivered

to RLC, RP

is moved

to

location

2

Data

block

with

TSN=2

is delivered

to RLC, RP

is moved

to

location

3

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Next expected

DB

is the one with

TSN=3.

reordering

pointer

(RP)

reordering

pointer

TX

Win

= {0, 1, 2, 3, 4, 5}

e.g. TX

Win

= {2, 3, 4, 5, 6}

DB

rcv

‘d

DB

rcv

‘d

Reordering buffer

at

Rx

:

Reordering buffer

at

Rx

:

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

DB

rcv

‘d

DB

rcv

‘d

Data

block

with

TSN=0

is received

.

Data

block

with

TSN=0

is delivered

to RLC, RP

is moved

to

location

1

Data

block

with

TSN=1

is delivered

to RLC, RP

is moved

to

location

2

Data

block

with

TSN=2

is delivered

to RLC, RP

is moved

to

location

3

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Next expected

DB

is the one with

TSN=3.

reordering

pointer

(RP)

reordering

pointer

(RP)

reordering

pointer

reordering

pointer

TX

Win

= {0, 1, 2, 3, 4, 5}

e.g. TX

Win

= {2, 3, 4, 5, 6}

DB

rcv

‘d

DB

rcv

‘d

Reordering buffer

at

Rx

:

Reordering buffer

at

Rx

:

Fig. 2: RP points to TSNex=0. Data block with TSN=0 is received, and delivered directly to the upper layer, since TSNex=0. RP is moved to TSNex=1.

Data block with TSN=1 is received, and delivered directly to the upper layer, since TSNex=1.

RP is moved to TSNex= 2.

Data block with TSN= 2 is received, and delivered directly to the upper layer, since TSNex=2.

RP is moved to TSNex= 3.

Next, data block with TSN=4 is received. Since TSNex=4, no data block is delivered to the upper layer, and the RP stays in the position TSNex=3.

[image: image3.wmf]0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=8

is received

.

Old

pos

RP

= 3, [8

–

3]

mod

16

+ 1

=

6 >

TxWinSize

=5,

Þ

Intermediate pos

RP

= 4

reordering

pointer

Case

1:

e.g. TX

Win

= {4, 5, 6, 7, 8}

Tx Win

Reordering buffer

at

Rx

:

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=4

is delivered

to RLC

RP

is positioned

to

the next position

,

which is

TSN = 5

reordering

pointer

Reordering buffer

at

Rx

:

Tx Win

reordering

pointer

Old:

Intermediate

:

New:

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=8

is received

.

Old

pos

RP

= 3, [8

–

3]

mod

16

+ 1

=

6 >

TxWinSize

=5,

Þ

Intermediate pos

RP

= 4

reordering

pointer

Case

1:

e.g. TX

Win

= {4, 5, 6, 7, 8}

Tx Win

Reordering buffer

at

Rx

:

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=4

is delivered

to RLC

RP

is positioned

to

the next position

,

which is

TSN = 5

reordering

pointer

Reordering buffer

at

Rx

:

Tx Win

reordering

pointer

Old:

Intermediate

:

New:

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=8

is received

.

Old

pos

RP

= 3, [8

–

3]

mod

16

+ 1

=

6 >

TxWinSize

=5,

Þ

Intermediate pos

RP

= 4

reordering

pointer

reordering

pointer

Case

1:

e.g. TX

Win

= {4, 5, 6, 7, 8}

Tx Win

Reordering buffer

at

Rx

:

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=4

is delivered

to RLC

RP

is positioned

to

the next position

,

which is

TSN = 5

reordering

pointer

Reordering buffer

at

Rx

:

Tx Win

Tx Win

reordering

pointer

reordering

pointer

Old:

Intermediate

:

New:

DB

rcv

‘d

Fig. 3: Reordering pointer (RP) points to TSNex=3 (old posRP) , and data block with TSN=4 is waiting in position 4. Data blocks with TSN=5, 6, and 7 are not received, e.g. because the sender assumes that the transmission was error-free, while it was not. Then a data block with TSN=8 is received. Since the distance [8 - 3]mod 16 + 1 between the RP position and the received TSN is bigger than the transmission window size (TxWinSize=5), the RP is moved (intermediately) to TSNex=4 (= [8 – TxWinSize]mod SNS + 1) . Since in this position, there is a data block stored, this data block is then delivered to the upper layer, and the RP is further moved to TSNex=5.

[image: image4.wmf]0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=9

is received

pos

RP

=1, [9

–

1]

mod

16

+ 1

=

9 >

TxWinSize

=5

reordering

pointer

Case

2:

e.g. TX

Win

= {5, 6, 7, 8, 9}

Tx Win

Reordering buffer

at

Rx

:

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

RP

is positioned

to [9

–

5]

mod

16

+ 1 =5

Data blocks between the new

and

the

old RP

position

(i.e.

with

TSN=2 and TSN=4)

are delivered

to RLC

reordering

pointer

Reordering buffer

at

Rx

:

Tx Win

DB

rcv

‘d

DB

rcv

‘d

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

Data

block

with

TSN=9

is received

pos

RP

=1, [9

–

1]

mod

16

+ 1

=

9 >

TxWinSize

=5

reordering

pointer

reordering

pointer

Case

2:

e.g. TX

Win

= {5, 6, 7, 8, 9}

Tx Win

Reordering buffer

at

Rx

:

DB

rcv

‘d

0

1

2

3

4

5

6

7

8

9

10

11

13

14

12

15

RP

is positioned

to [9

–

5]

mod

16

+ 1 =5

Data blocks between the new

and

the

old RP

position

(i.e.

with

TSN=2 and TSN=4)

are delivered

to RLC

reordering

pointer

Reordering buffer

at

Rx

:

Tx Win

DB

rcv

‘d

DB

rcv

‘d

DB

rcv

‘d

Fig. 4: Reordering pointer (RP) points to TSNex=1, data blocks with TSN=2 and TSN=4 are received, which cannot be delivered to the upper layer, since RP points to position TSNex=1. Data blocks with TSN=0, 3, 5, 6, 7, and 8 are not received, error-free, and hence are missing, but the transmission side assumes due to some error that these data blocks were received error-free.

(Remark: An alternative reason for not receiving the TSNs 0, 3, 5, 6, 7, and 8 could be that the scheduler on the transmission side decides that these data blocks are obsolete, since some other receiving end with higher priority was served with higher priority in between, and therefore do not have to be transmitted further.)

Hence, the transmission side continues in sending the data block with TSN=9. Since the distance [9 – 1]mod 16 + 1 between the RP position and the TSN of this received data block is bigger than the transmission window size (TxWinSize = 5), the RP is moved to the position TSNex=5 (= [9 – TxWinSize + 1]mod 16). Data blocks stored in positions between the old and the new reordering pointer (i.e. not including the new RP position) (these are data blocks with TSN=2 and 4) are delivered to the upper layer.

7. Differences of the solution compared to already known mechanisms

7.1 Dealing with continuous data streams in [1]

In particular [1] states that

When a data block with TSN = SN is received;

- If SN is within the receiver window and this data block has not previously been received, the data block is placed in the reordering buffer at the place indicated by the TSN.

- If SN is within the receiver window, and this data block has been previously received the data block shall be discarded.

If SN is outside the receiver window:
- the received data block shall be placed above the highest received TSN in the reordering buffer, at the position indicated by SN.

- the receiver window shall be advanced so that SN forms the upper edge of the receiver window

- any data blocks with TSN (SN – WINDOW shall be removed from the reordering buffer (a)
All received data blocks with consecutive TSNs up to the first not received data block are delivered to higher layer (b)
(a) prescribes that all data blocks, which are outside the updated reception window are removed from the reordering buffer, and are no longer considered further. Hence, the PDUs with TSN=2 and TSN=4 will never be delivered to the upper layer, since they are simply removed. (b) prescribes that among the data blocks still remaining in the updated reception window, data blocks with consecutive TSNs up to the first not received data block are delivered to the upper layer. As a consequence, the mechanism described in [1] would deliver fewer data blocks to the upper layer than the mechanism described in the previous section of this document.

Even if (a) were removed, and only (b) is kept, the mechanism described in [1] will not deliver all the data blocks to the upper layer, which would be delivered by the mechanism described in the rules given in the previous section: In the scenario of Fig. 4, (b) also stipulates that only the PDU with TSN=2 is delivered to RLC, since the “first not received data block” is the one with TSN=3, and delivering data blocks with TSN=2 and TSN=4 to RLC would not be “data blocks with consecutive TSNs up to the first not received data block.” However, an optimised solution would be to deliver data blocks with TSN=2 and TSN=4 to the upper layer, since the sender has already shifted the TX window in such a manner that a data block with TSN=3 is no longer within this window, and hence TSN=3 will only be used for a new transmission and not a retransmission. This is covered by Rule Continuous-Stream-2.

Furthermore, it is not clear, what “highest received TSN” means in the context of a finite number space.

7.2 The timer mechanism described in [1] and [2]

[1] and [2] state:

If no timer T1 is active, the timer T1 is started when a data block with TSN=SN is correctly received but can not be delivered to higher layer due to that a data block with lower TSN is missing. If a timer T1 is already active no additional timer can be started, i.e. maximum one timer T1 can be active at a given time.

The timer T1 is stopped if the data block for which the timer was started can be delivered to higher layer before the timer expires.

When the timer expires, all data blocks up to and including TSN-1 will be removed from the reordering buffer.(a) In addition, all data blocks up to the first missing data block shall be delivered to higher layer.(b)

When the timer T1 is stopped or expires, and there still exist some received data blocks that can not be delivered to higher layer, the timer T1 is started for the data block with lowest TSN among those data blocks that can not be delivered.

(a) prescribes that all data blocks up to (but excluding) the data block, whose arrival caused the timer to be started, are removed from the reordering buffer (i.e. no longer considered further). According to (b) only data blocks including the data block, for which the timer was started, until the next missing data block are delivered to the upper layer.

Furthermore, it is not clearly defined, what the “lowest TSN” in the finite number space is.

In these aspects, the mechanism described in the previous section with the rules Timer-1 to Timer-3 and those in [1] differ, i.e. the list of data blocks delivered to the upper layer are different, and the solution in [1] is sub-optimal.

In addition, even if the timer approach were used alone, it is still required to define the behaviour of the sending side by means of a transmission window, in order to avoid that the sending side transmits a data block, with the same TSN as is used for an on-going retransmission. Also, the TSN range is related to the size of the transmission window, which should not exceed half the maximum TSN to avoid TSN ambiguity at the receiving side. As an alternative, a timer would have to be used also on the transmitting side, which would then unnecessarily delay the transmission of data blocks on the transmitting side.

8. Text proposal for 25.321 (Section 11.5.2.3) resp. 25.308 (Section 7.3.3.1)

The timer rule, which ensures that the sojourn time of a data block in the reordering buffer increases linearly with the distance between the reordering pointer position and the position of the data block, to which the running timer is associated, is deemed the best alternative. Hence, it is adopted here, and this stated under Rule g).

A corresponding text proposal is proposed to be included in 25.308, i.e. the text in 11.5.2.3.1 and 11.5.2.3.2 below should replace the section 7.3.3.1 in 25.308, and the FFS statement in 7.3.3 is proposed to be removed.

Text proposal for 25.321 as given in [3]: The following text is proposed to replace text in 11.5.2.3 as given in [3].

11.5.2.3 Reordering entity

The reordering entity in the UE relies on the behaviour of the sending side as described in section 11.5.2.3.1, and works according the rules defined in section 11.5.2.3.2.

11.5.2.3.1 Sender operation:

A Transmission Window should be used, whose size is not bigger than half the size SNS of the sequence number space. The transmission sequence numbers (TSNs) are 0, 1, 2, …, TSNmax, SNS:=TSNmax+1.

The Transmission Window is given by the consecutive list of TSNs (TSNbegin, [TSNbegin + 1]mod SNS , …, TSNend), where TSNbegin equals the lower edge and TSNend the upper edge of the Transmission Window.

The sending side should not retransmit any data block outside the Transmission Window to avoid sequence number ambiguity at the receiving side, i.e. an on-going retransmission of a data block, whose TSN is no longer within the Transmission Window, should be aborted.

The transmission window should be updated, if the successful transmission of the packet with TSNbegin is acknowledged, i.e. the transmission window becomes ([TSNbegin + 1]mod SNS , [TSNbegin + 2]mod SNS …, [TSNend + 1]mod SNS), or it should be updated to ([TSNbegin + a]mod SNS , [TSNbegin + a +1]mod SNS …, [TSNend + a]mod SNS), if the transmitting side decides that packets with TSN=[TSNbegin + 1]mod SNS, [TSNbegin + 2]mod SNS, …, [TSNbegin + a – 1]mod SNS are no longer to be transmitted or retransmitted.

11.5.2.3.2 Receiver operation

The reordering buffer has as many buffer positions as there are TSNs, and the buffer positions are numbered consecutively using the TSNs, hence generating a cyclic numbering. A received data block with TSN=x is stored in the buffer position x. A reordering pointer points to the buffer position numbered with the TSNexp of the data block, which is expected next according to the data block sequence. The following rules a) to h) have to be applied at the same time. There is only one timer T1 running at a time.

“Deliver a data block to the higher layer” also means here that this data block is removed from the reordering buffer.
Handling of data block duplicates

a) Any newly received data block with a TSN, that equals a buffer position, where a data block is already stored, is ignored (and discarded).

Reordering pointer

b) If a data block with TSN = x1 is received, it is stored at position x1 in the reordering buffer. If the reordering pointer points to this position, the data block is delivered to the higher layer, and the reordering pointer is shifted to the next position ([x1+1]mod SNS).

c) A data block stored in a position x2 is delivered to the higher layer, if the reordering pointer is shifted into this position x2. After delivery, the reordering pointer is moved to the next position ([x2+1]mod SNS).

Timer handling

d) If – with the reordering pointer pointing to a position y, in which there is no data block stored, – a new data block is received with a TSN = y’, with y (y’, and no timer T1 is already running, a timer T1 is started (and associated with this position y’).

e) If no timer T1 is running, a timer T1 is started and associated for a position y’, in which a data block is stored, if the reordering pointer moves to a position y, in which there is no data block stored, where y’, with y (y’, is the first position following y, in which a data block is stored.

f) The timer T1 associated with a position y’ is stopped, as soon as the data block stored in position y’ is delivered to the higher layer.

Remark: c) gives the criterion for delivering a data block to the higher layer, and prescribes how the next position of the reordering pointer is determined. If h) is fulfilled, the timer T1 is stopped, if it is associated with one of the data blocks stored between the old and the new position of the reordering pointer.

g) If the timer T1 associated with a position y’ elapses, the reordering pointer is moved from its position y to the next following position [y + 1]mod SNS.

Remark: e) makes sure that a new timer T1 is started, if the there are still data blocks stored in the reordering buffer.

Additional delivery criterion based on Transmission Window size (to speed up delivery in continuous data streams)

h) If a data block with TSN = z is received, and

[z – Reordering_Pointer_Position]mod SNS + 1 > TxWinSize

(TxWinSize=[TSNend – TSNbegin]SNS + 1), the reordering pointer is moved to the position [z – TxWinSize]mod SNS + 1. All stored data blocks in positions between the old and the new position are delivered to the higher layer.

Remark: For the other alternatives of controlling the timer, g) would look like as follows:

For A) it is:

If T1 elapses, all data blocks between the position of the pointer and the position y’’ of the next missing data block (after a data block) following the pointer position are delivered to the higher layer, and the pointer is moved to this position y’’ .

For B) it is:

If T1 elapses, all data blocks between the position of the pointer and the position y’ of the data block, to which the timer was associated, including the data block in position y’ are delivered to the higher layer, and the pointer is moved to the following position [y’+1]mod SNS.

(This rule allows guaranteeing that if a data block is received and causes starting a timer, this data block is not kept longer in the reordering buffer than given by the timer duration. If a data block is received, while a timer is still running, it might be kept longer in the reordering buffer.)

9. References

[1] TSGR#24(01)2330, HARQ Stall Avoidance, Source: Ericsson.

[2] 25.308v5.1.0

[3] TSGR#26(01)0086, Proposed draft CR to 25.321 [Rel-5] on HSDPA (Ericsson)

Page 11

