Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 Meeting #20
R2-010918

Hayama, Japan, 9-13 April 2001

Title:
Structure and naming of extensions in ASN.1

Source:
Siemens AG

Agenda Item:
6.2

Document for:
Discussion

1
Introduction

In the RRC specification [1], there are extension mechanisms defined in the ASN.1 part, in order to allow extensions to the RRC messages in new releases, by keeping them backward compatible to the older versions of the protocol. Since version 4.0.0 of [1], these mechanisms are being used when a change request includes a new feature for release-4.

In RAN#11, for the first time change requests were agreed for release-4, where these extension mechanisms were used for the inclusion of new features. In many cases though, these mechanisms were used differently in different CRs, which makes the ASN.1 description more complicated than necessary, and can make it more difficult to keep a consistent and backward compatible ASN.1 description, when adding even further extensions.

In the following sections, some alternatives of the usage of the extension mechanisms are identified in some places of the message structures, and some possible problems that can arise from such a usage are presented.

2
Extension methods

2.1
Top-level message structure

The main structure of the RRC messages in ASN.1 is using a top level type named "xL-yyyy-Message", where "x" defines the direction of the message (UL for uplink, DL for downlink messages) and "yyyy" is the logical channel, on which the message is sent (e.g. CCCH, DCCH). This type includes the definitions of all messages that can be sent on the same logical channel and the same direction. This structure is shown in Figure 1. (Note that there are exceptions to this structure, e.g. for the system information messages, or the handover to UTRAN command message).

DL-DCCH-Message ::= SEQUENCE {

integrityCheckInfo

IntegrityCheckInfo

OPTIONAL,

message

DL-DCCH-MessageType

}

DL-DCCH-MessageType ::= CHOICE {

activeSetUpdate

ActiveSetUpdate-r3,

...... (all other messages sent on the downlink DCCH included here)

}

ActiveSetUpdate-r3 ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

ActiveSetUpdate-r3-IEs ::= SEQUENCE {

-- All ActiveSetUpdate IEs are included here

}

Figure 1: Structure of a message in Release-99

When such a message has to be extended, one of the available "SEQUENCE {}" containers (either criticalExtensions or nonCriticalExtensions, depending on the addition) is to be replaced by a sequence including the new information elements. This can be done in two ways:

1)
The message type (here ActiveSetUpdate-r3) can be updated by just replacing the empty SEQUENCE by the needed one. This means that ActiveSetUpdate-r3 would be differently defined in different versions of RRC (e.g. 3.6.0 and 4.0.0), but with the same name. If this method is used, the -r3 suffix should be avoided, as it would be confusing.

2)
A new message type is defined for release-4 (e.g. ActiveSetUpdate-r4), where the extensions are included inside the SEQUENCE containers, and the rest is the same as in ActiveSetUpdate-r3. In this case the DL-DCCH-MessageType has to be updated too. If the same types are not allowed to have different definition in different versions, then that has to be renamed too, e.g. in DL-DCCH-MessageType-r4 and the same has to be done for DL-DCCH-Message.

Figures 2 and 3 show how the structure would be updated in the two cases described above (the changes to the previous version are shown in red):

-- First method: ActiveSetUpdate-r3 is updated using the same name (suffix -r3 removed for clarity).

DL-DCCH-Message ::= SEQUENCE {

integrityCheckInfo

IntegrityCheckInfo

OPTIONAL,

message

DL-DCCH-MessageType

}

DL-DCCH-MessageType ::= CHOICE {

activeSetUpdate

ActiveSetUpdate,

...... (all other messages sent on the downlink DCCH included here)

}

ActiveSetUpdate ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

nonCriticalExtensions

SEQUENCE {

-- here come some extensions

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

ActiveSetUpdate-r3-IEs ::= SEQUENCE {

-- All ActiveSetUpdate IEs are included here

}

Figure 2: Inclusion of extensions directly in the structure without new naming (first method)

-- Second method: A new type, ActiveSetUpdate-r4 is defined for the extensions.

DL-DCCH-Message ::= SEQUENCE {

integrityCheckInfo

IntegrityCheckInfo

OPTIONAL,

message

DL-DCCH-MessageType

}

DL-DCCH-Message-r4 ::= SEQUENCE {

integrityCheckInfo

IntegrityCheckInfo

OPTIONAL,

message

DL-DCCH-MessageType-r4

}

DL-DCCH-MessageType ::= CHOICE {

activeSetUpdate

ActiveSetUpdate-r3,

...... (all other messages sent on the downlink DCCH included here)

}

DL-DCCH-MessageType-r4 ::= CHOICE {

activeSetUpdate

ActiveSetUpdate-r4,

...... (all other messages sent on the downlink DCCH included here)

}

ActiveSetUpdate-r3 ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

ActiveSetUpdate-r4 ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

nonCriticalExtensions

SEQUENCE {

-- here come some extensions

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

ActiveSetUpdate-r3-IEs ::= SEQUENCE {

-- All ActiveSetUpdate IEs are included here

}

Figure 3: Inclusion of extensions by using new names for the extended structure (second method)

Both of the above methods have been used in change requests, which leads to inconsistent descriptions. It should be clarified, which of the two methods is prefered, and the ASN.1 code updated accordingly.

Proposal:

It is proposed to use the first method for updating the message structure, as that leads to much simpler descriptions, and fewer possibilities for errors (only on place has to be updated).

2.2
Naming of new information elements

When new information elements are to be added in the new version of a message, this is done inside one of the extension containers included in the message structure (either nonCriticalExtensions or criticalExtensions, depending on the criticality of the elements being added). In order to keep the message type simple, the elements to be added are grouped in new abstract types, e.g. Message-r4-IEs. One possibility for that is shown in Figure 4 in the example of the ActiveSetUpdate message presented in 2.1:

ActiveSetUpdate ::= CHOICE {

r3

SEQUENCE {

activeSetUpdate-r3

ActiveSetUpdate-r3-IEs,

nonCriticalExtensions

SEQUENCE {

activeSetUpdate-r4-ext

ActiveSetUpdate-r4-ext-IEs,

nonCriticalExtensions

SEQUENCE {}

}
OPTIONAL

},

criticalExtensions

CHOICE {

r4

SEQUENCE {

activeSetUpdate-r4

ActiveSetUpdate-r4-IEs,

nonCriticalExtensions

SEQUENCE {}

},

criticalExtensions

SEQUENCE {}

}

}

ActiveSetUpdate-r3-IEs ::= SEQUENCE {

-- All ActiveSetUpdate release-99 IEs are included here

}

ActiveSetUpdate-r4-ext-IEs ::= SEQUENCE {

-- Here are included release-4 extensions to the release-99 message (non-critical extensions)

}

ActiveSetUpdate-r4-IEs ::= SEQUENCE {

-- Here all IEs needed for the release-4 message are included (including those already

-- present in the release-99 message) for the case of critical Rel-4 extensions

}
Figure 4: One naming possibility for the extensions

In order to avoid confusion, there should be rules defined for how to name these new types. For example, in some release-4 change requests, the ending "-r4-IEs" was used to group the non-critical extension IEs, while in others the same ending was used for the critical extension IEs.

For the non-critical extensions, there should be also a distinction in the naming depending on which version the extension is based on, similar to the examples in 25.921 [2]. So for example IEs extending Message-r3-IEs in release-5 could be grouped in "Message-r3-r5-ext-IEs", while elements extending Message-r4-IEs in release-5 would be grouped in "Message-r4-r5-ext-IEs".

When the new information elements are defined in the information element definitions (clause 11.3 in [1]), they should be too distinguished from the existing elements, in order to avoid updating an already existing IE (which would lead to incompatibility). If for example all new IEs in release-4 have an ending like "-r4", it is easy to see in the name of an IE, if it may be updated in a CR (i.e. all IEs with the ending -r4 may be changed as long as release-4 is not frozen, while IEs without that ending shall remain unchanged, because they are included in at least one release-99 message, and release-99 is frozen).

Proposal:

It is proposed that all abstract types introduced in release-4 have an ending -r4 or -r4-ext, depending on if this is a new type (or replacement of an old one) or it is just used in parallel to another one (with the same name without the -r4-ext suffix). Similar suffixes are to be used in later releases.

Alternatively, or in addition to the above, the new information elements can be defined in a new ASN.1 file (e.g. InformationElements-r4), so that the old definitions in "InformationElements" remain unchanged between the releases to guarantee compatibility, and only the new file is updated in case of extensions.

In the message level, it is proposed to group all elements relevant to an extension into a new information element with a type named based on the type of the extensions:

-
Critical extensions in release-N in message "Message" shall be included in a type "Message-IEs-rN" (N=3 is used for release-99).

-
Non-critical extensions in release-N included in the release-M branch of the top-level CHOICE shall be included in a type "Message-IEs-rM-rN-ext".

2.3 Critical and non-critical extensions

In many cases, there is one change request updating a message with a non-critical extension, while another one is updating the same message with a critical one. In such cases, when updating the specification to include the change requests, the critical extension branch of the message CHOICE will not include the non-critical extension of the parallel CR, so that it will not be possible to send a message including both extensions.

To prevent that, when introducing a non-critical extensions, it should be described how such an extension should be included in the critical extension path, in case another CR uses that path.

An easy way to do that is to define for each message a type named "Message-IEs-rN" in release-N (naming is as proposed in section 2.2), even if no critical extensions are introduced for that message (in that case that type will just exist in the ASN.1 definitions, but will be not referenced anywhere). This type will have in the beginning the same structure as the one in release-(N-1), and when non-critical extensions are inctroduced, they will be added also in "Message-IEs-rN". When at some time critical extensions are added, the such created "Message-IEs-rN" will be used as the basis, and the critical additions will be done on that, and the resulting type is used in the criticalExtensions branch of the message CHOICE..

Proposal:

It is proposed to use the above described method, in order to keep track of the non-critical changes, as long as there are no critical extensions for a message. The resulting element will be then used, when some critical extensions are introduced for that message.

2.4
Nesting of extensions

When a non-critical extension is defined in a message (thus replacing the empty container "nonCriticalExtensions"), a new "nonCriticalExtensions" container shall be defined inside the old one, to allow for further extensions. This is shown in Figure 5:

Message ::= CHOICE {

r3

SEQUENCE {

message-r3

Message-IEs-r3,

nonCriticalExtensions

SEQUENCE {

message-r3-r4-ext

Message-IEs-r3-r4-ext,

nonCriticalExtensions

SEQUENCE {

message-r3-r5-ext

Message-IEs-r3-r5-ext,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

Figure 5: Nesting of extension containers throughout the releases

If this is continued for several releases, it leads to more and more nested nonCriticalExtensions, which can make the structure very unreadable.

To avoid such a nesting, the structure can be flattened by using new abstract types, as shown in Figure 6 below:

Message ::= CHOICE {

r3

SEQUENCE {

message-IEs-r3

Message-IEs-r3,

nonCriticalExtensions

Message-r3-r4-ext
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

Message-r3-r4-ext ::= SEQUENCE {

message-IEs-r3-r4-ext

Message-IEs-r3-r4-ext,

nonCriticalExtensions

Message-r3-r5-ext
OPTIONAL

}

Message-r3-r5-ext ::= SEQUENCE {

message-IEs-r3-r5-ext

Message-IEs-r3-r5-ext,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}

Figure 6: Alternative flat structure (equivalent to Figure 5)

A similar simplification of the structure can also be done for the critical extensions, as shown in Figure 7:

Message ::= CHOICE {

r3

SEQUENCE {

message-IEs-r3

Message-IEs-r3,

nonCriticalExtensions

Message-r3-r4-ext
OPTIONAL

},

criticalExtensions

Message-r4

}

Message-r4 ::= CHOICE {

r4

SEQUENCE {

message-IEs-r4

Message-IEs-r4,

nonCriticalExtensions

Message-r4-r5-ext
OPTIONAL

},

criticalExtensions

Message-r5

}

Message-r5 ::= CHOICE {

r5

SEQUENCE {

message-IEs-r5

Message-IEs-r5,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

Message-r3-r4-ext ::= SEQUENCE {

message-IEs-r3-r4-ext

Message-IEs-r3-r4-ext,

nonCriticalExtensions

Message-r3-r5-ext
OPTIONAL

}

Message-r3-r5-ext ::= SEQUENCE {

message-IEs-r3-r5-ext

Message-IEs-r3-r5-ext,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}

Message-r4-r5-ext ::= SEQUENCE {

message-IEs-r4-r5-ext

Message-IEs-r4-r5-ext,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}

Figure 6: Flat structure for both critical and non-critical extensions

Alternatively, a flat structure as described in [2] (in clause 10.4.2) could be used, but for using that, special encoding definitions shall be used, otherwise that structure is not backward compatible.

Proposal:

It is proposed to use a flat structure for defining the message extensions, as in the examples presented above, in order to avoid many levels of message nesting in future releases.

3
Proposal

It is proposed to discuss about the proposals in the points presented in section 2. Based on the results of the discussion, CRs shall be prepared for the next meeting for 25.921 and 25.311 in order to align the message structures according to the decisions.

4
References

[1]
3GPP TS 25.331 RRC Protocol Specification

[2]
3GPP TR 25.921
Guidelines and principles for protocol description and error handling

