
3GPP TSG-RAN WG2 Meeting #20
Tdoc R2-010895

Hayama, Japan, April 9th-13th 2001

Agenda item
6.2

Source

Ericsson

Title

How to correct errors within RRC release ‘99

Document for
Discussion

1 Introduction

RAN#11 discussed the issue of how to correct errors within R99 and concluded on a number of recommendations to be applied within the RAN WGs [1]. The recommendations stress the need to seek backwards compatible solutions and to use the extension mechansim if needed to achieve this.

This document evaluates how errors in RRC messages are best corrected and verifies whether additional mechanisms are needed concerning protocol extension.

2 Analysis

2.1 Review of correction options

Changes to RRC can be implemented in different manners. The main options are as follows:

· modify the existing ASN.1

· use the extension mechanism

· specify additional constraints/ requirements on the UE behaviour e.g. is an IE is optional while it should be mandatory

· defer the solution to R4 and remove the associated functionality from R99

The first approach, modifying the existing ASN.1, is a solution that puts backwards compatibility at risk; there is a chance that UEs conforming to an earlier version of the transfer syntax will regard a message using the new transfer syntax as valid. In that case, the UE may completely misinterpret the message and act in a completely different manner as was intended. This may result in serious errors including loss of the radio connection. Therefore, just modifying the existing ASN.1 should really be avoided (Perhaps it is acceptable in a limited number of cases e.g. to correct an isolated error, only affecting a non basic function or used only in exceptional cases)

As a result, this contribution focusses on the use of the extension mechansim to correct errors in RRC messages.

2.2 The extension mechanism, its use and its limitations

The protocol extension mechanism specified for RRC includes the possibility to add both critical and non- critical extensions to a message. The basic characteristics of these mechansims are as follows:

· The non- critical extension mechanism can be used for all messages. It facilitates the addition of new IEs to the end of a messages. A receiver not comprehending the information discards it without notifying the sender.

· The critical extensions mechanism can be usef for all downlink messages, with the exception of broadcast messages. The mechanism makes it possible to completely re- specify a message e.g. IEs may be taken out or redefined. The changes are implemented by definition a new version of the message. A receiver not comprehending the version will reject the entire message (there is no partial rejection) and notify the sender

When addressing the use of these mechanism, it is important we first consider the nature of the IEs included in the RRC specification. Most of these parameters can be regarded as critical; in case the two peer entities (sides) assume a different value for this parameter, a serious interoperability problems will result.

CN information
These parameters concern CN type, routing information and UE- identification. Several parameters are more or less transparent to RRC and hence not critical from an RRC perspective

Mobility information
These parameters are mostly used to control cell access and cell (re-) selection. The most serious problems resulting from a mismatch of values may be that UEs are unable to access or select certain cells

UE information
These parameters are used for a wide range of purposes. Mismatch of some parameters e.g. cause values has little impact since there is little RRC behaviour associated while others e.g. concerning security algorithms may cause severe interoperability problems

RB information
These parameters are used to configure radio bearers e.g. RLC, mapping onto transport channels. Includes RLC parameters for which misalignment results in different levels of interoperability e.g. some polling schemes are compatible. Also includes critical parameters like activation time and COUNT-C information

TrCH information
These parameters are used to configure the transport channels. Mismatch of some parameters e.g. related to power & quality will affect performance, which could be severe. Mismatch of other parameters e.g related to transport formats will always cause serious interoperability problems

PhyCH information
These parameters are used to configure the physical layer. Mismatch of some parameters e.g. related to power control will affect performance, which could be severe. Mismatch of other parameters e.g. scrambling code, spreading factor will always cause serious interoperability problems

Measurement information
These parameters are used to configure measurements. Mismatch of parameters control will affect performance, which could be severe.

Other information
These parameters are used for a wide range of purposes. Consequently, the impact of mismatch of parameters also varies

The above shows that for many parameters use of a different value on both sides will result in serious interoperability problems including loss of messages, radio link failure. This is clearly not acceptable. Hence, the mechanism for correcting such critical parameteres should ensure that the same value is used on both sides.

The non- critical extension mechanism is not suitable for correcting errors in critical parameters, since the receiver does not notify the sender upon non- comprehension. As a result, the sender will not know if the receiver accepted the extension or not.

The above also means that the non- critical extension mechanism only be used for non- critical parameters. As indicated previously, it seems the majority of the RRC parameters should be regarded as critical.

Note
The non critical extension mechanism may be used to correct critical IEs only if there is a case in which the values used in the regular IEs will result in a rejection unless the extension is read. However, this seems a rather unlikely scenario.

In the uplink only the non- critical extension mechanism is currently available. However, at this stage only errors in essential paremeters should be agreed for R99. This means that the scope for using the non- critical extension mechanism to correct errors in R99 seems to be quite limited.

So far it is assumed that the critical extension mechanism is used only between different releases of a protocol and not between different versions of a release. That assumption is also reflected in the guidelines reflected in TR 25.921, illustrated by the following extract from that TR:

test-msg-r3 ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

test-msg-r3-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

test-msg-r4 ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

test-msg-r3-IEs,

test-msg-r3-r4ext

test-msg-r3-r4ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

r4

SEQUENCE {

test-msg-r4

test-msg-r4-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

test-msg-r5 ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

test-msg-r3-IEs,

test-msg-r3-r4ext

test-msg-r3-r4ext-IEs,

test-msg-r3-r5ext

test-msg-r3-r5ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

r4

SEQUENCE {

test-msg-r4

test-msg-r4-IEs,

test-msg-r4-r5ext

test-msg-r4-r5ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

r5

SEQUENCE {

test-msg-r5

test-msg-r5-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

Considering the limited use of the non critical extension mechansim, as indicated in the previous, it is felt that the possibility to use the critical extension mechanism to correct errors in R99 deserves further investigation. This is addressed in the following section.

2.3 Use of critical extension mechanism for versions within release

This section investigates the possibility to use the critical extension mechanism to correct errors in R99.

Message version encoding

An essential precondition is the encoding of the message version is consistent between all versions of the RRC specification – this is required to obtain a uniform and consistent behaviour. Let us consider the present situation with version 3.6.0 and 4.0.0. In this case the protocol version is according to the following table:

Rev
Choices
Encoding
Meaning

R3.6
r3
0
To be handled by implementation supporting r3 transfer syntax

CriticalExtensions
1
To be rejected by implementation supporting r3 transfer syntax

R4.0
r3
0
To be handled by implementation supporting r3 transfer syntax

r4
10
To be handled by implementation supporting r4 transfer syntax

CriticalExtensions
11
To be rejected by implementation supporting r4 transfer syntax

Note
Concerning the encoding, the assumption is that it is ECN based

Let’s suppose we now need to make a correction to R99 concerning a critical IE. Furthermore, let’s suppose we would like to apply the critical extension mechanism. In case we consider R4 as not frozen and allow a change in the encoding of the message version, the following table results:

Rev
Choices
Encoding
Meaning

R3.6
R3
0
To be handled by implementation supporting r3 transfer syntax

CriticalExtensions
1
To be rejected by implementation supporting r3 transfer syntax

R3.7
R3
0
To be handled by implementation supporting r3 transfer syntax

R3.7
10
To be handled by implementation supporting r3.7 transfer syntax

CriticalExtensions
11
To be rejected by implementation supporting r4 transfer syntax

R4.0
R3
0
To be handled by implementation supporting r3 transfer syntax

R3.7
10
To be handled by implementation supporting r3.7 transfer syntax

R4
110
To be handled by implementation supporting r4 transfer syntax

CriticalExtensions
111
To be rejected by implementation supporting r4 transfer syntax

Shift of base line

The above change basically implies that the basis of r4 is shifting from r3 to r3.7; the reference for the criticality of the extensions changes from r3.6 to r3.7, as shown in the following figure. This seems feasible at first glance. However, in case the critical extensions introduced in r99 are related to the critical extensions introduced in r4, the shift of baseline seems less straigtforward; some further study may be needed to identify if in this case additional r4 rework may be needed.

[image: image1.wmf]v5.0.0

R99

v5.1.0

v4.2.0

v4.1.0

v4.0.0

v3.6.0

v3.7.0

v3.5.0

R4

R4

Change of R4 basis upon introduction of critical extensions in v3.7.0

Thus, while there is not yet a frozen R4 release on which products are based, it may be possible to apply the critical extension mechansim also for corrections within a release. However, this more extensive use of the critical extension mechanism will increase the number of incompatible message versions. The introduction of more incompatible message versions raises several issues that requires further study:

· Version handling burden: Will the handling of a (considerably) larger number of message versions increase the burden on implementation e.g. will UTRAN need to support many different UE implementation versions and/ or keep a table for each UE listing for each procedure which version it supports (Use of the version mechanism itself does not cause the burden on implementation; the introduction of quarterly releases with critical corrections is causing the burden not how they are implemented. The critical mechanism provides a facility to properly handle incompatible versions in both sides. Thus, if the number of incompatible versions is to be restricted, the release schedule of the specifications may need to be reconsidered and possibly made dependant on the introduction of critical corrections e.g. at most 2 versions per year

· Signalling efficiency: Within the current critical extension mechanism, the message version is signalled every time the message is send. Moreover, whenever a new version is introduced an additional bit is needed to indicate it e.g. the 2nd version requires 2 bits to indicate, the 3rd version requires 3 bits to indicate etc. Extensive use of the version mechanism means that the overhead to signal the message versions increases considerably. Thus, the more extensive use of versions may call for alternative more efficient means to signal the version.
· Transfer syntax size & support: The size of the compiled ASN.1 sources is of significant size. Already for R99 this is regarded as a problem especially for UE implementation.

Furthermore, the transfer syntax defined in v4.0.0 includes the message definitions of all previous versions. Generally, the last version includes all previous versions. As has been shown by some examples, the size of the ASN.1 expands considerable especially when extensions are introduced in ASN.1 structures that apply many levels of nesting. As a result, it may not be feasible to continue supporting the complete transfer syntax of the RRC specification; alternative approaches may be desirable

Moreover, as currently specified an implementation shall always support the entire transfer syntax contained within a certain version of the specification. This means an implementation is not allowed to support v3.7.0 for one message and v4.2.0 for another message. The intention of this requirement is to simplify error recovery; one does not need to fail for every message and/ or keep a table for each message which version the UE supports. There is some gain here of course, although it should be noted that for each message the situation is different regarding the versions defined for it. However, the drawbacks regarding transfer syntax size may be more severe than the gain in complexity reduction

NOTE 1
It should be noted that versions are applied at the level of a message; a new message version is only introduced when the message needs to be changed in an incompatible manner. This can be either due to a correction or due to the introduction of new functionality.

2.4 Guidelines on how to correct errors

The table in 1 provides an overview of different types of errors and possible ways to solve the different types of corrections to the R99 ASN.1. In the following a number of essential factors are identified that should be considered when deciding which solution should be adopted to correct the error.

Backwards compatibility

A solution is backwards compatible if it will not cause interoperability problems with implementations conforming to an earlier version. Examples of backwards compatible cases include: rejection of not comprehended critical extension or new message type,

There are many different backwards incompatible cases including In case implementations conforming to an earlier version act in a defined

Criticality of information

An RRC information element is regarded as critical if it is essential that the two peer entities (sides) apply the same parameter value; that is in case use of a different value on each side may result in serious interoperability problems e.g. loss of messages, radio link failure.

Impact/ affected cases (functionality, normal/ exceptional behaviour)

The impact of an incompatible change to the ASN.1 is different depending on whether the correction is part of the main branch or part of a choice or optional substructure, which is invoked only in certain cases. The impact of a corrections to an IEs that is always included in a message in much more severe than a correction to an IE that is only invoked under certain circumstances or if certain less essential functionality is invoked.

Protocol version

When more than one version is defined for the message that needs to be corrected, one needs to decide in which version to implement the correction.

It is considered that critical extension will only be introduced in R99 if they are really required to correct essential functionality to make the entire system work. There may be corrections to parts of the specifications not related to the functionality that required a critical extension. In case those corrections do not require a critical extension, these need not (only) be included in the version including that critical extension.

In case we assume the R4 specification is frozen e.g. in DEC-01, the options for introducing critical and non- critical corrections are shown in the following table

RAN meeting
Message version in which non critical corrections/ extensions may be included
Message version in which corrections using critical extension mechanism may be included

JUN-01
3
3a, 4
3.7.0, 4.1.0

SEP-01
3, 3a
3b, 4

DEC-01
3, 3a, 3b
3c, 4

Regarding the version in which to introduce non critical extensions, the following can be stated

· Corrections concerning non- critical parameters should be introduced only as a by means of a non critical extensions in the concerned release. In the later message versions, the correction could be included in the critical message part (baseline of the following version)

Regarding the version in which to introduce critical extensions, the following can be stated

· Critical extensions related to corrections of functionality that is not essential for R99 may be deferred to R4

As stated before, the correction of errors to R99 depends on the status of R4; it is easier to implement R99 correction while R4 is not yet frozen. Moreover, some problems can be avoided if there is no need to continue correcting R99 after R4 has been frozen. Thus, before we can agree the requirements on the protocol extension mechanism we have to agree how the different releases are to be handled. An example in which R99 corrections are stopped upon freezing of R4 is shown in the following figure.

[image: image2.wmf]R99

R4

Completion

<

regular

changes>

Correction

<

extension

mechansim>

Drafting

<

regular

changes>

Completion

<

regular

changes>

Correction

<

extension

mechansim>

Drafting

<

regular

changes>

Agree

Freeze

Stop ?

Agree

Freeze

Stop ?

Handling of different releases

All of the above factors should be considered when deciding on how an error should be corrected. Further study is required to derive some guidelines from these. The work on this may be started by reviewing a number of items requiring correction by treating these as case studies.

3 Conlusions & recommendations

The protocol extension mechanism was agreed quite some time ago. At that time it was concluded that the current mechanisms were sufficient to accommodate R99 and one additional version. Furthermore, it was felt that further study would be needed to identify if the mechanism needed enhancement to properly support more versions. Unfortunately, the issue has not really been progressed ever since. It seems it is high time the discussion is revitalised and concluded urgently.

This contribution has raised several topics that need further study. Some CRs to this meeting may be used as case studies to help progress these issue further.

It would be nice to conclude this topics prior to the next meeting, so that CR’s to the next meeting can take into account the principles agreed. However, it is important that sufficient time and attention is taken to make sure that the protocol extension mechansim is able to meet all requirements.

4 References

[1] RP-010276, Recommendations applying to corrections of release 99 specifications

5 Examples of errors and posssible solutions (Annex)

The following concern IEs in the message tail – not header e.g. message type.

Area
Correction
Solution
Action non comprehending receivers
Incompatibility

Optionality
IE incorrect specified as optional
No message change; restrict behaviour: sender shall always include it e.g. within semantics description

Furthermore, receiver action upon absence needs to be specified (message should be rejected)
N/A

Only in case neither sender nor receiver support correction, absence of IE may be interpreted incorrectly
Possibly, if both sender and receiver don’t support correction (action upon absence of IE may be incorrect)

Change IE to optional
Transfer syntax error, hopefully
Yes, in all cases

IE incorrectly specified as mandatory
Specify an IE value to be sent in case IE should be absent (only possible if suitable code point available)
Correct; as defined for value used in case of IE absence
No

Change IE to optional
Transfer syntax error, hopefully
Yes, in all cases

Change of values
Redefinition of values
Redefine original IE
Applies value according to original IE
Yes, for all values starting from the first changed code point.

Real problem if mismatch of values within sender and receiver causes interoperability

Keep original IE and add modified IE as non critical extension
Applies value according to original IE
Yes, but only for the redefined values.

Real problem if mismatch of values within sender and receiver causes interoperability

Solution offers more freedom regarding redefinition of values. By means of the original IE the nearest value can be signalled. However, basic interoperability problem does not change

Removal of values
No message change; restrict behaviour: sender shall never use concerned values e.g. within semantics description

Furthermore, receiver action upon reception needs to be specified
N/A

Only in case neither sender nor receiver support correction, use of removed code point may lead to incorrect behaviour
Possibly, if both sender and receiver don’t support correction (use of removed code point may lead to incorrect behaviour)

Redefine IE by removing concerned values while size encode IE does not change
Possible misinterpretation of values (unless only removed at the end)
Yes, unless all removed values are are specified at the end.

Real problem if mismatch of values within sender and receiver causes interoperability

Redefine IE by removing concerned values while size encode IE does change
Transfer syntax error, hopefully
Yes, in all cases

Addition of values
Add NC extension at back with additional values and apply closest value within original IE
Apply value specified in original IE
If use of different values by sender and receiver causes interoperability problems

Redefine existing IE to include additional values while size of encoded IE does not change
Original values will be handled correctly. New values will result in invalid transfer syntax for the concerned IE. The error behaviour is as defined in ch. 9.4- 9.6: apply procedure specific error handling for protocol error case (mandatory IE) or ignore IE and proceed with message (optional IE)

NOTE: general transfer syntax error will result in status message
Yes, but only for newly added values

Redefine existing IE to include additional values while size of encoded IE does change
Transfer syntax error, hopefully
Yes, for all values

Missing IEs
Addition of IE
Add NC extension at back with additional IE
Ignored
Yes, if comprehension of additional IE is required to achieve interoperability

Add IE within original transfer syntax definition
Transfer syntax error (hopefully)
Yes, in all cases

_1047881378.doc

v3.5.0

v3.7.0

v3.6.0

v4.0.0

v5.0.0

v4.2.0

v4.1.0

R99

R4

R4

v5.1.0

_1048302806.doc

Drafting

<regular changes>

Completion

<regular changes>

Correction

<extension mechansim>

Stop ?

Freeze

Agree

Drafting

<regular changes>

Stop ?

Freeze

Agree

R99

R4

Correction

<extension mechansim>

Completion

<regular changes>

