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1	Introduction
In RAN#102 a study item for AIML Mobility was approved [1]. In the approved SID, TSG RAN identified the following objective that is relevant for simulation aspects.
	· The evaluation of the AI/ML aided mobility benefits should consider HO performance KPIs (e.g., Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction) etc.) and complexity tradeoffs [RAN2] 
· NOTE: Simulation assumption and methodology can leverage TR 38.901, 38.843 and 36.839. And leave the detail discussion to RAN2



This document discusses the aspects that are relevant to the evaluation objective identified in the Rel 19 SI on AIML Mobility. Specifically, we provide our views on simulation assumptions (such as site deployment, channel modelling, UE trajectory, beam setting), and the simulation parameters and common KPIs.
2	Discussion
2.1	Simulation scenarios
2.1.1	Deployment aspects
Among the existing scenarios in 3GPP, the 7-site scenario used in TR 38.843 [2] for beam management can be considered as a starting point. Reusing existing scenarios from Rel. 18 beam management settings in [2] simplifies calibration efforts. However, this baseline scenario presents some challenges for AI/ML enabled mobility: The typical 7-site scenario, featuring 21 cells with 200 meters of inter-site distance (ISD), covers a relatively larger simulation area. This may result in longer simulation time and further processing efforts for data collection for targeted use cases. Moreover, the 7-site scenario may not fully encapsulate realistic network layouts, UE movements, and propagation channel models, highlighting a trade-off between ease of setup and the depth of realism. If more realistic street-graph-based UE movement models or map-based channel models are required, other scenarios, such as the Manhattan Grid or the Madrid Grid, may also be used. These can better model the NLOS/LOS and other deterministic and stationary features of the radio environment with the stochastic, transient aspects, which may be necessary in some ML use case evaluations.   
Observation 1: For the use-cases being considered in the Rel. 19 SI on AIML Mobility, the 7-site scenario can be taken as a starting point. However, this scenario does not incorporate the realistic aspects in network environment, and the required data processing load might be high. 
Observation 2: Manhattan grid and Madrid grid scenarios can also be considered to mitigate limitations of 7-site scenario.
Considering such scenarios, together with map-based propagation models would provide a clearer picture of the gains attained by AIML-deployments in the context of mobility. 
Proposal 1: The 7-site scenario used in TR 38.843 is taken as a starting point. Other scenarios, such as Manhattan grid or Madrid grid are not precluded. Map-based propagation models are also not precluded.  
2.1.2	Propagation model (Uma vs Umi) 		
For discussion on interested channel modelling and propagation related parameters, if FR2-1 to FR2-1 handover is given priority in the study, we can reuse RAN1’s assumption from Rel18 SI for beam management use case as a starting point. Table 6.3.1-1 in TR 36.843 [2] has listed the baseline simulation assumptions for AI/ML in beam management evaluations, within which channel-modelling-related parameters include at least BS/UE antenna configuration, BS Tx power, and BS/UE antenna height. Following this assumption, 7-site scenario together with UMa channel model can be taken as a starting point for System-Level Simulation (SLS) analysis for L3 mobility.
Nevertheless, it is well investigated that UMa channel model is designed for large urban areas with high buildings [2]. It represents scenarios where the base station (typically mounted on a tower or a tall building) serves a wide area. UMi channel model is tailored for smaller urban areas, such as streets surrounded by low to medium-rise buildings. It represents scenarios where the base station serves a localized area, often referred to as street canyons. The detailed channel model, LOS probability, and fading parameters are well captured in TR 38.901 for both UMa and UMi [3]. 
Starting with UMa LOS propagation modelling may not provide sufficient challenges in mobility performance, especially when it comes to the failure prediction. The channel condition is rather stable in this situation. UMi is more challenging to handle due to the higher penetration loss from shadowing fading, which is seen as critical to affect mobility performance.
Observation 3: Overlooking NLOS and blockage factors results in simulations that fail to capture the real-world complexities of networks, potentially undermining the reliability of evaluation results under actual network conditions.
Observation 4: UMi channel model is more suitable for street canyon effect as discussed in TR 38.901.
Proposal 2: For UMa LOS propagation, channel model selection should align with the deployment scenario and frequency range. More realistic channel models, including NLOS and blockage factors should be considered. 
Proposal 3: UMi channel model together with Manhattan Street scenario can be considered as a starting point to model street canyon and FR2. Other street scenarios are not precluded.
2.1.3	UE trajectory and mobility models
Following Release 18 SI on beam management for temporal beam prediction, the following three options from TR 38.843 are considered as a starting point for UE trajectory model.
· Option 1: Linear trajectory model with random direction change
· Option 2: Linear trajectory model with random and smooth direction change
· Option 3: Random direction straight-line trajectories (as shown below in Figure 2.1-1)


Figure 2.1-1: UE trajectory model (Option 3) in TR 38.843
From Release 18 SI on temporal domain prediction for beam management [2], concerning the balance between fully deterministic and high random UE trajectory, most companies adopted Option 3 and 7-site scenario for performance evaluation. In inter-cell mobility studies, evaluating all these trajectory options for data generation captures different levels of freedom, with the primary concern being whether the resulting dataset is overly random or strikingly realistic. This balance is crucial for ensuring that the data adequately reflects potential real-world scenarios without introducing excessive unpredictability that could undermine the usefulness of the simulation outcomes. In addition, choosing proper UE trajectory model always need to be aligned with the deployment scenario. Street scenario is usually incorporated with more regularized movement model, which results in rather less randomness in data set generation. The main debate point is that the street scenarios with regularized trajectory model might be overly deterministic, whereas the 7-site model with above 3 options could introduce excessive variability. 
Observation 5: Balancing the structured UE trajectory model of street scenarios and the randomness of 7-site scenarios is needed to ensure the generation of a dataset that is both realistic and predictably random.
Observation 6: Integrating the 7-site scenario with a more structured street graph model could provide a middle ground, mitigating the excessive randomness found between the 7-site and street scenarios (Example deployment layout is shown in Figure 2.1-2).
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Figure 2.1-2: 7-site deployment layout with street graph mobility model
Proposal 4: Companies can select their own UE trajectory models as listed above. Clear documentation, e.g., parameters such as turn angle, speed update distance, speed mean, variance etc., should be presented.
2.1.4	Wrap-around and bounce back model 
The approach described in TR 38.843 for Rel. 18 beam management, wherein a UE trajectory terminates at the cell boundary, solely considers intra-cell movement. This method does not account for the complexities of real-world mobility patterns, especially when it comes to AI/ML-driven simulations aimed at understanding inter-cell dynamics. Realistic modeling requires accounting for UEs' transitions between cells, reflecting more accurately on how individuals move in physical spaces, thus necessitating a review and potential revision of this simplistic boundary condition to enhance the predictive accuracy and relevance of the simulations.
Observation 7: The UE trajectory models in TR 38.843 for Rel. 18 SI on beam management is overly simplistic for AI/ML-enhanced inter-cell mobility and does not mirror real-world mobility patterns, making it too straightforward for AI/ML models to process.
In SLS, wrap-around method is widely applied. The UEs exiting the simulation area on one side re-enter on the opposite side, maintaining continuous flow and density. This models an endless, cyclic environment, avoiding edge effects and simulating a larger area. In addition, the bounce-cycle method makes UEs “bounce” back into the simulation area upon reaching a boundary, changing their trajectory to stay within the simulation limits. Both techniques aim to provide realistic UE movement patterns and distribution without introducing bias from boundary effects; However, by introducing disruptive, unpredictable changes to UE trajectories, these models can make it more difficult to predict measurements or events accurately.
Observation 8: Implementing wrap-around or bounce-back models can cause disruptive, unpredictable changes in the trajectory of UEs, that can make it more challenging to predict measurements or events accurately.
Observation 9: Starting with a simpler model for inter-cell mobility and UE trajectory is beneficial, but there needs to be a balance. The trade-off between an overly simplistic model and the complexities introduced by techniques like wrap-around and bounce-back requires careful consideration.
Proposal 5: During the evaluation, companies should consider the trade-off between an overly simplistic model and the complexities introduced by techniques like wrap-around and bounce-back.
2.1.5	Intra- vs inter- frequency scenarios
Intra-frequency measurement and mobility can be a good starting point for evaluation due to the lower complexity in the system modeling. However, inter-frequency measurement procedure and mobility scenario may bring more challenges where AI/ML may help to improve the system quality. When the measurement gaps are needed for measurements of inter-frequency mobility, they further introduce scheduling restrictions for DL and UL data transmission because UE needs to tune the RF module to measure the different frequency bands. AI/ML in this case may help UE to reduce the required measurement gaps or proactively handle the measurement gaps to either prioritize the measurement activities or data transmission. 
Observation 10: Intra-frequency scenario can be a good starting point for evaluation due to lower complexity in system modelling. 
Observation 11: Inter-frequency measurement and mobility should also be considered because AI/ML solutions might be more beneficial for this more complex scenario, e.g., when measurement gap is required for the corresponding measurement.
Proposal 6: RAN2 to consider AI mobility for both intra- and inter-frequency scenarios if required. Companies should bring clear motivations for inter-frequency scenario. 
Evaluating inter-frequency scenarios in the simulations and comparing the results requires consensus among companies on various parameters for the corresponding simulation scenario, such as configuring different frequency layers, HetNet layouts, measurement gap configurations, and settings for inter-frequency related events, e.g., Event A1, A2, A4 etc.
Observation 12: If the inter-frequency scenario is considered, RAN2 should agree on common parameters. This includes agreement on frequency layers, HetNet layouts, measurement gap configurations, and the intricacies of inter-frequency event settings etc.
Proposal 7: For inter-frequency scenarios, RAN2 to establish a common set of simulation parameters consisting at least of frequency layers, HetNet layouts, measurement gap configurations, intricacies of inter-frequency event settings. 
2.1.6	Grid of beams settings 
As discussed in the objective of Release 19 SID on AI/ML enabled mobility, inter-cell beam-level measurement prediction for L3 mobility is identified as one of the sub use cases. Thus, generating and processing the beam-level L1 measurements related data set is required. The Table 6.3.1-1: Baseline System Level Simulation assumptions for AI/ML in beam management evaluations in TR38.843, which may be taken as a baseline for the simulation scenario configuration, proposes the number of gNB downlink Tx beams to be are either 32 or 64 while other values, e.g., 256 are not precluded. This beam configuration may present significant overhead in simulation and pre-processing in multi-cell scenarios. In addition, because the objective of this SID is to enhance the L3 mobility procedure instead of spatial/temporal domain beam management, considering a reduced number of beams in gNB side could help decrease the complexity of the data consolidation procedure.
Observation 13: For the use cases being considered in Rel. 19, such as measurement events prediction and HO failure/RLF prediction, prioritizing L3 cell level measurements is more appropriate for AI/ML models than L1 beam level measurements. 
Observation 14: The objective of L3 inter-cell mobility should be to utilize fewer downlink Tx beams at each base station, while increasing the number of cells within the scenario for the UE to measure.
Observation 15: Different beam configurations should be considered, e.g., lower number of downlink Tx beams, to suit the AI/ML model input with relatively lower data processing complexity (One example propagation scenario with fewer Tx beams is shown in Figure 2.1-3).
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Figure 2.1-3: Coverage map of 7-site scenario with fewer downlink Tx beams at each gNB
Proposal 8: As a starting point, RAN2 to consider fewer downlink Tx beams at each base station, while increasing the number of cells within the scenario compared to the scenario used in TR 36.843. Higher values (e.g., 32 or 64 downlink TX beams) are not precluded.

2.2	Simulation parameters
2.2.1	Common baseline parameters settings 
[bookmark: _Hlk162079833]The baseline parameters agreed for Release 18 beam management in Table 6.3.1-1 TR 38.843 can be used as a starting point for the scenario configuration. The detailed parameters are shown in Table 5-1 in Annex. Nevertheless, some common parameters for PHY, MAC, RRM functionalities, and in particular L3 mobility settings are not explicitly discussed. Hereby, in this section, we discuss the key open parameter settings, preferred KPIs, etc.
Observation 16: Even though Table 6.3.1-1 in TR 38.843 already provides quite detailed configurations, due to the large set of open parameters, establishing a common baseline simulation setup would require a lot of effort in 3GPP. 
2.2.2	L3 mobility related parameters settings 
Despite the proposed settings and simulation calibrations, numerous parameters remain unaddressed and require clear documentation. This is crucial for companies aiming to showcase their simulation performance and the enhancements brought about by AI/ML solutions for mobility. For the objective of current SID on mobility, it is essential to address and thoroughly document the L3 mobility-related settings, alongside the corresponding performance outcomes, for clarity and comprehensive understanding. 
Observation 17: Given the extensive range of open parameters within the mobility domain, achieving a unified parameter setting for generating simulation results across companies is challenging.
Proposal 9: We recommend companies to document open L3 mobility related parameters besides TR 38.843.
Proposal 10: Calibration of all parameters for L3 mobility settings is not deemed necessary for RAN2.
Proposal 11: Companies can select their own SLS modelling approaches. Documentation containing at least a detailed table of the parameters is expected.

2.2.3	Random seeds settings 
A random seed is a number (or vector) used to initialize a pseudorandom number generator. To avoid overfitting of simulated data, different random seeds need to be used for training, testing, and independent simulation drops/runs, where appropriate. Hence, different random seeds may be required so that UE initial positions, moving trajectory, and channel state are not unrealistically stationary leading to too identical samples between the training and the test datasets.  
Observation 18: Different random seeds in simulation control different features, such as UE locations, spatial channel models, LOS/NLOS, mobility patterns, etc. Random seed management should be done in a way that the different features and their variance over time in training and test datasets is modelled realistically. 
Proposal 12: RAN2 to document the random seed management for different features between training and test datasets (drops) together with a table of parameters.
2.2.4	Evaluation Metrics
As agreed in RAN#102 [1], the objective of SID include evaluating the benefits of applying AI/ML for mobility KPIs, Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction, etc. Under the context of SLS evaluation, as shown in Figure 2.2-1, the training and inference phases may prioritize different KPIs, reflecting the distinct objectives and requirements of each phase. 
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Figure 2.2-1: SLS workflow for AI/ML enabled mobility
In different phases of the evaluation, different metrics are evaluated: 
· During the training phase, the choice of machine learning metrics depends on whether the model is intended for classification or regression tasks, leading to the use of different evaluation metrics tailored to each approach.
· During the inference phase, the mobility metrics optimized with AI/ML depends on the objectives specified for each identified use case. For instance, predicting HO failure/RLF may focus on improving handover success rate or mitigating the impact of failures.
In the end, improvements and trade-offs in the mobility metrics should be evaluated. These gains depend on the ML metrics and on the decision logic and the actions made based on the ML predictions. The required ML accuracy and robustness depend on how the ML predictions are used.
Observation 19: To evaluate the specific objectives and requirements of each scenario, the improvement in mobility metrics should be evaluated. In addition, it may be helpful to provide intermediate ML accuracy metrics.
Observation 20: The required ML accuracy and robustness depend on how the ML predictions are used.
Proposal 13: The selection of optimized mobility metrics should be specified for each use cases, for training and inferences. In addition, it may be helpful to provide intermediate ML accuracy metrics.
While the selection of KPIs should be tailored to each use case and the applied ML approach, we still recommend considering a set of common KPIs for evaluating ML models (for training) and mobility performance (for inference). Therefore, we propose the following:
Proposal 14: RAN2 should consider at least a selection of the following common mobility related KPIs as discussed in TR 36.839 as a starting point for the metrics evaluated in each use case:
· HO performance: total number of HOs, Ping-Pong HOs, etc.
· Failure performance: total number of HO failure, RLF, percentage of failure (RLF+HOF)/(HO+ RLF+HOF) in %, etc.
· HO timing performance: HO interruption time, Time of staying outage (ToO), time of staying (in a cell, in a beam, in a UE panel), etc.
· Measurement performance: measurement reduction, measurement accuracy (absolute and relative), etc.
· QoS related KPIs such as downlink/uplink throughput, latency 
Proposal 15: RAN2 should consider the at least following common AI/ML related KPIs for evaluation:
· Regression: Prediction accuracy, prediction error, mean square error (MSE), root mean square error (RMSE), etc.
· Classification: Prediction accuracy, confusion matrix, F1 score, precision and recall, etc.
3	Conclusion
In summary, this contribution discusses the aspects that are relevant to the evaluation objective identified in the Rel 19 SI on AIML Mobility.
This document has made the following observations:
Observation 1: For the use-cases being considered in the Rel. 19 SI on AIML Mobility, the 7-site scenario can be taken as a starting point. However, this scenario does not incorporate the realistic aspects in network environment, and the required data processing load might be high. 
Observation 2: Manhattan grid and Madrid grid scenarios can also be considered to mitigate limitations of 7-site scenario.
Observation 3: Overlooking NLOS and blockage factors results in simulations that fail to capture the real-world complexities of networks, potentially undermining the reliability of evaluation results under actual network conditions.
Observation 4: UMi channel model is more suitable for street canyon effect as discussed in TR 38.901.
Observation 5: Balancing the structured UE trajectory model of street scenarios and the randomness of 7-site scenarios is needed to ensure the generation of a dataset that is both realistic and predictably random.
Observation 6: Integrating the 7-site scenario with a more structured street graph model could provide a middle ground, mitigating the excessive randomness found between the 7-site and street scenarios (Example deployment layout is shown in Figure 2.1-2).
Observation 7: The UE trajectory models in TR 38.843 for Rel. 18 SI on beam management is overly simplistic for AI/ML-enhanced inter-cell mobility and does not mirror real-world mobility patterns, making it too straightforward for AI/ML models to process.
Observation 8: Implementing wrap-around or bounce-back models can cause disruptive, unpredictable changes in the trajectory of UEs, that can make it more challenging to predict measurements or events accurately.
Observation 9: Starting with a simpler model for inter-cell mobility and UE trajectory is beneficial, but there needs to be a balance. The trade-off between an overly simplistic model and the complexities introduced by techniques like wrap-around and bounce-back requires careful consideration.
Observation 10: Intra-frequency scenario can be a good starting point for evaluation due to lower complexity in system modelling. 
Observation 11: Inter-frequency measurement and mobility should also be considered because AI/ML solutions might be more beneficial for this more complex scenario, e.g., when measurement gap is required for the corresponding measurement.
Observation 12: If the inter-frequency scenario is considered, RAN2 should agree on common parameters. This includes agreement on frequency layers, HetNet layouts, measurement gap configurations, and the intricacies of inter-frequency event settings etc.
Observation 13: For the use cases being considered in Rel. 19, such as measurement events prediction and HO failure/RLF prediction, prioritizing L3 cell level measurements is more appropriate for AI/ML models than L1 beam level measurements. 
Observation 14: The objective of L3 inter-cell mobility should be to utilize fewer downlink Tx beams at each base station, while increasing the number of cells within the scenario for the UE to measure.
Observation 15: Different beam configurations should be considered, e.g., lower number of downlink Tx beams, to suit the AI/ML model input with relatively lower data processing complexity (One example propagation scenario with fewer Tx beams is shown in Figure 2.1-3).
Observation 16: Even though Table 6.3.1-1 in TR 38.843 already provides quite detailed configurations, due to the large set of open parameters, establishing a common baseline simulation setup would require a lot of effort in 3GPP. 
Observation 17: Given the extensive range of open parameters within the mobility domain, achieving a unified parameter setting for generating simulation results across companies is challenging.
Observation 18: Different random seeds in simulation control different features, such as UE locations, spatial channel models, LOS/NLOS, mobility patterns, etc. Random seed management should be done in a way that the different features and their variance over time in training and test datasets is modelled realistically. 
Observation 19: To evaluate the specific objectives and requirements of each scenario, the improvement in mobility metrics should be evaluated. In addition, it may be helpful to provide intermediate ML accuracy metrics.
Observation 20: The required ML accuracy and robustness depend on how the ML predictions are used.

And proposed the following:
Proposal 1: The 7-site scenario used in TR 38.843 is taken as a starting point. Other scenarios, such as Manhattan grid or Madrid grid are not precluded. Map-based propagation models are also not precluded.  
Proposal 2: For UMa LOS propagation, channel model selection should align with the deployment scenario and frequency range. More realistic channel models, including NLOS and blockage factors should be considered. 
Proposal 3: UMi channel model together with Manhattan Street scenario can be considered as a starting point to model street canyon and FR2. Other street scenarios are not precluded.
Proposal 4: Companies can select their own UE trajectory models as listed above. Clear documentation, e.g., parameters such as turn angle, speed update distance, speed mean, variance etc., should be presented.
Proposal 5: During the evaluation, companies should consider the trade-off between an overly simplistic model and the complexities introduced by techniques like wrap-around and bounce-back.
Proposal 6: RAN2 to consider AI mobility for both intra- and inter-frequency scenarios if required. Companies should bring clear motivations for inter-frequency scenario. 
Proposal 7: For inter-frequency scenarios, RAN2 to establish a common set of simulation parameters consisting at least of frequency layers, HetNet layouts, measurement gap configurations, intricacies of inter-frequency event settings. 
Proposal 8: As a starting point, RAN2 to consider fewer downlink Tx beams at each base station, while increasing the number of cells within the scenario compared to the scenario used in TR 36.843. Higher values (e.g., 32 or 64 downlink TX beams) are not precluded.
Proposal 9: We recommend companies to document open L3 mobility related parameters besides TR 38.843.
Proposal 10: Calibration of all parameters for L3 mobility settings is not deemed necessary for RAN2.
Proposal 11: Companies can select their own SLS modelling approaches. Documentation containing at least a detailed table of the parameters is expected.
Proposal 12: RAN2 to document the random seed management for different features between training and test datasets (drops) together with a table of parameters.
Proposal 13: The selection of optimized mobility metrics should be specified for each use cases, for training and inferences. In addition, it may be helpful to provide intermediate ML accuracy metrics.
Proposal 14: RAN2 should consider at least a selection of the following common mobility related KPIs as discussed in TR 36.839 as a starting point for the metrics evaluated in each use case:
· HO performance: total number of HOs, Ping-Pong HOs, etc.
· Failure performance: total number of HO failure, RLF, percentage of failure (RLF+HOF)/(HO+ RLF+HOF) in %, etc.
· HO timing performance: HO interruption time, Time of staying outage (ToO), time of staying (in a cell, in a beam, in a UE panel), etc.
· Measurement performance: measurement reduction, measurement accuracy (absolute and relative), etc.
· QoS related KPIs such as downlink/uplink throughput, latency 
Proposal 15: RAN2 should consider the at least following common AI/ML related KPIs for evaluation:
· Regression: Prediction accuracy, prediction error, mean square error (MSE), root mean square error (RMSE), etc.
· Classification: Prediction accuracy, confusion matrix, F1 score, precision and recall, etc.
4	References
[1] RP-234055, Study on Artificial Intelligence (AI)/Machine Learning (ML) for mobility in NR 
[2] TR 38.843, Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface (Release 18)
[3] TR 38.901, Study on channel model for frequencies from 0.5 to 100 GHz
[4] TR 36.839, Mobility enhancements in heterogeneous networks
5	Annex
5.1	Detailed simulation assumptions for AI/ML mobility
By following the principles and assumptions in the above-mentioned discussions, the following detailed simulation assumptions and parameters are provided based on TR 38.843, TR 36.839, and TR 38.901.
Table 5-1: Detailed simulation assumptions for AI/ML mobility
	General assumptions

	Parameters
	Description

	Frequency Range
	FR1 @ 4GHZ; FR2 @ 30 GHz;
The configuration below may or may not be different for FR1 and FR2

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel model
	UMa with LoS channel
NLOS and transmission blockage are optional

	System BW
	80MHz

	UE Speed
	30km/h (baseline), 60km/h (optional) 90km/h (optional), 120km/h (optional)
Other values are not precluded

	UE distribution
	100% outdoor

	BS Antenna Configuration
	Antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
Other assumptions are not precluded.

Number of BS beams: 32 or 64 downlink Tx beams (max number of available beams) at NW side. Other values, e.g., 256 not precluded.

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	Antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)
Other assumptions are not precluded

Number of UE beams: 4 or 8 downlink Rx beams (max number of available beams) per UE panel at UE side. Other values, e.g., 16 not precluded.

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	BS Tx Power
	40 dBm (baseline)
Other values (e.g., 34 dBm) not precluded

	Inter-site distance
	200 m

	BS Antenna height
	25 m

	UE Antenna height
	1.5 m

	Scenario
	Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
Other scenarios are not precluded. 

Intra-frequency is of high priority while inter-frequency is considered together with HetNet scenario.

	UE trajectory model
	Options 1-3 in TR 38.843 section 6.3.1
Other options are not precluded

	UE rotation
	Not considered at the starting point
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