

Page 1

3GPP TSG-RAN WG2 Meeting #123-bis	R2-2309486
Xiamen, China, 9~13 October, 2023	

Agenda item:	7.5.3
Source:	Qualcomm Incorporated
Title:	DRX enhancements for XR
[bookmark: _Hlk506366071]WID/SID:	NR_XR_enh-Core
Document for:	Discussion and Decision
Introduction
In this paper, we discuss the remaining issues in enhancements for the DRX mismatch problem.
Discussion
DRX mismatch
In the last RAN2 meeting (#122), company agreed to introduce new DRX cycles in rational numbers, as the way to address the DRX cycle mismatch problem for XR traffic. It is left to be discussed whether the new DRX cycles in rational numbers are applicable to both short and long DRX cycles or only one of them, how DRX formula should be updated and how DRX cycles in rational numbers should be specified in ASN.1.
We think short DRX cycle can be configured in rational numbers too. One of the justifying use cases is to support “pause” in traffic, e.g. end application temporarily stops traffic flow based on user input. If only long DRX cycle is configured, its periodicity has to match with the periodicity of traffic, which typically is very short (e.g. 16.6 msec) when compared with durations over which user may pause (e.g. >1 sec). Then UE has to wake up frequently during the “pause” period and not be able to save much power. On the other hand, if UE is configured both short DRX cycle and long DRX cycle, then the periodicity of short DRX cycle can be set to the traffic periodicity, and periodicity of long DRX cycle can be set to the maximum delay that UE is allowed to have when user terminates “pause”. This configuration would maximize UE power savings in all scenarios.
Proposal 1. 	New DRX cycles in rational numbers are supported for both short and long DRX cycles.
In legacy, if short DRX cycle is configured, the length of long DRX cycle shall be an integer multiple of the short DRX cycle. We think this requirement should be applicable to the new DRX cycles as well, for the same reasons behind the requirement in legacy.
Proposal 2. 	If short DRX cycle in rational number is configured, the length of the long DRX cycle shall be an integer multiple of the short DRX cycle, as in legacy.	
UE which supports mixed-FR CA can be configured with dual DRX groups. However, different FRs must share a common DRX cycle. The reason behind this restriction is to ensure carriers in both FR groups start their on duration timers at the same time, thus avoiding extra active time (i.e. power consumption) caused by un-coordinated wakeup times.
We think this principle should be kept, if periodicity of DRX cycle is a non-integer. Otherwise (i.e. one DRX group has an integer cycle and the other has a non-integer cycle), start time of on durations of different DRX groups would always be out of sync and cause UE to consume more power. Therefore, if DRX groups are configured, they must share a common DRX cycle, when aligns with the periodicity of XR traffic.
Proposal 3. 	If DRX groups are configured, they must share a common DRX cycle that aligns with the periodicity of XR traffic.
As to how to capture the changes to the DRX formula, we think it is desirable to reuse the legacy DRX formula as much as possible, because it has been in use for a long time and would be easier for developers to identify and understand how the new enhancements differs from the legacy one.
One approach to accomplish that is to add only a floor operation to the legacy DRX formula. To ensure the modulo operation in the formula does not produce rounding error, a note instead of normative text is added to specify this requirement. We think a note is better because there are different ways to implement modulo operation on rational numbers without rounding errors. Hence 3GPP should not mandate one particular implementation method over another. For example,
· One may use the formula that A modulo B = A – B x floor(A/B). For example, 17 mod (50/3) = 17 – (50/3) x floor (17/(50/3)) = 17 – (50/3) x 1 = 1/3.
· Or one may use the method of least common multiples (LCM), i.e. compute the LCM of the denominators, which then transforms the modulo operation to integers that can be calculated exactly. Mathematically, for integers A, B and C, A modulo (B/C) = (A x C/C) modulo (B/C) = [(AxC) modulo B] / C. So the original modulo operation becomes the ratio of two integers. For example, 17 mod (50/3) = (51/3) mod (50/3) = (51 mod 50) /3 = 1/3.
It is also worth noting that several modern programming languages support modulo operation on rational numbers without rounding errors. For example, the BigDecimal class in Java can provide arbitrary precision for decimal data types. It allows storing rational numbers with near infinite precision to avoid rounding errors. Or one may also use fraction data type, which represents rational numbers as fractions instead of decimals. That also can help avoid rounding errors in modulo operation.
Observation 1. There are different mathematical ways to implement modulo operations on rational numbers without rounding errors. And modern programming languages also can support such operations without rounding errors.
Based on the reasons above, an example TP can be the following:
	1>	if the drx-NonIntegerShortCycle is used for a DRX group, and floor ([(SFN × 10) + subframe number] modulo (drx-NonIntegerShortCycle)) = floor ((drx-StartOffset) modulo (drx-NonIntegerShortCycle)):
2>	start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.
1>	if the drx-NonIntegerLongCycle is used for a DRX group, and floor ([(SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = drx-StartOffset:
NOTE x: If drx-NonIntegerShortCycle or drx-NonIntegerLongCycle is used, the modulo operation should be implemented by a method that does not produce rounding errors. The exact method can be up to UE implementation.

Proposal 4. 	In TS 38.321, capture the following changes for the case where the DRX cycle is in rational numbers:
· add floor operation to the legacy DRX formula;
· in a note, capture the requirement that the modulo operation should be implemented by a method that does not produce rounding errors. The exact method is up to UE implementation.
In legacy, long DRX cycle and start offset are specified in pairs of integers. However, since new DRX cycles are in rational numbers, it is not possible to directly specify a new DRX cycle in ASN.1. One possible approach is to specify the same corresponding frame rate in the IE and define how to derive the corresponding DRX cycle in rational number in the field description. An example TP is the following:
	 drx-NonIntegerLongCycleStartOffset CHOICE {
 24 INTEGER(0..40),
 30 INTEGER(0..32),
 45 INTEGER(0..21),
 48 INTEGER(0..19),
 60 INTEGER(0..15),
80 INTEGER(0..11),
90 INTEGER(0..10),
120 INTEGER(0..7),
 …

	DRX-Config field descriptions

	drx-HARQ-RTT-TimerDL
Value in number of symbols of the BWP where the transport block was received. drx-HARQ-RTT-TimerDL-r17 is only applicable for SCS 480 kHz and 960 kHz. If configured, the UE shall ignore drx-HARQ-RTT-TimerDL (without suffix) for SCS 480 kHz and 960 kHz.

	drx-HARQ-RTT-TimerUL
Value in number of symbols of the BWP where the transport block was transmitted. drx-HARQ-RTT-TimerUL-r17 is only applicable for SCS 480 kHz and 960 kHz. If configured, the UE shall ignore drx-HARQ-RTT-TimerUL (without suffix) for SCS 480 kHz and 960 kHz.

	drx-InactivityTimer
Value in multiple integers of 1 ms. ms0 corresponds to 0, ms1 corresponds to 1 ms, ms2 corresponds to 2 ms, and so on.

	drx-NonIntegerLongCycleStartOffset
Frame rate in fps corresponding to a non-integer long DRX cycle and drx-StartOffset in multiples of 1 ms. The actual value of long DRX cycle is the canonical representation of the reciprocal of the frame rate in unit of ms. For example, for the frame rate of 60 fps, the long DRX cycle is 50/3 ms. If drx-NonIntegerShortCycle is configured, the value of drx-NonIntegerLongCycle shall be a multiple of the drx-NonIntegerShortCycle value. If drx-NonIntegerLongCycleStartOffset is configured, the UE shall ignore drx-LongCycleStartOffset (without suffix).

	drx-LongCycleStartOffset
drx-LongCycle in ms and drx-StartOffset in multiples of 1 ms. If drx-ShortCycle is configured, the value of drx-LongCycle shall be a multiple of the drx-ShortCycle value. If drx-LongCycleStartOffset-r18 is configured, the UE shall ignore drx-LongCycleStartOffset (without suffix).

	… (omitted fields)

Note that for each frame rate, the range of the corresponding start offset is between 0 and floor(1000 / frame rate) – 1.
Proposal 5. 	In TS 38.331, specify a long DRX cycle in rational number as follows:
· Represent it by the corresponding frame rate in pair with its associated start offset, which has the range of 0~ [floor(1000 / frame rate) – 1];
· In its field description, specify the actual value of a long DRX cycle as the canonical representation of the reciprocal of its correspond frame rate, in unit of msec.
For consistency, short DRX cycle can be captured in ASN.1 in the same way as how long DRX cycle is captured.
Proposal 6.	Short DRX cycle in rational numbers can be captured in ASN.1 in the same way as specified in Proposal 4 for long DRX cycles.
As to the value range of new DRX cycles in Rel-18, we think RAN2 should consult SA4 to obtain the set of frame rates that need to be supported.
Proposal 7. 	Ask SA4 to provide a set of frame rates that need to be supported in Rel-18.
Conclusion
Based on the above analysis, we’d recommend RAN2 to discuss and agree to the following proposals:
Proposal 1. 	New DRX cycles in rational numbers are supported for both short and long DRX cycles.
Proposal 2. 	If short DRX cycle in rational number is configured, the length of the long DRX cycle shall be an integer multiple of the short DRX cycle, as in legacy.	
Proposal 3. 	If DRX groups are configured, they must share a common DRX cycle that aligns with the periodicity of XR traffic.
Observation 1. There are different mathematical ways to implement modulo operations on rational numbers without rounding errors. And modern programming languages also can support such operations without rounding errors.
Proposal 4. 	In TS 38.321, capture the following changes for the case where the DRX cycle is in rational numbers:
· add floor operation to the legacy DRX formula;
· in a note, capture the requirement that the modulo operation should be implemented by a method that does not produce rounding errors. The exact method is up to UE implementation.
Proposal 5. 	In TS 38.331, specify a long DRX cycle in rational number as follows:
· Represent it by the corresponding frame rate in pair with its associated start offset, which has the range of 0~ [floor(1000 / frame rate) – 1];
· In its field description, specify the actual value of a long DRX cycle as the canonical representation of the reciprocal of its correspond frame rate, in unit of msec.
Proposal 6.	Short DRX cycle in rational numbers can be captured in ASN.1 in the same way as specified in Proposal 4 for long DRX cycles.
Proposal 7. 	Ask SA4 to provide a set of frame rates that need to be supported in Rel-18.
2
