
3GPP TSG-RAN WG2 Meeting #121bis-e		R2-2302811
eMeeting, 17th Apr. – 26th Apr. 2023
Source:	vivo
Title:	Discussion on DRX enhancements for XR Power Saving
Agenda Item:	7.5.3
Document for:	Discussion and Decision
1. Introduction
In the last meeting, the following agreements were made:
	Companies should evaluate the RAN2 specification impacts and any other RAN2 aspects of their proposals for XR DRX.
Companies should evaluate the (high-level) impacts to RAN1/4 specification from their proposals for XR DRX.
Companies should try to coordinate with each other offline and bring joint proposals to next meeting. RAN2 aims to exclude proposals with least support in the next meeting.
Companies should evaluate the RAN2 specification impacts and any other RAN2 aspects of their proposals for SFN wrap-around.
Same as for DRX solutions, companies should try to coordinate with each other offline and bring joint proposals to next meeting. RAN2 aims to exclude proposals with least support in the next meeting.

In this contribution, we evaluate the RAN2 specification impacts for the solution of introducing non-integer values for DRX cycle and the solution of introducing H-SFN for DRX formulas.
2. Discussion
2.1. Align DRX Configuration with Non-integer Periodicity of XR Service
Currently, the values for DRX cycle are integers. For example:
1. Values for long DRX cycle: 10, 20, 32, 40ms, etc.
1. Values for short DRX cycle values: 2, 3, 5, 6, 7, 8, 10, 14, 16, 20, 30, 32, 35ms, etc.
However, it was observed that the FPS(Frames Per Second) of most XR traffic for a single UE can be 15, 30, 45, 60, 72, 90, and 120, i.e. the corresponding periodicities would be 66.66ms, 33.33ms, 22.22, 16.66, 13.88, 11.11 and 8.33ms respectively[2]. It means the current integer DRX cycle values don’t match with the non-integer XR traffic periodicities.

To align DRX cycle with non-integer traffic periodicity, a straightforward way is to extend the standard values of DRX cycle to include non-integer values[3][4][5][6]. Let’s take the current DRX formula for long DRX cycle as an example to explain this solution:
[bookmark: OLE_LINK8][(SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset (Eq1)
To adapt to the arrival time of XR traffic(e.g. FPS = 60/90/99/…), DRX cycle can be configured to a rational number, such as 1000/FPS ms. However, the modulo operation for rational numbers may lead to rounding errors. Hence, a floor operation needs to be introduced to the above DRX formula to calculate the start time of drx-onDurationTimer when rational number DRX cycles are configured. With this enhancement, the start point of drx-onDurationTimer can be aligned with the boundary of the subframe.
From a mathematical point of view, M modulo N and floor(M-floor(M/N)*N) are equivalent. Therefore, Eq1 can be expressed equivalently by the following formula :
floor{M – floor(M/drx-LongCycle) * drx-LongCycle}= drx-StartOffset (Eq2)
where M = (SFN × 10) + subframe number.
We can see that the solution reuses the existing DRX model, which leads to a relatively small specification impact.
Observation 1: To handle the mismatch between XR traffic and DRX cycle, introducing non-integer values for DRX cycle only requires enhancement of the existing formula by replacing the modulo operation with the equivalent floor operation.

One main concern of introducing non-integer DRX cycle(s) is the lack of flexibility and forward compatibility. Let's assume that an XR service with a new frame rate(e.g. FPS = 99) appears after Rel-18 is frozen. If DRX cycle = 1000/99ms is not introduced in Rel-18, then the Rel-18 UE cannot work in a power-efficient manner for this XR service. Several enhancement approaches have been proposed to handle this issue. Below we explain how these approaches work.
· Approach 1: FPS(or cadence) of XR traffic is configured instead of DRX cycle
In [3] [5], the FPS(or cadence) of XR traffic, instead of non-integer DRX cycle, is configured to UE to calculate the start time of DRX on duration. For instance, a new RRC parameter named drx_fps is configured and applied as follows:
floor{M – floor[(M/(1000/drx_fps)] × (1000/drx_fps)}= drx-StartOffset (Eq3)
where M = (SFN × 10) + subframe number.
In this way, the range of XR traffic FPS from 1 to 256 can be supported with 8-bits drx_fps IE.

· Approach 2: DRX cycle is configured in a form of Dividend and Divisor
In [4], new rational number DRX cycles (for example, named drx-eLongCycle) are defined by introducing two new parameters: Dividend and Divisor, for example:
drx-eLongCycle = drx-eLongCycleDividend / drx-eLongCycleDivisor
And the DRX formula is expressed as follows (with long DRX cycles as an example):
floor {M – [floor (M / drx-eLongCycle)] × drx-eLongCycle } = drx-StartOffset (Eq4)
 	where M = [(SFN × 10) + subframe number]
The range of Dividend and Divisor parameters could be configured as (1..10240) to support a wide range of rational number DRX cycles. Alternatively, the range could be set to (1..1000) to support the most known frame rates for XR traffic.
With these approaches, the FPSs of existing and potential XR traffic can be supported. Hence, the backward compatibility for the non-integer DRX cycle solution can be ensured with small specification enhancement.
Observation 2: To ensure backward compatibility, the DRX cycle can be configured with parameters of FPS/cadence (i.e. DRX cycle = 1000/ FPS) or Dividend and Divisor (i.e. DRX cycle = Dividend / Divisor) for non-integer DRX cycle solution.

Another concern of non-integer DRX cycle solution is the floor operation over a non-integer may introduce rounding errors in a real computer’s implementation. We notice that floor operation is already used in the current specifications, e.g.TS38.331 and TS38.304, and no rounding error issues have been identified. Hence, we think it is safe to use floor operation in DRX cycle formula.
Observation 3: It is safe to use floor operation in DRX cycle formula since floor operation is already used in the current specifications without rounding error issues identified.

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]As mentioned above, the non-integer DRX cycle solution reuses the existing DRX model. Hence, it can easily apply the existing DRX mechanisms, e.g. configure a short DRX cycle. For example, with drx_fps = 30 as long DRX cycle, one UE can be further configured with drx_fps = 60/90 as a short DRX cycle.
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]Observation 4: With non-integer DRX cycle solution, it is easy for UE to apply the existing DRX mechanisms, e.g. configure a short DRX cycle.

During the analysis, we found no apparent shortcomings of the non-integer DRX cycle solution. Taking the above into account, we summarize the potential specification impacts and pros of non-integer DRX cycle as following:
Potential specification impacts
· enhancement of the existing formula by replacing the modulo operation with the equivalent floor operation.
· introduce new parameters(e.g. drx_fps, cadence or Dividend and Divisor) to configure DRX cycle.
Pros
· reuse the existing DRX model leads to small impact on specification.
· good backward compatibility since flexibly supports a wide range of non-integer DRX cycles.
· easy to apply the existing DRX mechanisms, i.e. configure short and long DRX cycles simultaneously.

From the above analysis, introducing non-integer DRX cycle is a simple, straightforward and future-proof solution to address the issue of mismatch between XR traffic and DRX cycle. And we can discuss which parameters(i.e. drx_fps, cadence or Dividend and Divisor) should be configurated for the non-integer DRX cycle solution later if the solution is adopted.
Proposal 1: Non-integer DRX cycle solution is used to handle the mismatch between XR traffic and DRX cycle. And the details for the solution are FFS.
2.2. SFN wrap-around
According to the current specification, the DRX on-duration timer starts when SFN and subframe number satisfy (Eq1).
In (Eq1), SFN takes the value of 0~1023, i.e., wraps around every 10240ms. Therefore, when the DRX cycle is set to a value when 10240ms is not integer times of DRX cycle (e.g., 50ms), there will be a problem that the start point of the first DRX on-duration after SFN wrap-around is shifted with a wrong offset and then propagates this offset to the following cycles. The unexpected offset causes a mismatch between DRX on-duration and XR traffic arrival time and leads to extra latency.
To handle this issue, we propose to modify the formula by introducing hyper frame number, which is the concept from eDRX cycle in idle/inactive mode:
[(SFN + 1024* H-SFN) × 10+ subframe number] mod (drx-LongCycle) = drx-StartOffset (Eq5)
H-SFN takes the value of 0~1023, which means H-SFN wrap-around occurs every 2.91 hours (1024*10240ms). This means that the network only needs to reconfigure the DRX start-offset once every 2.91 hours when the H-SFN wrap-around occurs.
We can see that the solution of introducing H-SFN only needs to make very small modifications to the current DRX formula compared with reusing R16 CG/SPS enhancements for SFN wrap-around issue[7], and no new variables or counters need to be maintained by UE.
Observation 5: Introduce hyper frame number in the current DRX formula to solve the SFN wrap-around issue has the minimal RAN2 specification impact.
Proposal 2: To handle the SFN wrap-around issue, introduce hyper frame number in the formula used to determine the start point of DRX on-duration.
3. Conclusion
In this contribution, we discuss the non-integer DRX cycle solution to address the DRX cycle misalignment issue and the SFN wrap-around issue. Based on the discussion, we have the following observations and proposals:
Observation 1: To handle the mismatch between XR traffic and DRX cycle, introducing non-integer values for DRX cycle only requires enhancement of the existing formula by replacing the modulo operation with the equivalent floor operation.
Observation 2: To ensure backward compatibility, the DRX cycle can be configured with parameters of FPS/cadence (i.e. DRX cycle = 1000/ FPS) or Dividend and Divisor (i.e. DRX cycle = Dividend / Divisor) for non-integer DRX cycle solution.
Observation 3: It is safe to use floor operation in DRX cycle formula since floor operation is already used in the current specifications without rounding error issues identified.
Observation 4: With non-integer DRX cycle solution, it is easy for UE to apply the existing DRX mechanisms, e.g. configure a short DRX cycle.
Observation 5: Introduce hyper frame number in the current DRX formula to solve the SFN wrap-around issue has the minimal RAN2 specification impact.
Proposal 1: Non-integer DRX cycle solution is used to handle the mismatch between XR traffic and DRX cycle. And the details for the solution are FFS.
Proposal 2: To handle the SFN wrap-around issue, introduce hyper frame number in the formula used to determine the start point of DRX on-duration.
4. References
[1] RP-223502 XR Enhancements for NR. Nokia, Qualcomm
[2] TR38.835 Study on XR enhancements for NR
[3] R2-2300188 DRX enhancements for NR. Qualcomm Incorporated
[4] R2-2301372 C-DRX enhancements for XR. MediaTek Inc.
[5] R2-2300324 Discussion on DRX enhancements for XR power Saving. vivo
[6] R2-2300945 Discussion of DRX enhancement. Lenovo
[7] R2-2300118 Discussion on XR power saving. Huawei, HiSilicon
