

Page 1

[bookmark: _Ref452454252]3GPP TSG-RAN WG2 Meeting #121	R2-2300188
Athens, Feb 27 – March 4, 2023

Agenda item:	8.5.3
Source:	Qualcomm Incorporated
Title:	DRX enhancements for XR
[bookmark: _Hlk506366071]WID/SID:	FS_NR_XR_enh
Document for:	Discussion and Decision
Introduction
In this paper, we discuss a few options for supporting non-integer DRX cycles and avoiding SFN wrap around problem. We then suggest possible way-forwards for the enhancements based on our analysis.
Discussion
Non-integer DRX cycles
By now, the mismatch between non-integer periodicity of XR traffic and the legacy integer DRX cycles is a well-known problem. It can cause extra delays and power consumptions for UEs. Given that the issue is well known and RAN1 have already performed extensive evaluations on various options/proposals, we think that RAN2 discussion can focus on how to down select.
For the down selection, we think the following criteria can be considered, in a decreasing order of priority:
· An adopted solution should support all possible frame rates of XR. As XR is still a nascent field and new applications will continue to emerge, new frame rates likely will be introduced. Therefore, an adopted solution should be flexible enough to support future frame rates with only small spec impact.
· An adopted solution should enable the most power saving gain.
· An adopted solution should result in the least variations in the start of DRX on duration.
· An adopted solution should have the least impact on the current MAC and RRC spec.
· Since multiple RAN1 and RAN4 procedures are defined based on DRX cycles, an adopted solution should have least impact on the current RAN1 and RAN4 specs too.
Among various options evaluated by RAN1, there are four options that meet the first criterion and have almost the same performance in power saving gain and range of start times. They are described in the following:
Option A:
In this option, a set of new values of periodicity represented in rational numbers (e.g. 50/3 msec for 60 frames per sec, 100/9 msec for 90 frames per sec, etc) are added for both short and long DRX cycles. Then floor operation is added to the formula for determining the start time of DRX on durations. For example, the updated formula for short DRX cycle is as follows:
1>	if the Short DRX cycle is used for a DRX group, and floor{[(SFN × 10) + subframe number] modulo (drx-ShortCycle)} = floor{(drx-StartOffset) modulo (drx-ShortCycle)}:
2>	start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.
This option has the merit that the impacts on the current MAC and RRC specs are minimized. The legacy formula for start time can be reused almost as is. The only required change is that the modulo operation in the formula needs to operate on rational numbers. Although direct application of modulo operation on rational numbers can result in rounding errors, there are a number of known methods to implement the operation without any rounding errors. For example, A modulo B can be implemented as A – [B × floor (A / B)]. Therefore, our view is that the modulo operation in the current spec can be left as is and leave its actual implementation (e.g. methods to avoid rounding errors) to UE.
Option B:
In this option, cadence instead of periodicity of XR traffic is used to calculate the start time of DRX on durations. More specifically, it uses a new parameter, which takes the same integer values as cadences of XR traffic (e.g. 30, 60, 90 frame per sec, etc). This new parameter, instead of legacy DRX cycles (i.e. drx-ShortCycle and drx-LongCycle), is used to determine the start time of DRX on durations, as follows (with short DRX cycle as an example):
1> if the Short DRX cycle is used for a DRX group and n = [(SFN × 10) + subframe number] and ceiling(n × drx-ShortCadence /1000) +1 = ceiling [(n+1) × drx-ShortCadence/1000]:
2> start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe n + drx-StartOffset.
This option has the merit that it can support XR traffic with any number of frames per second and hence is the most forward compatible and the shortest RRC configuration message. Moreover, this option can always provide the optimal DRX cycle pattern which can minimize the variation in the start time of DRX on durations. For example, at frame rate of 60 fps, the resulting DRX cycle pattern are [16ms, 17ms, 17ms]. The proposed DRX formula can be further improved with slot level granularity to enable more power savings. The downside of this option is that it requires a new, separate formula for calculating start time. UE chooses which formular (new or legacy) to use depend on whether the new parameter drx-ShortCadence is present or not. Hence the impact on the current MAC spec is higher than others.
Option C:
In this option, DRX configuration can have non-uniform DRX start offsets across DRX cycles. More specifically, UE is configured with an integer DRX cycle which is the closest to the periodicity of XR traffic and a pattern of DRX start offsets matching start time of on durations with the start of each XR data burst. The updated formula for short DRX cycle can be as follows:
1>	if the Short DRX cycle is used for a DRX group, and [(SFN × 10) + subframe number] modulo (drx-ShortCycle)} = (drx-StartOffset(i)) modulo (drx-ShortCycle) for any i:
2>	start drx-onDurationTimer for this DRX group after drx-SlotOffset(i) from the beginning of the subframe.
This option also has the least impact on the current MAC spec, and the network can have the flexibility in configuring the start time of each individual DRX cycle. The downside of this option is that it may require a large number of start offsets to support certain XR periodicities. For instances, for the frame rate of 45 or 90 fps, a sequence of 9 DRX start offsets are required for a single DRX configuration.
Option D:
This option shares the similar idea as Option C. More specifically, UE’s DRX configuration has a non-uniform pattern of DRX cycles, instead of a non-uniform pattern of start offset in Option C. For example, for a frame rate of 60 fps, they can provide the same pattern of DRX on durations with the following configurations:
· Option C (non-uniform DRX start offsets): drx-StartOffset = [0ms, 16ms, 17ms], drx-ShortCycle = 16 ms;
· Option D (non-uniform DRX cycles): drx-StartOffset = 0ms, drx-ShortCycle = [16ms, 17ms, 17ms].
This option has considerable impact on the MAC spec as it needs to integrate multiple DRX cycles into the current DRX formula. In addition, it would require extra discussion and feedback from RAN1/4 on which DRX cycle to use in their procedures. Given that it does not have better performance (in term of power saving gains and range of start time) than Option C, we therefore think RAN2 can skip this option.
We summarize the pros and cons of the above four options in Table 1 as follows.
Table 1 Comparison of different options for non-integer DRX cycles
	
	Option A
	Option B
	Option C
	Option D

	
	DRX cycle using rational numbers
	DRX cycle based on cadence
	Non-uniform DRX start offsets
	Non-uniform DRX cycles

	Spec impact
	Low
	Moderate
	Low
	High

	Supported XR periodicities
	Needs to define all the supported XR periodicities
	Can support any integer number frame per seconds
	May need a long sequence of DRX start offsets
	May need a long sequence of DRX cycles

Based on the analysis above, we’d suggest RAN2 to focus the discussion on Option A, B and C.
[bookmark: _Hlk127276841]Proposal 1. 	Down select among the following options for supporting non-integer DRX cycles:
· Option A. Add new values of DRX cycles represented in rational numbers;
· Option B. Use cadence to calculate the start time of DRX on duration when DRX cycles are not integers;
· Option C. Allow DRX configuration to have a pattern of non-uniform DRX start offsets across DRX cycles.
SFN Wrap-Around Problem
In the current spec, DRX on-duration start time is based on SFN and subframe number. Since SFN and subframe number have the range of 0~1023 frames and 0~9 subframes respectively, DRX reference time, defined as [(SFN × 10) + subframe number], is repeated every 10,240ms, which is equal to one hyper frame period. However, this hyper frame period cannot be aligned with XR periodicity if the latter has non-integer values. For example, if frame rate is 60fps, then 60% of a XR cycle may cross the boundary of a hyper frame. This partial frame can cause a mismatch between DRX on-duration and XR traffic in the next hyper frame. Figure 1 illustrates such a mismatch when frame rate is 60fps and DRX start offset is set to 0. As one may see, a DRX on-duration starts right at the boundary of the hyper frame, because SFN returns to 0. However, the actual XR traffic arrives 10ms (i.e. 0.6 frame) later. This mismatch between on duration and XT traffic thus leads to longer latency and/or higher UE power consumption.
[image: Graphical user interface, diagram

Description automatically generated with medium confidence]
[bookmark: _Ref110505204]Figure 1 Irregular DRX start time caused by SFN wrap-around due to non-integer DRX cycle length.
As of now, three types of options have proposed to address the SFN wrap-around problem. Their pros and cons are discussed in the following.
Option A:
In this option, SFN in the current DRX formula is replaced by a new state variable, SFN_M. More specifically, this SFN_M is updated by SFN_M = (SFN_M + 1) mod M whenever SFN changes. M is typically configured with a value of 1,000 for XR applications. If SFN_M is configured, the formula for the start time of DRX on duration uses SFN_M instead of SFN.
Since SFN_M and subframe number have the range of 0~999 frames and 0~9 subframes respectively, the new DRX reference time of [(SFN_M × 10) + subframe number] is repeated every 10,000ms. That ensures boundaries at which SFN_M wraps around would be always aligned with boundaries of XR’s traffic cycles and no partial frame would cross the boundaries of SFN_M.
This option has the least impact by simply changing the system frame number in the current DRX formula. Also, any option listed in Proposal 1 for supporting non-integer DRX cycles can work along with this option.
Option B:
In this option, R16 enhancements to CG/SPS formula is reused to for DRX wrap-around problem. This option has the merit to reuse a CG/SPS formula which was already agreed by companies and also provides the solution to address the mismatch issue of RRC configuration between network and UE (see details in the analysis for Option C). However, this option does have more impact on the current DRX formula including changing modulo value than Option A.
Option C:
In this option, a new parameter, hyper frame counter, is added in the current DRX formula to prevent DRX reference time to be reset in the next hyper frame. More specially, the hyper frame of 10,240 × m is added in DRX reference time (i.e. [(10240 × m) + (SFN × 10) + subframe number]), and m increases by 1 when SFN returns to 0.
This option may look simple but can cause a potential mismatch between network and UE when RRC Reconfiguration message is re-/transmitted across hyper frames. For example, if network sends RRC message at the boundary of hyper frame and UE does not successfully receives the RRC message in the next hyper frame (e.g. due to multiple rounds of retransmission), network and UE may have different understanding when the next on duration starts. In addition, as m increases and DRX reference time becomes larger, the modulo operation with DRX cycle will become more complex. As a comparison, Option A does not have this issue because SFN_M always has the range of 0 to 999.
Based on the analysis above, we’d therefore suggest RAN2 to discuss and down select between Option A and B.
Proposal 2.	Down select between the following two options for fixing the SFN wrap-around problem:
· Option A. Use the system frame number updated with 1000 modulo;
· Option B. Reuse the R16 CG/SPS enhancements for SFN wrap-around problem.

Conclusion
Based on the above analysis, we’d recommend RAN2 to discuss and adopt the following proposals:
Proposal 1. 	Down select among the following options to support non-integer DRX cycles:
· Option A. Add new values of DRX cycles represented in rational numbers;
· Option B. Use cadence instead of DRX cycle to calculate the start time of DRX on duration;
· Option C. Allow DRX configuration to have non-uniform DRX start offsets across DRX cycles.
Proposal 2.	Down select between the following two options to address the SFN wraparound problem:
· Option A. Use the system frame number updated with 1000 modulo;
· Option B. Reuse the R16 CG/SPS enhancements for SFN wrap-around problem.

2
image1.png

