3G TS 25.322 V3.2.0 (2000-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network;

RLC Protocol Specification

(Release 1999)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

6Foreword

1
Scope
7
2
References
7
3
Abbreviations
7
4
General
8
4.2
Overview on sublayer architecture
8
4.2.1
Model of RLC
8
4.2.1.1
Transparent mode entities
10
4.2.1.2
Unacknowledged mode entities
10
4.2.1.3
Acknowledged mode entity
11
5
Functions
13
6
Services provided to upper layers
13
6.1
Mapping of services/functions onto logical channels
14
7
Services expected from MAC
15
8
Elements for layer-to-layer communication
16
8.1
Primitives between RLC and higher layers
16
9
Elements for peer-to-peer communication
17
9.1
Protocol data units
17
9.1.1
Data PDUs
17
9.1.2
Control PDUs
18
9.2
Formats and parameters
18
9.2.1
Formats
18
9.2.1.1
General
18
9.2.1.2
TrD PDU
18
9.2.1.3
UMD PDU
19
9.2.1.4
AMD PDU
19
9.2.1.5
STATUS PDU
19
9.2.1.6
Piggybacked STATUS PDU
20
9.2.1.7
RESET, RESET ACK PDU
20
9.2.2
Parameters
21
9.2.2.1
D/C field
21
9.2.2.2
PDU Type
21
9.2.2.3
Sequence Number (SN)
21
9.2.2.4
Polling bit (P)
21
9.2.2.5
Extension bit (E)
21
9.2.2.6
Reserved (R)
22
9.2.2.7
Header Extension Type (HE)
22
9.2.2.8
Length Indicator (LI)
22
9.2.2.9
Data
23
9.2.2.10
Padding (PAD)
23
9.2.2.11
SUFI
23
9.2.2.11.1
The No More Data super-field
24
9.2.2.11.2
The Acknowledgement super-field
24
9.2.2.11.3
The Window Size super-field
25
9.2.2.11.4
The List super-field
25
9.2.2.11.5
The Bitmap super-field
25
9.2.2.11.6
The Relative List super-field
26
9.2.2.11.7
The Move Receiving Window super-field
27
9.2.2.11.8
The Move Receiving Window and Ignore First LI (MRW_N_IFL) super-field
27
9.2.2.12
Reserved (R)
28
9.3
Protocol states
28
9.3.1
State model for transparent mode entities
28
9.3.1.1
Null State
28
9.3.1.2
Transparent Data Transfer Ready State
28
9.3.2
State model for unacknowledged mode entities
29
9.3.2.1
Null State
29
9.3.2.2
Unacknowledged Data Transfer Ready State
29
9.3.3
State model for acknowledged mode entities
29
9.3.3.1
Null State
30
9.3.3.2
Acknowledged Data Transfer Ready State
30
9.3.3.3
Reset Pending State
30
9.3.3.4
Local Suspend State
30
9.4
State variables
31
9.5
Timers
32
9.6
Protocol Parameters
34
9.7
Specific functions
34
9.7.1
Polling function for acknowledged mode transfer
34
9.7.2
STATUS transmission for acknowledged mode
35
9.7.3
SDU discard function
36
9.7.3.1
Timer based discard, with explicit signalling
36
9.7.3.2
Timer based discard, without explicit signalling
36
9.7.3.3
SDU discard after MaxDAT number of retransmissions
36
9.7.4
The Estimated PDU Counter
36
9.7.5
Multiple payload units in an RLC PDU
37
9.7.6
Local Suspend function for acknowledged mode transfer
37
10
Handling of unknown, unforeseen and erroneous protocol data
37
11
Elementary procedures
38
11.1
Transparent mode data transfer procedure
38
11.1.1
Purpose
38
11.1.2
Initiation
38
11.1.2.1
TrD PDU contents to set
38
11.1.3
Reception of TrD PDU
38
11.1.4
Abnormal cases
38
11.1.4.1
Undefined SDU size at receiver
38
11.2
Unacknowledged mode data transfer procedure
38
11.2.1
Purpose
38
11.2.2
Initiation
39
11.2.2.1
UMD PDU contents to set
39
11.2.3
Reception of UMD PDU
39
11.2.4
Abnormal cases
39
11.2.4.1
Length Indicator value 1111110
39
11.2.4.2
Invalid length indicator value
39
11.2.4.3
SDU discard without explicit signalling
39
11.3
Acknowledged mode data transfer procedure
40
11.3.1
Purpose
40
11.3.2
Initiation
40
11.3.2.1
AMD PDU contents to set
40
11.3.2.1.1
Setting of the Polling bit
41
11.3.2.1.2
Segmentation of a SDU
41
11.3.3
Reception of AMD PDU by the receiver
41
11.3.4
Abnormal cases
41
11.3.4.1
Timer_Poll timeout
41
11.3.4.2
Receiving a PU outside the receiving window
41
11.3.4.3
Timer_Discard timeout
42
11.3.4.3.1
SDU discard with explicit signalling
42
11.3.4.4
VT(DAT) > MaxDAT
42
11.3.4.5
Invalid length indicator value
42
11.4
RLC reset procedure
42
11.4.1
Purpose
42
11.4.2
Initiation
42
11.4.2.1
RESET PDU contents to set
42
11.4.3
Reception of the RESET PDU by the receiver
42
11.4.3.1
RESET ACK PDU contents to set
43
11.4.4
Reception of the RESET ACK PDU by the sender
43
11.4.5
Abnormal cases
43
11.4.5.1
Timer_RST timeout
43
11.4.5.2
VT(RST) (MaxRST
43
11.5
STATUS report transfer procedure
43
11.5.1
Purpose
43
11.5.2
Initiation
43
11.5.2.1
Piggybacked STATUS PDU
44
11.5.2.2
STATUS PDU contents to set
44
11.5.3
Reception of the STATUS PDU by the sender
44
11.5.4
Abnormal cases
44
11.5.4.1
EPC reaches zero and the requested PUs have not been received
44
11.6
SDU discard with explicit signalling procedure
45
11.6.1
Purpose
45
11.6.2
Initiation
45
11.6.2.1
Piggybacked STATUS PDU
45
11.6.2.2
STATUS PDU contents to set
46
11.6.3
Reception of the STATUS PDU by the receiver
46
11.6.4
Reception of STATUS PDU if VR(R) (SN_MRWLENGTH
46
11.6.5
Expiration of timer Timer_MRW
46
11.6.6
Abnormal cases
46
11.6.6.1
Obsolete/corrupted MRW command
46
11.6.6.2
VT(MRW) equals MaxMRW
46
Annex A (informative): SDL diagrams
47
Annex B (informative): Pseudo code describing AMD PDU header Compression
121
Annex C (informative): Change history
122

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document specifies the RLC protocol.

Release ’99 features:

-
Transparent mode.

-
Unacknowledged mode.

-
Acknowledged mode.

Features for future Releases:

-
Hybrid ARQ.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
3G TS 25.401: "UTRAN Overall Description".

[2]
3G TR 25.990: "Vocabulary for the UTRAN".
[3]
3G TS 25.301: "Radio Interface Protocol Architecture".

[4]
3G TS 25.302: "Services Provided by the Physical Layer".

[5]
3G TS 25.303: "Interlayer Procedures in Connected Mode".

[6]
3G TS 25.304: "UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode".

[7]
3G TS 25.321: "MAC Protocol Specification".

[8]
3G TS 25.331: "RRC Protocol Specification".

3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

ARQ
Automatic Repeat Request

BCCH
Broadcast Control Channel

BCH
Broadcast Channel

C-
Control-

CC
Call Control

CCCH
Common Control Channel

CCH
Control Channel

CCTrCH
Coded Composite Transport Channel

CN
Core Network

CRC
Cyclic Redundancy Check

DC
Dedicated Control (SAP)

DCCH
Dedicated Control Channel

DCH
Dedicated Channel

DL
Downlink

DSCH
Downlink Shared Channel

DTCH
Dedicated Traffic Channel

FACH
Forward Link Access Channel

FCS
Frame Check Sequence

FDD
Frequency Division Duplex

GC
General Control (SAP)

HO
Handover

ITU
International Telecommunication Union

kbps
kilo-bits per second

L1
Layer 1 (physical layer)

L2
Layer 2 (data link layer)

L3
Layer 3 (network layer)

MAC
Medium Access Control

MS
Mobile Station

MM
Mobility Management

Nt
Notification (SAP)

PCCH
Paging Control Channel

PCH
Paging Channel

PDU
Protocol Data Unit

PU
Payload Unit.

PHY
Physical layer

PhyCH
Physical Channels

RACH
Random Access Channel

RLC
Radio Link Control

RNTI
Radio Network Temporary Identity

RRC
Radio Resource Control

SAP
Service Access Point

SDU
Service Data Unit

SHCCH
Shared Channel Control Channel

TCH
Traffic Channel

TDD
Time Division Duplex

TFI
Transport Format Indicator

TFCI
Transport Format Combination Indicator

TPC
Transmit Power Control

U-
User-

UE
User Equipment

UL
Uplink

UMTS
Universal Mobile Telecommunications System

URA
UTRAN Registration Area

UTRA
UMTS Terrestrial Radio Access

UTRAN
UMTS Terrestrial Radio Access Network

4
General

4.2
Overview on sublayer architecture

The model presented in this section is not for implementation purposes.

4.2.1
Model of RLC

Figure 4.1 gives an overview model of the RLC layer. The figure illustrates the different RLC peer entities. There is one transmitting and one receiving entity for the transparent mode service and the unacknowledged mode service and one combined transmitting and receiving entity for the acknowledged mode service. The dashed lines between the AM-Entities illustrate the possibility to send the RLC PDUs on separate logical channels, e.g. control PDUs on one and data PDUs on the other. More detailed descriptions of the different entities are given in subclauses 4.2.1.1, 4.2.1.2 and 4.2.1.3.

[image: image2.wmf]Transm.

UM-Entity

Transm.

Tr-Entity

UTRAN

Transmitting

side

Receiving

side

MS

Radio Interface

RLC

MAC

Higher

layer

Receiv.

UM-Entity

Receiv.

Tr-Entity

Transm.

UM-Entity

Transm.

Tr-Entity

Receiv.

UM-Entity

Receiv.

Tr-Entity

Transmitting

side

Receiving

side

AM-Entity

AM-Entity

Figure 4.1: Overview model of RLC

4.2.1.1
Transparent mode entities

Figure 4.2 below shows the model of two transparent mode peer entities.

[image: image3.wmf]Transm.

Tr-Entity

Transmission

buffer

Segmentation

Tr-SAP

BCCH/PCCH/DCCH

CCCH/DTCH/SHCCH

Receiving

Tr-Entity

Receiver

 buffer

Reassembly

Tr-SAP

Radio Interface

BCCH/PCCH/DCCH

CCCH/DTCH/SHCCH

Figure 4.2: Model of two transparent mode peer entities

The transmitting Tr-entity receives SDUs from the higher layers through the Tr-SAP. RLC might segment the SDUs into appropriate RLC PDUs without adding any overhead. How to perform the segmentation is decided upon when the service is established. RLC delivers the RLC PDUs to MAC through either a BCCH, DCCH, PCCH, SHCCH or a DTCH. The CCCH also uses transparent mode, but only for the uplink. Which type of logical channel depends on if the higher layer is located in the control plane (BCCH, DCCH, PCCH, CCCH, SHCCH) or user plane (DTCH).

The Tr-entity receives PDUs through one of the logical channels from the MAC sublayer. RLC reassembles (if segmentation has been performed) the PDUs into RLC SDUs. How to perform the reassembling is decided upon when the service is established. RLC delivers the RLC SDUs to the higher layer through the Tr-SAP.

4.2.1.2
Unacknowledged mode entities

Figure 4.3 below shows the model of two unacknowledged mode peer entities.

[image: image4.wmf]Transm.

UM-Entity

Transmission

buffer

UM-SAP

Receiver

UM-Entity

Receiver

buffer

UM-SAP

Radio Interface

Segmentation &

Concatenation

Ciphering

Add RLC header

Reassembly

Deciphering

Remove RLC

header

CCCH/DCCH/

DTCH/SHCCH

CTCH

CCCH/DCCH/D

TCH/ SHCCH

CTCH

Figure 4.3: Model of two unacknowledged mode peer entities

The transmitting UM-entity receives SDUs from the higher layers. RLC might segment the SDUs into RLC PDUs of appropriate size. The SDU might also be concatenated with other SDUs. RLC adds a header and the PDU is placed in the transmission buffer. RLC delivers the RLC PDUs to MAC through either a DCCH, a SHCCH (downlink only), CTCH or a DTCH. The CCCH also uses unacknowledged mode, but only for the downlink. Which type of logical channel depends on if the higher layer is located in the control plane (CCCH, DCCH, SHCCH) or user plane (CTCH, DTCH).

The receiving UM-entity receives PDUs through one of the logical channels from the MAC sublayer. RLC removes header from the PDUs and reassembles the PDUs (if segmentation has been performed) into RLC SDUs. The RLC SDUs are delivered to the higher layer.

4.2.1.3
Acknowledged mode entity

Figure 4.4 below shows the model of an acknowledged mode entity, when one logical channel (shown as a solid line) and when two logical channels (shown as dashed lines) are used.

[image: image5.wmf]Transmission

buffer

Retransmission

buffer &

mangement

MUX

Set fields in RLC Header (e.g. set

poll bits).

RLC Control Unit

Received acknowledgements

Acknowledgements

DCCH/

DTCH

*

AM-SAP

DCCH/

DTCH

**

DCCH/

DTCH

*

*

AM-Entity

Demux/Routing

DCCH/

DTCH

*

DCCH/

DTCH

**

DCCH/

DTCH

**

Receiver buffer &

Retransmission

management

Transmitting Side

Receiving Side

Segmentation/Concatenation

Ciphering

Add RLC header

Reassembly

Deciphering

Remove RLC header & Extract

Piggybacked information

Piggybacked status

Optional

Figure 4.4: Model of a acknowledged mode entity

The transmitting side of the AM-entity receives SDUs from the higher layers. The SDUs are segmented and/or concatenated to PUs of fixed length. PU length is a semi-static value that is decided in bearer setup and can only be changed through bearer reconfiguration by RRC.

For purposes of RLC buffering and retransmission handling, the operation is the same as if there would be one PU per PDU. For concatenation or padding purposes, bits of information on the length and extension are inserted into the beginning of the last PU where data from an SDU is included. Padding can be replaced by piggybacked status information. This includes setting the poll bit.

If several SDUs fit into one PU, they are concatenated and the appropriate length indicators are inserted into the beginning of the PU. After that the PUs are placed in the retransmission buffer and the transmission buffer. One PU is included in one RLC PDU.

The MUX then decides which PDUs and when the PDUs are delivered to MAC, e.g. it could be useful to send RLC control PDUs on one logical channel and data PDUs on another logical channel. The PDUs are delivered via a function that completes the RLC-PDU header. The fixed 2 octet AMD PDU header is not ciphered.

When Piggybacking mechanism is applied the padding is replaced by control information, in order to increase the transmission efficiency and making possible a faster message exchange between the peer to peer RLC entities. The piggybacked control information is not saved in any retransmission buffer. The piggybacked control information is contained in the piggybacked STATUS PDU, which is in turn included into the AMD-PDU. The piggybacked STATUS PDUs will be of variable size in order to match with the amount of free space in the AMD PDU.

The dashed lines illustrate the case where AMD PDUs and control PDUs are transmitted on separate logical channels. The retransmission buffer also receives acknowledgements from the receiving side, which are used to indicate retransmissions of PUs and when to delete a PU from the retransmission buffer.

The Receiving Side of the AM-entity receives PDUs through one of the logical channels from the MAC sublayer. The RLC-PDUs are expanded into separate PUs and potential piggybacked status information are extracted. The PUs are placed in the receiver buffer until a complete SDU has been received. The receiver buffer requests retransmissions of PUs by sending negative acknowledgements to the peer entity. After that the headers are removed from the PDUs and the PDUs are reassembled into a SDU. Finally the SDU is delivered to the higher layer. The receiving side also receives acknowledgements from the peer entity. The acknowledgements are passed to the retransmission buffer on the transmitting side.

5
Functions

The following functions are supported by RLC. For a detailed description of the following functions see [3]:

-
Segmentation and reassembly.

-
Concatenation.

-
Padding.

-
Transfer of user data.

-
Error correction.

-
In-sequence delivery of higher layer PDUs.

-
Duplicate Detection.

-
Flow control.

-
Sequence number check (Unacknowledged data transfer mode).

-
Protocol error detection and recovery.

-
Ciphering.

-
Suspend/resume function.

6
Services provided to upper layers

This clause describes the different services provided by RLC to higher layers. It also includes mapping of functions to different services. For a detailed description of the following functions see [3].

-
Transparent data transfer Service.

The following functions are needed to support transparent data transfer:

-
Segmentation and reassembly.

-
Transfer of user data.

-
Unacknowledged data transfer Service:

The following functions are needed to support unacknowledged data transfer:

-
Segmentation and reassembly.

-
Concatenation.

-
Padding.

-
Transfer of user data.

-
Ciphering.

-
Sequence number check.

-
Acknowledged data transfer Service:

The following functions are needed to support acknowledged data transfer:

-
Segmentation and reassembly.

-
Concatenation.

-
Padding.

-
Transfer of user data.

-
Error correction.

-
In-sequence delivery of higher layer PDUs.

-
Duplicate detection.

-
Flow Control.

-
Protocol error detection and recovery.

-
Ciphering.

-
QoS setting:
-
Notification of unrecoverable errors.
6.1
Mapping of services/functions onto logical channels

The following tables show the applicability of services and functions to the logical channels in UL/DL and UE/UTRAN. A ‘+’ in a column denotes that the service/function is applicable for the logical channel in question whereas a ‘-‘ denotes that the service/function is not applicable.

Table 6.1: RLC modes and functions in UE uplink side

Service
Functions
CCCH
SHCCH
DCCH
DTCH

Transparent

Service
Applicability
+
+
+
+

Segmentation
-
-
+
+

Transfer of user data
+
+
+
+

Unacknowledged

Service
Applicability
-
-
+
+

Segmentation
-
-
+
+

Concatenation
-
-
+
+

Padding
-
-
+
+

Transfer of user data
-
-
+
+

Ciphering
-
-
+
+

Acknowledged

Service
Applicability
-
-
+
+

Segmentation
-
-
+
+

Concatenation
-
-
+
+

Padding
-
-
+
+

Transfer of user data
-
-
+
+

Flow Control
-
-
+
+

Error Correction
-
-
+
+

Protocol error correction & recovery
-
-
+
+

Ciphering
-
-
+
+

Table 6.2: RLC modes and functions in UE downlink side

Service
Functions
BCCH
PCCH
SHCCH
CCCH
DCCH
DTCH
CTCH

Transparent

Service
Applicability
+
+
+
-
+
+
-

Reassembly
+
+
-
-
+
+
-

Unacknowledged

Service
Applicability
-
-
+
+
+
+
+

Reassembly
-
-
+
+
+
+
+

Deciphering
-
-
-
-
+
+
-

Sequence number check
-
-
+
+
+
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+
-

Reassembly
-
-
-
-
+
+
-

Error correction
-
-
-
-
+
+
-

Flow Control
-
-
-
-
+
+
-

In sequence delivery
-
-
-
-
+
+
-

Duplicate detection
-
-
-
-
+
+
-

Protocol error correction & recovery
-
-
-
-
+
+
-

Deciphering
-
-
-
-
+
+
-

Table 6.3: RLC modes and functions in UTRAN downlink side

Service
Functions
BCCH
PCCH
CCCH
SHCCH
DCCH
DTCH
CTCH

Transparent

Service
Applicability
+
+
-
+
+
+
-

Segmentation
+
+
-
-
+
+
-

Transfer of user data
+
+
-
+
+
+
-

Unacknowledged

Service
Applicability
-
-
+
+
+
+
+

Segmentation
-
-
+
+
+
+
+

Concatenation
-
-
+
+
+
+
+

Padding
-
-
+
+
+
+
+

Ciphering
-
-
-
-
+
+
-

Acknowledged

Service
Applicability
-
-
-
-
+
+
-

Segmentation
-
-
-
-
+
+
-

Concatenation
-
-
-
-
+
+
-

Padding
-
-
-
-
+
+
-

Transfer of user data
-
-
-
-
+
+
-

Flow Control
-
-
-
-
+
+
-

Error Correction
-
-
-
-
+
+
-

Protocol error correction & recovery
-
-
-
-
+
+
-

Ciphering
-
-
-
-
+
+
-

Table 6.4: RLC modes and functions in UTRAN uplink side

Service
Functions
CCCH
SHCCH
DCCH
DTCH

Transparent

Service
Applicability
+
+
+
+

Reassembly
-
-
+
+

Unacknowledged

Service
Applicability
-
-
+
+

Reassembly
-
-
+
+

Deciphering
-
-
+
+

Sequence number check
-
-
+
+

Acknowledged

Service
Applicability
-
-
+
+

Reassembly
-
-
+
+

Error correction
-
-
+
+

Flow Control
-
-
+
+

In sequence delivery
-
-
+
+

Duplicate detection
-
-
+
+

Protocol error correction & recovery
-
-
+
+

Deciphering
-
-
+
+

7
Services expected from MAC

For a detailed description of the following functions see [3].

-
Data transfer.

8
Elements for layer-to-layer communication

The interaction between the RLC layer and other layers are described in terms of primitives where the primitives represent the logical exchange of information and control between the RLC layer and other layers. The primitives shall not specify or constrain implementations.

8.1
Primitives between RLC and higher layers

The primitives between RLC and upper layers are shown in Table 8.1.

Table 8.1: Primitives between RLC and upper layers

Generic Name
Parameter

Req.
Ind.
Resp.
Conf.

RLC-AM-DATA
Data, CNF, MUI
Data, DiscardInfo
Not Defined
MUI

RLC-UM-DATA
Data,
Data
Not Defined
Not Defined

RLC-TR-DATA
Data
Data
Not Defined
Not Defined

CRLC-CONFIG
E/R, Ciphering Elements (UM/AM only), AM_parameters (AM only)
Not Defined
Not Defined
Not Defined

CRLC-SUSPEND (UM/AM only)
N
Not Defined
Not Defined
VT(US) (UM only), VT(S) (AM only)

CRLC-RESUME (UM/AM only)
No Parameter
Not Defined
Not Defined
Not Defined

CRLC-STATUS
Not Defined
EVC
Not Defined
Not Defined

Each Primitive is defined as follows:

RLC-AM-DATA-Req/Ind/Conf

-
RLC-AM-DATA-Req is used by higher layers to request transmission of a higher layer PDU in acknowledged mode.

-
RLC-AM-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in acknowledged mode and to indicate higher layers of the discarded RLC SDU in the receiving RLC.

-
RLC-AM-DATA-Conf is used by RLC to confirm to higher layers the transmission of a RLC SDU.

RLC-UM-DATA-Req/Ind

-
RLC-UM-DATA-Req is used by higher layers to request transmission of a higher layer PDU in unacknowledged mode.

-
RLC-UM-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in unacknowledged mode.

RLC-TR-DATA-Req/Ind

-
RLC-TR-DATA-Req is used by higher layers to request transmission of a higher layer PDU in transparent mode.

-
RLC-TR-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in transparent mode.

CRLC-CONFIG-Req

This primitive is used by RRC to establish, release or reconfigure the RLC. Ciphering elements are included for UM and AM operation.

CRLC-SUSPEND-Req/Conf

This primitive is used by RRC to suspend the RLC. The N parameter indicates that RLC shall not send a PDU with SN>=VT(S)+N, where N is an integer. RLC informs RRC of the VT(S) value in the confirm primitive.

CRLC-RESUME-Req

This primitive is used by RRC to resume RLC when RLC has been suspended.

CRLC-STATUS-Ind

It is used by the RLC to send status information to RRC.

Following parameters are used in the primitives:

1)
The parameter Data is the RLC SDU that is mapped onto the Data field in RLC PDUs. The Data parameter may be divided over several RLC PDUs. In case of a RLC-AM-DATA or a RLC-UM-DATA primitive the length of the Data parameter shall be octet-aligned.

2)
The parameter Confirmation request (CNF) indicates whether the RLC needs to confirm the correct transmission of the RLC SDU.

3)
The parameter Message Unit Identifier (MUI) is an identity of the RLC SDU, which is used to indicate which RLC SDU that is confirmed with the RLC-AM-DATA conf. primitive.

4)
The parameter E/R indicates (re)establishment, release or modification of RLC If it indicates (re)establishment, all protocol parameters, variables and timers shall be set or reset and RLC shall enter the data transfer ready state. If it indicates release, all protocol parameters, variables and timers shall be released and RLC shall exit the data transfer ready state. If it indicates modification, the protocol parameters indicated by RRC (e.g. ciphering parameters) shall only be modified with keeping the other protocol parameters, the protocol variables, the protocol timers and the protocol state.

5)
The parameter Event Code (EVC) indicates the reason for the CRLC-STATUS-ind (i.e., unrecoverable errors such as data link layer loss or recoverable status events such as reset, etc.).

6)
The parameter ciphering elements are only applicable for UM and AM operation. These parameters are Ciphering Mode, Ciphering Key, Activation Time (SN to activate a new ciphering configuration) and Ciphering Sequence Number.

7)
The AM_parameters is only applicable for AM operation. It contains PU size, Timer values (see subclause 9.5), Protocol parameter values (see subclause 9.6), Polling triggers (see subclause 9.7.1), Status triggers (see subclause 9.7.2), SDU discard mode (see subclause 9.7.3).

8)
The parameter DiscardInfo indicates the upper layer of each of the discarded RLC SDU. It is applicable only when in-sequence delivery is active and it is purposed to be used when the upper layer requires the reliable data transfer and especially the information of the discarded RLC SDU.

9
Elements for peer-to-peer communication

9.1
Protocol data units

9.1.1
Data PDUs

a)
TrD PDU (Transparent Mode Data PDU).

The TrD PDU is used to convey RLC SDU data without adding any RLC overhead. The TrD PDU is used by RLC when it is in transparent mode.
b)
UMD PDU (Unacknowledged Mode Data PDU).

The UMD PDU is used to convey sequentially numbered PDUs containing RLC SDU data. It is used by RLC when using unacknowledged data transfer.

c)
AMD PDU (Acknowledged Mode Data PDU).

The AMD PDU is used to convey sequentially numbered PUs containing RLC SDU data. The AMD PDU is used by RLC when it is in acknowledged mode.

9.1.2
Control PDUs

a)
STATUS PDU and Piggybacked STATUS PDU.

The STATUS PDU and the Piggybacked STATUS PDU are used:

-
by the receiving entity to inform the transmitting entity about missing PUs at the receiving entity;

-
by the receiving entity to inform the transmitting entity about the size of the allowed transmission window;

-
and by the transmitting entity to request the receiving entity to move the receiving window.

b)
RESET (Reset).

The RESET PDU is used in acknowledged mode to reset all protocol states, protocol variables and protocol timers of the peer RLC entity in order to synchronise the two peer entities.

c)
RESET ACK (Reset Acknowledge).

The RESET ACK PDU is an acknowledgement to the RESET PDU.

Table 9.1: RLC PDU names and descriptions

 Data Transfer Mode
PDU name
Description

Transparent
TrD
Transparent mode data

Unacknowledged
UMD
Sequenced unacknowledged mode data

Acknowledged
AMD
Sequenced acknowledged mode data

STATUS
Solicited or Unsolicited Status Report

Piggybacked STATUS
Piggybacked Solicited or Unsolicited Status Report

RESET
Reset Command

RESET ACK
Reset Acknowledgement

9.2
Formats and parameters

9.2.1
Formats

This subclause specifies the format of the RLC PDUs. The parameters of each PDU are explained in subclause 9.2.2.

9.2.1.1
General

An RLC PDU is a bit string, with a length not necessarily a multiple of 8 bits. In the drawings in clause 9.2, bit strings are represented by tables in which the first bit is the leftmost one on the first line of the table, the last bit is the rightmost on the last line of the table, and more generally the bit string is to be read from left to right and then in the reading order of the lines.

Depending on the provided service, RLC SDUs are bit strings, with any nonnull length, or bit strings with an integer number of octets in length. An SDU is included into an RLC PDU from first bit onward.

9.2.1.2
TrD PDU

The TrD PDU transfers user data when RLC is operating in transparent mode. No overhead is added to the SDU by RLC. The data length is not constrained to be an integer number of octets.

[image: image6.wmf]Data

Figure 9.1: TrD PDU
9.2.1.3
UMD PDU

The UMD PDU transfers user data when RLC is operating in unacknowledged mode. The length of the data part shall be an integer number of octets.

[image: image7.wmf]Oct

1

E

Length Indicator

Data

PAD

OctN

E

Length Indicator

(Optional)

.

.

.

E

Sequence Number

(Optional)

(Optional)

Figure 9.2: UMD PDU
9.2.1.4
AMD PDU

The AMD PDU transfers user data and piggybacked status information and requests status report by setting Poll bit when RLC is operating in acknowledged mode. The length of the data part shall be an integer number of octets.

[image: image8.wmf]Sequence Number

Sequence Number

D/C

E

Length Indicator

Data

PAD

 or a piggybacked STATUS PDU

Oct

1

Oct

2

OctN

P

HE

E

Length Indicator

.

.

.

(Optional)

 (1)

Oct

3

NOTE (1):
The Length Indicator maybe 15 bits.

Figure 9.3: AMD PDU

9.2.1.5
STATUS PDU

The STATUS PDU is used to report the status between two RLC AM entities. Both receiver and transmitter status information may be included in the same STATUS PDU.

The format of the STATUS PDU is given in Figure 9.4 below.

[image: image9.wmf]D/

C

PDU type

SUFI 1

Oct 1

Oct2

OctN

…

S

U

F

I

K

S

U

F

I

1

PAD

Figure 9.4: Status Information Control PDU (STATUS PDU)

Up to K different super-fields (SUFI1-SUFIK) can be included into one STATUS PDU. The size of a STATUS PDU is variable and upper bounded by the maximum RLC PDU size used by an RLC entity. Padding shall be included to exactly fit one of the PDU sizes used by the entity. The length of the STATUS PDU shall be an integer number of octets.

9.2.1.6
Piggybacked STATUS PDU

The format of the piggybacked STATUS PDU is the same as the ordinary Control PDU except that the D/C field is replaced by a reserved bit (R). This PDU can be used to piggyback STATUS PDU in an AMD PDU if the data does not fill the complete AMD PDU. The PDU Type field is set to zero and all other values are invalid for this version of the protocol and the PDU is discarded.

[image: image10.wmf]Oct1

Oct2

OctN

…

S

U

F

I

K

S

U

F

I

1

PAD

R

PDU Type

SUFI1

Figure 9.5: Piggybacked STATUS PDU

9.2.1.7
RESET, RESET ACK PDU

[image: image11.wmf]Oct1

OctN

D/C

R

PDU Type

PAD

Figure 9.6: RESET, RESET ACK PDU

9.2.2
Parameters

If not otherwise mentioned in the definition of each field then the bits in the parameters shall be interpreted as follows: the left-most bit string is the first and most significant and the right most bit is the last and least significant bit.

Unless otherwise mentioned, integers are encoded in standard binary encoding for unsigned integers. In all cases, including when a value extends over more than one octet as shown in the tables, the bits appear ordered from MSB to LSB when read in the PDU.

9.2.2.1
D/C field

Length: 1bit.

The D/C field indicates the type of an acknowledged mode PDU. It can be either data or control PDU.

Bit
Description

0
Control PDU

1
Acknowledged mode data PDU

9.2.2.2
PDU Type

Length: 3 bit.

The PDU type field indicates the Control PDU type.

Bit
PDU Type

000
STATUS

001
RESET

010
RESET ACK

9.2.2.3
Sequence Number (SN)

This field indicates the sequence number of the payload unit, encoded in binary.

PDU type
Length
Notes

AMD PDU
12 bits
Used for retransmission and reassembly

UMD PDU
7 bits
Used for reassembly

9.2.2.4
Polling bit (P)

Length: 1bit.

This field is used to request a status report (one or several STATUS PDUs) from the receiver RLC.

Bit
Description

0
 Status report not requested

1
Request a status report

9.2.2.5
Extension bit (E)

Length: 1bit.

This bit indicates if the next octet will be a length indicator and E bit.
Bit
Description

0
The next field is data

1
The next field is Length Indicator and E bit

9.2.2.6
Reserved (R)

Length: 4 bits.

This field is used to achieve octet alignment and for this purpose it is coded as 0000. Other functions of it are left for future releases.

9.2.2.7
Header Extension Type (HE)

Length: 2 bits.

This two-bit field indicates if the next octet will be data or a length indicator and E bit.

Value
Description

00
The succeeding octet contains data

01
The succeeding octet contains a length indicator and E bit

10-11
Reserved (PDUs with this coding will be discarded by this version of the protocol).

9.2.2.8
Length Indicator (LI)

The Length Indicator is used to indicate, each time, the end of an SDU occurs in the PU. The Length Indicator points out the number of octets between the end of the last Length Indicator field and up to and including the octet at the end of an SDU segment. Length Indicators are included in the PUs that they refer to. The size of the Length Indicator may be either 7bits or 15bits. The maximum value of a Length Indicator will be no greater than the RLC PDU size – AMD PDU Header – PADDING.

A Length Indicator group is a set of Length Indicators that refer to a PU. Length Indicators that are part of a Length Indicator group must never be reordered within the Length Indicator group or removed from the Length Indicator group.

If there can be more than one Length Indicator, each specifying the end of an SDU in a PU, the order of these Length Indicators must be in the same order as the SDUs that they refer to.

In the case where the end of last segment of an SDU exactly ends at the end of a PDU, the next Length Indicator, shall be placed as the first Length Indicator in the next PU and have value LI=0.

In the case where the last segment of an RLC SDU is one octet short of exactly filling the last RLC PU, and 15-bit Length Indicators are used, the next Length Indicator shall be placed as the first Length Indicator in the next PU and have value LI=111 1111 1111 1011.

A PU that has unused space, to be referred to as padding, must use a Length Indicator to indicate that this space is used as padding. A padding Length Indicator must be placed after any Length Indicators for a PU.

All unused space in a PU must be located at the end of the PDU, be a homogeneous space and is referred to as padding. Predefined values of the Length Indicator are used to indicate this. The values that are reserved for special purposes are listed in the tables below depending on the size of the Length Indicator. Only predefined Length Indicator values can refer to the padding space.

STATUS PDUs can be piggybacked on the AMD PDU by using part or all of the padding space. A Length Indicator must be used to indicate the piggybacked STATUS PDU. This Length Indicator takes space from the padding space or piggybacked STATUS PDU and not the PDU data and will always be the last Length Indicator. Where only part of the padding space is used by a piggybacked STATUS PDU then the end of the piggybacked STATUS PDU is determined by one of the SUFI fields NO_MORE or ACK, thus no additional Length Indicator is required to show that there is still padding in the PDU. The padding/piggybacked STATUS PDU predefined Length Indicators shall be added after the very last (i.e. there could be more than one SDU that end within a PDU) Length Indicator that indicates the end of the last SDU segment in the PU.

If RLC PDUs always carry only one PU, 7bit indicators are used in a particular RLC PDU if the address space is sufficient to indicate all SDU segment borders. Otherwise 15bit Length Indicators are applied.

The length of the Length Indicator only depends on the size of the largest RLC PDU. The length of the Length Indicator is always the same for all PUs, for one RLC entity.

For Release 99, there is one PU in a AMD PDU.

Length: 7bit

Bit
Description

0000000
The previous RLC PDU was exactly filled with the last segment of a RLC SDU.

1111100
Reserved (PDUs with this coding will be discarded by this version of the protocol).

1111101
Reserved (PDUs with this coding will be discarded by this version of the protocol).

1111110
The rest of the RLC PDU includes a piggybacked STATUS PDU.

1111111
The rest of the RLC PDU is padding.

Length: 15bit

Bit
Description

000000000000000
The previous RLC PDU was exactly filled with the last segment of a RLC SDU.

111111111111011
The last segment of an RLC SDU was one octet short of exactly filling the last RLC PDU.

111111111111100
Reserved (PDUs with this coding will be discarded by this version of the protocol).

111111111111101
Reserved (PDUs with this coding will be discarded by this version of the protocol).l

111111111111110
The rest of the RLC PDU includes a piggybacked STATUS PDU.

111111111111111
The rest of the RLC PDU is padding.

9.2.2.9
Data

RLC SDUs in transparent, unacknowledged and acknowledged mode are mapped to this field.

Transparent mode data:

The length of SDUs is not constrained to a multiple of 8 bits.

The RLC SDUs might be segmented. If segmented, then the segmentation is performed according to a predefined pattern. The allowed size for RLC SDUs and segments shall be known. All the RLC PDUs carrying one RLC SDU shall be sent in one transmission time interval. Only one RLC SDU is segmented in one transmission time interval.

Unacknowledged mode data and Acknowledged mode data:

The length of SDUs is constrained to a multiple of 8 bits.

RLC SDUs might be segmented. If possible, the last segment of a SDU shall be concatenated with the first segment of the next SDU in order to fill the data field completely and avoid unnecessary padding. The length indicator field is used to point the borders between SDUs.

9.2.2.10
Padding (PAD)

Padding has a length such that the PDU has the required predefined total length.

Padding may have any value and the receiving entity shall disregard it.

9.2.2.11
SUFI

Which SUFI fields to use is implementation dependent, but when a STATUS PDU includes information about which PUs have been received and which are detected as missing, information shall not be included about PUs with SN(VR(H) i.e. PUs that have not yet reached the receiver.

Length: variable number of bits.

The SUFI (Super-Field) includes three sub-fields: type information (type of super-field, e.g. list, bitmap, acknowledgement, etc), length information (providing the length of a variable length field within the following value field) and a value.

Figure 9.7 shows the structure of the super-field. The size of the type sub‑field is non-zero but the size of the other sub‑fields may be zero.

Type

Length

Value

Figure 9.7: The Structure of a Super-Field

The length of the type field is 4 bits and it may have any of following values.

Bit
Description

0000
No More Data (NO_MORE)

0001
Window Size (WINDOW)

0010
Acknowledgement (ACK)

0011
List (LIST)

0100
Bitmap (BITMAP)

0101
Relative list (Rlist)

0110
Move Receiving Window (MRW)

0111
Move Receiving Window and ignore first LI (MRW_N_IFL)

1000-1111
Reserved (PDUs with this encoding are invalid for this version of the protocol)

The length sub-field gives the length of the variable size part of the following value sub-field and the length of it depends on the super-field type. The value sub-field includes the value of the super-field, e.g. the bitmap in case of a BITMAP super-field, and the length is given by the length of the type sub-field.

9.2.2.11.1
The No More Data super-field

The ‘No More Data’ super-field indicates the end of the data part of a STATUS PDU and is shown in Figure 9.8 below. It shall always be placed as the last SUFI if it is included in a STATUS PDU. All data after this SUFI shall be regarded as padding and shall be neglected.

Type=NO_MORE

Figure 9.8: NO_MORE field in a STATUS PDU

9.2.2.11.2
The Acknowledgement super-field

The ‘Acknowledgement’ super-field consists of a type identifier field (ACK) and a sequence number (LSN) as shown in Figure 9.9 below. The acknowledgement super-field is also indicating the end of the data part of a STATUS PDU. Thus, no ‘NO_MORE’ super-field is needed in the STATUS PDU when the ‘ACK’ super-field is present. The ACK SUFI shall always be placed as the last SUFI if it is included in a STATUS PDU. All data after this SUFI shall be regarded as padding and shall be neglected.

Type = ACK

LSN

Figure 9.9: The ACK fields in a STATUS PDU

LSN

Length: 12 bits

Acknowledges the reception of all PUs with sequence numbers < LSN (Last Sequence Number) that are not indicated to be erroneous in earlier parts of the STATUS PDU. The LSN should not be set to a value > VR(H). This means that if the LSN is set to a different value than VR(R) all erroneous PUs must be included in the same STATUS PDU and if the LSN is set to VR(R) the erroneous PUs are split into several STATUS PDUs. At the receiver, if the value of the LSN =< the value of the first error indicated in the STATUS PDU VT(A) will be updated according to the LSN, otherwise VT(A) will be updated according to the first error indicated in the STATUS PDU.

9.2.2.11.3
The Window Size super-field

The ‘Window Size’ super-field consists of a type identifier (WINDOW) and a window size number (WSN) as shown in Figure 9.10 below. The receiver is always allowed to change the window size during a connection.

Type = WINDOW

WSN

Figure 9.10: The WINDOW fields in a STATUS PDU

WSN

Length: 12 bits

The allowed window size to be used by the transmitter. The range of the window size is [0, 212-1]. The Tx_Window_Size parameter is set equal to WSN.
9.2.2.11.4
The List super-field

The List Super-Field consists of a type identifier field (LIST), a list length field (LENGTH) and a list of LENGTH number of pairs as shown in Figure 9.11 below:

Type = LIST

LENGTH

SN1

L1

SN2

L2

…

SNLENGTH

LLENGTH

Figure 9.11: The List fields in a STATUS PDU for a list

LENGTH

Length: 4 bits

The number of (SNi , Li)-pairs in the super-field of type LIST. The value "0000" is invalid and the list is discarded.

SNi

Length: 12 bits

Sequence number of PU, which was not correctly received.

Li

Length: 4 bits

Number of consecutive PUs not correctly received following PU with sequence number SNi.

9.2.2.11.5
The Bitmap super-field

The Bitmap Super-Field consists of a type identifier field (BITMAP), a bitmap length field (LENGTH), a first sequence number (FSN) and a bitmap as shown in Figure 9.12 below:

Type = BITMAP

LENGTH

FSN

Bitmap

Figure 9.12: The Bitmap fields in a STATUS PDU

LENGTH

Length: 4 bits

The size of the bitmap in octets equals LENGTH+1, i.e. LENGTH="0000" means that the size of the bitmap is one octet and LENGTH="1111" gives the maximum bitmap size of 16 octets.

FSN

Length: 12 bits

The sequence number for the first bit in the bitmap.

Bitmap

Length: Variable number of octets given by the LENGTH field.

Status of the SNs in the interval [FSN, FSN + (LENGTH+1)*8 - 1] indicated in the bitmap where each position (from left to right) can have two different values (0 and 1) with the following meaning (bit_position([0,(LENGTH+1)*8 ‑ 1]):

1: SN = (FSN + bit_position) has been correctly received.

0: SN = (FSN + bit_position) has not been correctly received.

9.2.2.11.6
The Relative List super-field

The Relative List super-field consists of a type identifier field (RLIST), a list length field (LENGTH), the first sequence number (FSN) and a list of LENGTH number of codewords (CW) as shown in Figure 9.134 below.

Type = RLIST

LENGTH

FSN

CW1

CW2

…

CWLENGTH

Figure 9.13: The RList fields in a STATUS PDU

LENGTH

Length: 4 bits

The number of codewords (CW) in the super-field of type RLIST.

FSN

Length: 12 bits

The sequence number for the first erroneous PU in the RLIST.

CW

Length: 4 bits

The CW consists of 4 bits where the three first bits are part of a number and the last bit is a status indicator and it shall be interpreted as follows:

Code Word
Description

X1X2X3 0
Next 3 bits of the number are X1X2X3 and the number continues in the next CW. The most significant bit within this CW is X1.

X1X2X3 1
Next 3 bits of the number are X1X2X3 and the number is terminated. The most significant bit within this CW is X1. This is the most significant CW within the number.

By default, the number given by the CWs represents a distance between the previous indicated erroneous PU up to and including the next erroneous PU.

One special value of CW is defined:

000 1
‘Error burst indicator’.

The error burst indicator means that the next CWs will represent the number of subsequent erroneous PUs (not counting the already indicated error position). After the number of errors in a burst is terminated with XXX 1, the next codeword will again by default be the least significant bits (LSB) of the distance to the next error.
9.2.2.11.7
The Move Receiving Window super-field

The ‘Move Receiving Window’ super-field is used to request the RLC receiver to move its receiving window and to indicate the amount of discarded SDUs, as a result of a SDU discard in the RLC transmitter. The format is given in the figure below.

Type = MRW

LENGTH

SN_MRW1

...

SN_MRWLENGTH

Figure 9.14: The MRW fields in a STATUS PDU

LENGTH

Length: 4 bits

The number of SN_MRWi fields in the super-field of type MRW. It equals the amount of discarded SDUs within one SUFI.

SN_MRWi
Length: 12 bits

SN_MRWi fields enumerate each of the discarded SDUs by indicating the sequence number of the next PU not anymore belonging to the i:th discarded SDU.

Additionally SN_MRWLENGTH requests the RLC receiver to discard all PUs with sequence number < SN_MRWLENGTH, and to move the receiving window accordingly. It also indicates the first data byte in the PU with sequence number SN_MRWLENGTH corresponds to the first byte of the SDU to be reassembled next.
9.2.2.11.8
The Move Receiving Window and Ignore First LI (MRW_N_IFL) super-field

The 'Move Receiving Window and ignore first N LIs' super-field is used to request the RLC receiver to move its receiving window and to indicate the amount of discarded SDUs, as a result of a SDU discard in the RLC transmitter. It also indicates to the receiver the presence and the amount of the trailing bytes of the discarded SDU in the PU with sequence number SN_MRWLENGTH. The format is given in the figure below.
Type = MRW_N_IFL

N

LENGTH

SN_MRW1

...

SN_MRWLENGTH

Figure 9.15: The MRW_N_IFL fields in a STATUS PDU

N

Length: 4 bits

The number of LI fields in the PU that shall be ignored in the SN_MRWLENGTH. It equals the amount of SDUs in the PU that are discarded from the PU identified by SN_MRWLENGTH.

LENGTH

Length: 4 bits

The number of SN_MRWi fields in the super-field of type MRW. It equals the amount of discarded SDUs within one MRW SUFI.

SN_MRWi
Length: 12 bits

SN_MRWi fields enumerate each of the discarded SDUs by indicating the sequence number of the next PU not anymore belonging to the i:th discarded SDU.

Additionally SN_MRWLENGTH requests the RLC receiver to discard all PUs with sequence number < SN_MRWLENGTH, and to move the receiving window accordingly. In addition, the receiver has to discard the first N LIs and the corresponding data bytes in the PU with sequence number SN_MRWLENGTH.

9.2.2.12
Reserved (R)

Length: 1 bit

This bit is used to achieve octet alignment and for this purpose it is coded as 0. Otherwise the PDU is treated as invalid and hence shall be discarded by this version of the protocol.

9.3
Protocol states

9.3.1
State model for transparent mode entities

Figure 9.16 illustrates the state model for transparent mode RLC entities (both transmitting and receiving). A transparent mode entity can be in one of following states.

9.3.1.1
Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and transparent data transfer ready state is entered.

9.3.1.2
Transparent Data Transfer Ready State

In the transparent data transfer ready, transparent mode data can be exchanged between the entities. Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

[image: image12.wmf]2.

Transparent

Data Transfer

Ready

1.

Null

CRLC-CONFIG-Req

Received signal

Sent signal

CRLC-CONFIG-Req

Figure 9.16: The state model for transparent mode entities

9.3.2
State model for unacknowledged mode entities

Figure 9.17 illustrates the state model for unacknowledged mode RLC entities (both transmitting and receiving). An unacknowledged mode entity can be in one of following states.

9.3.2.1
Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and unacknowledged data transfer ready state is entered.

9.3.2.2
Unacknowledged Data Transfer Ready State

In the unacknowledged data transfer ready, unacknowledged mode data can be exchanged between the entities. Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

[image: image13.wmf]2.

Unack.

Data Transfer

Ready

1.

Null

CRLC-CONFIG-Req

CRLC-CONFIG-Req

CRLC-CONFIG-Req

Received signal

Sent signal

CRLC-SUSPEND-Req

CRLC-RESUME-Req

CRLC-SUSPEND-Conf

CRLC-CONFIG-Req

CRLC-CONFIG-Req

CRLC-CONFIG-Req

3.

Local

Suspend

Figure 9.17: The state model for unacknowledged mode entities

9.3.3
State model for acknowledged mode entities

Figure 9.18 illustrates the state model for the acknowledged mode RLC entity (both transmitting and receiving). An acknowledged mode entity can be in one of following states.

9.3.3.1
Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and acknowledged data transfer ready state is entered.

9.3.3.2
Acknowledged Data Transfer Ready State

In the acknowledged data transfer ready state, acknowledged mode data can be exchanged between the entities. Upon reception of a CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

Upon errors in the protocol, the RLC entity sends a RESET PDU to its peer and enters the reset pending state.

Upon reception of a RESET PDU, the RLC entity resets the protocol (resets the state variables in 9.4 to their initial value and resets configurable parameters to their configured value) and responds to the peer entity with a RESET ACK PDU.

Upon reception of a RESET ACK PDU, the RLC takes no action.

9.3.3.3
Reset Pending State

In the reset pending state the entity waits for a response from its peer entity and no data can be exchanged between the entities. Upon reception of CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

Upon reception of a RESET ACK PDU, the RLC entity resets the protocol (resets the state variables in 9.4 to their initial value and resets configurable parameters to their configured value) and enters the acknowledged data transfer ready state.

Upon reception of a RESET PDU, the RLC entity resets the protocol, send a RESET ACK PDU and enters the acknowledged data transfer ready state.

[image: image14.wmf]2.

Ack

.

Data Transfer

Ready

1.

Null

CRLC-CONFIG-

Req

CRLC-CONFIG-

Req

3.

Reset.

Pending

RESET

RESET ACK

]RESET

RESET ACK

CRLC-CONFIG-

Req

Received signal

Sent signal

RESET

RESET ACK

RESET ACK

Figure 9.18: The state model for the acknowledged mode entities when reset is performed

9.3.3.4
Local Suspend State

Upon reception of CRLC-SUSPEND-Req from higher layer (RRC) the RLC entity is suspended and the Local Suspend state is entered. In the Local Suspend state RLC shall not send a RLC-PDUs with a SN>=VT(S)+N. Upon reception of CRLC-RESUME-Req from higher layer (RRC) the RLC entity is resumed and the Data Transfer Ready state is entered.

[image: image15.wmf]2.

Ack.

Data Transfer

Ready

1.

Null

CRLC-CONFIG-Req

CRLC-CONFIG-Req

CRLC-CONFIG-Req

Received signal

Sent signal

CRLC-SUSPEND-Req

CRLC-RESUME-Req

CRLC-SUSPEND-Conf

CRLC-CONFIG-Req

CRLC-CONFIG-Req

CRLC-CONFIG-Req

3.

Local

Suspend

Figure 9.19: The state model for the acknowledged mode entities when local suspend is performed

9.4
State variables

This sub-clause describes the state variables used in the specification of the peer-to-peer protocol. PUs are sequentially and independently numbered and may have the value 0 through n minus 1 (where n is the modulus of the sequence numbers). The modulus equals 212 for AM and 27 for UM; the sequence numbers cycle through the entire range: 0 through 212 – 1 for AM and 0 through 27 – 1 for UM. All arithmetic operations on the following state variables and sequence numbers contained in this specification are affected by the modulus: VT(S), VT(A), VT(MS), VR(R), VR(H), VR(MR), VT(US) and VR(US). When performing arithmetic comparisons of transmitter variables, VT(A) is assumed to be the base. When performing arithmetic comparisons of receiver variables, VR(R) is assumed to be the base.

The RLC maintains the following state variables at the transmitter.

a)
VT(S) - Send state variable.

The sequence number of the next PU to be transmitted for the first time (i.e. excluding retransmission). It is updated after transmission of a PDU, which includes not earlier transmitted PUs. The initial value of this variable is 0.

b)
VT(A) - Acknowledge state variable.

The sequence number of the next in-sequence PU expected to be acknowledged, which forms the lower edge of the window of acceptable acknowledgements. VT(A) is updated based on receipt of a STATUS PDU including an ACK super-field. The initial value of this variable is 0.

c)
VT(DAT).

This state variable counts the number of times a PU has been transmitted. There is one VT(DAT) for each PU and it is incremented each time the PU is transmitted. The initial value of this variable is 0.

d)
VT(MS) - Maximum Send state variable.

The sequence number of the first PU not allowed by the peer receiver [i.e. the receiver will allow up to VT(MS) – 1], VT(MS) = VT(A) + Tx_Window_Size. This value represents the upper edge of the transmit window. The transmitter shall not transmit a new PU if VT(S)
[image: image16.wmf]³

VT(MS). VT(MS) is updated based on receipt of a STATUS PDU including an ACK and/or a WINDOW super‑field.

e)
VT(US) – UM data state variable.

This state variable gives the sequence number of the next UMD PDU to be transmitted. It is updated each time a UMD PDU is transmitted. The initial value of this variable is 0.

f)
VT(PU).

This state variable is used when the poll every Poll_PU PU function is used. It is incremented with 1 for each PU that is transmitted. It should be incremented for both new and retransmitted PUs. When it reaches Poll_PU a new poll is transmitted and the state variable is set to zero. The initial value of this variable is 0.

g)
VT(SDU).

This state variable is used when the poll every Poll_SDU SDU function is used. It is incremented with 1 for each SDU that is transmitted. When it reaches Poll_SDU a new poll is transmitted and the state variable is set to zero. The poll bit should be set in the PU that contains the last segment of the SDU. The initial value of this variable is 0.

h)
VT(RST) - Reset state variable.

It is used to count the number of times a RESET PDU is transmitted. VT(RST) is incremented with 1 each time a RESET PDU is transmitted. VT(RST) is reset upon the reception of a RESET ACK PDU. The initial value of this variable is 0.

i)
VT(MRW) – MRW command send state variable.

It is used to count the number of times a MRW command is transmitted. VT(MRW) is incremented with 1 each time a MRW command is transmitted. VT(MRW) is reset upon the reception of a STATUS PDU which suggests the acknowledgement of a MRW command in the receiver or the occurrence of discarding new SDU. The initial value of this variable is 0.

The RLC maintains the following state variables at the receiver:

a)
VR(R) - Receive state variable.

The sequence number of the next in-sequence PU expected to be received. It is updated upon receipt of the next in-sequence PU. The initial value of this variable is 0.

b)
VR(H) - Highest expected state variable.

The sequence number of the highest expected PU. This state variable is updated when a new PU is received with SN(VR(H). The initial value of this variable is 0.

c)
VR(MR) - Maximum acceptable Receive state variable.

The sequence number of the first PU not allowed by the receiver [i.e. the receiver will allow up to VR(MR) – 1], VR(MR) = VR(R) + Rx_Window_Size. The receiver shall discard PUs with SN
[image: image17.wmf]³

 VR(MR), (in one case, such a PU may cause the transmission of an unsolicited STATUS PDU).

d)
VR(US) - Receiver Send Sequence state variable.

The sequence number of the next PDU to be received. It shall set equal to SN + 1 upon reception of a PDU. The initial value of this variable is 0.

e)
VR(EP) – Estimated PDU Counter state variable.

The number of PUs that should be received yet as a consequence of the transmission of the latest status report. In acknowledged mode, this state variable is updated at the end of each transmission time interval. It is decremented by the number of PUs that should have been received during the transmission time interval. If VR(EP) is equal to zero, then check if all PUs requested for retransmission in the latest status report have been received.
9.5
Timers

a)
Timer_Poll.

This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a poll to the peer entity. The timer is stopped when receiving a STATUS PDU that contains an acknowledgement or negative acknowledgement of the AMD PDU that triggered the timer. The value of the timer is signalled by RRC.

If the timer expires and no STATUS PDU containing an acknowledgement or negative acknowledgement of the AMD PDU that triggered the timer has been received, the receiver is polled once more (either by the transmission of a PDU which was not yet sent, or by a retransmission) and the timer is restarted. If there is no PU to be transmitted and all PUs have already been acknowledged, the receiver shall not be polled.

If a new poll is sent when the timer is running it is restarted.

b)
Timer_Poll_Prohibit.

This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls within a certain period. A poll shall be delayed until the timer expires if a poll is triggered when the timer is active. Only one poll shall be transmitted when the timer expires even if several polls were triggered when the timer was active. If there is no PU to be transmitted and all PUs have already been acknowledged, a poll shall not be transmitted. This timer will not be stopped by a STATUS PDU. The value of the timer is signalled by RRC.
c)
Timer_EPC.

This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the time when the first retransmitted PU should be received after a status report has been sent. The timer is started when the last STATUS PDU of a status report is transmitted and when it expires EPC can start decrease (see subclause 9.7.3). The value of the timer is signalled by RRC.
d)
Timer_Discard.

This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU from higher layer. If the SDU has not been acknowledged and/or transmitted when the timer expires, the SDU is discarded. Following which, if the SDU discard function uses explicit signalling, a Move Receiving Window request is sent to the receiver. The value of the timer is signalled by RRC.

e)
Timer_Poll_Periodic.

This timer is only used when the timer based polling is used. The timer is started when the RLC entity is created. Each time the timer expires a poll is transmitted (either by the transmission of a PDU which was not yet sent, or by a retransmission) and the timer is restarted. If there is no PU to be transmitted and all PUs have already been acknowledged, a poll shall not be transmitted and the timer shall only be restarted. The value of the timer is signalled by RRC.

f)
Timer_Status_Prohibit.

This timer is only used when the STATUS prohibit function is used. It prohibits the receiving side from sending status reports. The timer is started when the last STATUS PDU in a status report is transmitted and no new status report can be transmitted before the timer has expired. The value of the timer is signalled by RRC.

g)
Timer_Status_Periodic.

This timer is only used when timer based status report sending is used. The timer is started when the RLC entity is created. Each time the timer expires a status report is transmitted and the timer is restarted. The value of the timer is signalled by RRC.

h)
Timer_RST.

It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU will be retransmitted. The value of the timer is signalled by RRC.

i)
Timer_MRW.

This timer is used as part of the Move Receiving Window protocol. It is used to trigger the retransmission of a status report containing an MRW SUFI field. The timer is started when the last STATUS PDU of the status report is first transmitted. Each time the timer expires the status report is retransmitted and the timer is restarted (when the last STATUS PDU of the status report is retransmitted). It shall be stopped when a STATUS PDU is received that indicates that VR(R) (SN_MRW. It shall also be stopped if a new MRW procedure is triggered while it is running. The value of the timer is signalled by RRC.

9.6
Protocol Parameters

The values of the protocol parameters in this section are signalled by RRC.

a)
MaxDAT.

It is the maximum value for the number of retransmissions of a PU. This parameter is an upper limit of counter VT(DAT). When the value of VT(DAT) comes to MaxDAT, error recovery procedure will be performed.

b)
Poll_PU.

This parameter indicates how often the transmitter should poll the receiver in case of polling every Poll_PU PU. This is an upper limit for the VT(PU) state variable, when VT(PU) reaches Poll_PU a poll is transmitted to the peer entity.

c)
Poll_SDU.

This parameter indicates how often the transmitter should poll the receiver in case of polling every Poll_SDU SDU. This is an upper limit for the VT(SDU) state variable, when VT(SDU) reaches Poll_SDU a poll is transmitted to the peer entity.

d)
Poll_Window.

This parameter indicates when the transmitter should poll the receiver in case of performing window-based polling. A poll is transmitted when:

[image: image18.wmf]1

–

(

Tx_Window_Size

 +

VT(MS)

–

 VT(S))

mod

Tx_Window_Size

Tx_Window_Size

* 100 >

Poll_Window

.

e)
MaxRST.

It is the maximum value for the number of retransmission of RESET PDU. This parameter is an upper limit of counter VT(RST). When the value of VT(RST) comes to MaxRST, the higher layer (RRC) is notified.

f)
Tx_Window_Size.

The maximum allowed transmitter window size.

g)
Rx_Window_Size.

The maximum allowed receiver window size.
h)
MaxMRW.

It is the maximum value for the number of retransmissions of a MRW command. This parameter is an upper limit of counter VT(MRW). When the value of VT(MRW) comes to MaxMRW, error recovery procedure will be performed.
9.7
Specific functions

9.7.1
Polling function for acknowledged mode transfer

The transmitter of AMD PDUs may poll the receiver for a status report (consisting of one or several STATUS PDUs). The Polling bit in the AMD PDU indicates the poll request. There are several triggers for setting the polling bit. The network (RRC) controls, which triggers should be used for each RLC entity. Following triggers are possible:

1)
Last PU in buffer.

The sender transmits a poll when the last PU available for transmission is transmitted.

2)
Last PU in retransmission buffer.

The sender transmits a poll when the last PU to be retransmitted is transmitted.

3)
Poll timer.

The timer Timer_Poll is started when a poll is transmitted to the receiver and if no STATUS PDU containing an acknowledgement or negative acknowledgement of the AMD PDU that triggered the timer has been received before the timer Timer_Poll expires a new poll is transmitted to the receiver.

4)
Every Poll_PU PU.

The sender polls the receiver every Poll_PU PU. Both retransmitted and new Pus shall be counted.

5)
Every Poll_SDU SDU.

The sender polls the receiver every Poll_SDU SDU.

6)
Poll_Window% of transmission window.

The sender polls the receiver when it has reached Poll_Window% of the transmission window.

7)
Timer based.

The sender polls the receiver periodically.

Either the trigger "Last PU in buffer" and "Last PU in retransmission buffer" or "Timer based" can be chosen to avoid deadlock for every RLC entity. The network also controls if the poll prohibit function shall be used. The poll bit shall be set to 0 if the poll prohibit function is used and the timer Timer_Poll_Prohibit is active. This function has higher priority than any of the above mentioned triggers.

9.7.2
STATUS transmission for acknowledged mode

The receiver of AMD PDUs transmits status reports (each status report consists of one or several STATUS PDUs) to the sender in order to inform about which PUs that have been received and not received. There are several triggers for sending a status report. The network (RRC) controls which triggers should be used for each RLC entity, except for one, which is always present. The receiver shall always send a status report when receiving a poll request. Except for that trigger following triggers are configurable:

1)
Detection of missing PU(s).

If the receiver detects one or several missing PUs it shall send a status report to the sender.

2)
Timer based STATUS transfer.

The receiver transmits a status report periodically to the sender. The timer Timer_Status_Periodic controls the time period.

3)
The EPC mechanism.

The EPC is started when the last STATUS PDU of a status report is transmitted to the peer entity. If not all PUs requested for retransmission have been received before the EPC has expired a new status report is transmitted to the peer entity. A more detailed description of the EPC mechanism is given in subclause 9.7.4.

There are two functions that can prohibit the receiver from sending a status report. The network (RRC) controls which functions should be used for each RLC entity. If any of the following functions is used the sending of the status report shall be delayed, even if any of the conditions above are fulfilled:

1)
STATUS prohibit.

The Timer_Status_Prohibit is started when the last STATUS PDU of a status report is transmitted to the peer entity. As long as the timer is running the receiving side is not allowed to send a status report to the peer entity. The status report is transmitted after the timer has expired. The receiver shall only send one status report, even if there are several triggers when the timer running.

2)
The EPC mechanism.

If the EPC mechanism is active and the sending of a status report is triggered it shall be delayed until the EPC mechanism has ended. The receiver shall only send one status report, even if there are several triggers when the timer is active or the counter is counting down.

9.7.3
SDU discard function

The SDU discard function allows to discharge RLC PDU from the buffer on the transmitter side, when the transmission of the RLC PDU does not success for a long time. The SDU discard function allows to avoid buffer overflow, in the case of non-transparent transmission mode. There will be several alternative operation modes of the RLC SDU discard function, and which discard function to use will be given by the QoS requirements of the Radio Access Bearer.

The following is a list of operation modes for the RLC SDU discard function.

Table 9.2: List of criteria’s that control when to perform SDU discard

Operation mode
Presence

Timer based discard, with explicit signalling
Network controlled

Timer based discard, without explicit signalling
Network controlled

SDU discard after MaxDAT number of retransmissions
Network controlled

9.7.3.1
Timer based discard, with explicit signalling

This alternative uses a timer based triggering of SDU discard (Timer_Discard). This makes the SDU discard function insensitive to variations in the channel rate and provides means for exact definition of maximum delay. However, the SDU loss rate of the connection is increased as SDUs are discarded.

For every SDU received from a higher layer, timer monitoring of the transmission time of the SDU is started. If the transmission time exceeds a predefined value for a SDU in acknowledged mode RLC, this SDU is discarded in the transmitter and a Move Receiving Window (MRW) command is sent to the receiver so that AMD PDUs carrying that SDU are discarded in the receiver and the receiver window is updated accordingly. Note that when the concatenation function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded.

The MRW command is defined as a super-field in the RLC STATUS PDU (see subclause 9.2), and piggy backed to status information of transmissions in the opposite direction. If the MRW command has not been acknowledged by receiver, it will be retransmitted. Therefore, SDU discard variants requiring peer-to-peer signalling are only possible for full duplex connections.

9.7.3.2
Timer based discard, without explicit signalling

This alternative uses the same timer based trigger for SDU discard (Timer_Discard) as the one described in the subclause 9.7.3.1. The difference is that this discard method does not use any peer-to-peer signalling. This function is applied only for unacknowledged mode RLC and peer-to-peer signalling is never needed. The SDUs are simply discarded in the transmitter, once the transmission time is exceeded.

9.7.3.3
SDU discard after MaxDAT number of retransmissions

This alternative uses the number of retransmissions as a trigger for SDU discard, and is therefore only applicable for acknowledged mode RLC. This makes the SDU discard function dependent of the channel rate. Also, this variant of the SDU discard function strives to keep the SDU loss rate constant for the connection, on the cost of a variable delay. SDU discard is triggered at the transmitter, and a MRW command is necessary to convey the discard information to the receiver, like in the timer based discard with explicit signalling.

9.7.4
The Estimated PDU Counter

The Estimated PDU Counter is a mechanism used for scheduling the retransmission of status reports in the receiver side. With this mechanism, the receiver will send a new status report in which it requests for PUs not yet received. The time between two subsequent status report retransmissions is not fixed, but it is controlled by the Estimated PDU Counter (EPC), which adapt this time to the current bit rate, indicated in the TFI, in order to minimise the delay of the status report retransmission.

The EPC is a counter, which is decremented every transmission time interval with the estimated number of PUs that should have been transmitted during that transmission time interval. When the receiver detects that PDUs are missing it generates and sends a status report to the transmitter and sets the EPC equal to the number of requested PUs.

A special timer, called EPC timer, controls the maximum time that the EPC needs to wait before it will start counting down. This timer starts immediately after a transmission of a retransmission request from the receiver (when the last STATUS PDU of the status report is transmitted). The EPC timer typically depends on the roundtrip delay, which consists of the propagation delay, processing time in the transmitter and receiver and the frame structure. This timer can also be implemented as a counter, which counts the number of 10 ms radio frames that could be expected to elapse before the first requested AMD PDU is received.

When the EPC is equal to zero and not all of these requested PUs have been received correctly, a new status report will be transmitted and the EPC will be reset accordingly. The EPC timer will be started once more.

9.7.5
Multiple payload units in an RLC PDU

The possibility to include multiple payload units (PU) into one RLC AMD PDU is part of the service capabilities of a UE in acknowledged mode. For Release 99, there shall be only one PU per AMD PDU.

A payload unit is the smallest unit that can be separately addressed for retransmission and is of fixed size, containing data and optionally, length indicators and/or padding. The padding space of a PU can be used to piggyback STATUS PDUs.

The size of the PU is set by the RRC.

9.7.6
Local Suspend function for acknowledged mode transfer

The higher layer (RRC) may suspend the RLC entity. The CRLC-SUSPEND-Req indicates this request. The RLC entity shall, when receiving this request, not send RLC PDUs with SN>=VT(S)+N (N is given by the CRLC_SUSPEND-Req primitive). The RLC entity shall acknowledge the CRLC-SUSPEND-Req ordering a suspend with a CRLC-SUSPEND-Conf with the current value of VT(S). The suspend state is left when a CRLC-RESUME-Req primitive indicating resume is received.

10
Handling of unknown, unforeseen and erroneous protocol data

The list of error cases is reported below:

a)
Inconsistent state variables.

If the RLC entity receives a PDU including "erroneous Sequence Number", state variables between peer entities may be inconsistent. Following shows "erroneous Sequence Number" examples:

-
Each Sequence Number of missing PU informed by SUFI LIST or BITMAP parameter is not within the value between "Acknowledge state variable(VT(A))" and "Send state variable(VT(S))", and

-
LSN of SUFI ACK is not within the value between "Acknowledge state variable(VT(A))" and "Send state variable(VT(S))".

In case of error situations the following actions are foreseen:

1)
RLC entity should use RESET procedure in case of an unrecoverable error.

2)
RLC entity should discard invalid PDU.

3)
RLC entity should notify upper layer of unrecoverable error occurrence in case of failed retransmission.

11
Elementary procedures

11.1
Transparent mode data transfer procedure

11.1.1
Purpose

The transparent mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in transparent mode. Figure 11.1 below illustrates the elementary procedure for transparent mode data transfer. The sender can be either the UE or the network and the receiver is either the network or the UE.

[image: image19.wmf]TrD PDU

Sender

Receiver

Figure 11.1: Transparent mode data transfer procedure

11.1.2
Initiation

The sender initiates this procedure upon a request of transparent mode data transfer from higher layer. When the sender is in data transfer ready state it shall put the data received from the higher layer into TrD PDUs. If needed RLC shall perform segmentation.

Channels that can be used are DTCH, CCCH (uplink only), BCCH, PCCH, SHCCH and SCCH (downlink only). The type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (CCCH/BCCH/SHCCH/PCCH, SCCH). One or several PDUs may be transmitted in each transmission time interval (TTI) and MAC decides how many PDUs shall be transmitted in each TTI.

11.1.2.1
TrD PDU contents to set

The TrD PDU includes a complete SDU or a segment of an SDU. How to perform the segmentation is decided upon when the service is established. No overhead or header is added.

11.1.3
Reception of TrD PDU

Upon reception of a TrD PDU, the receiving entity reassembles (if segmentation was performed) the PDUs into RLC SDUs. RLC delivers the RLC SDUs to the higher layer through the Tr-SAP.

11.1.4
Abnormal cases

11.1.4.1
Undefined SDU size at receiver

If the TrD PDUs are reassembled to a SDU which have a size that is not allowed the SDU shall be discarded.

11.2
Unacknowledged mode data transfer procedure

11.2.1
Purpose

The unacknowledged mode data transfer procedure is used for transferring data between two RLC peer entities, which are operating in unacknowledged mode. Figure 11.2 below illustrates the elementary procedure for unacknowledged mode data transfer. The sender can be either the UE or the network and the receiver is either the network or the UE.

[image: image20.wmf]UMD PDU

Sender

Receiver

Figure 11.2: Unacknowledged mode data transfer procedure

11.2.2
Initiation

The sender initiates this procedure upon a request of unacknowledged mode data transfer from higher layer.

When the sender is in data transfer ready state it shall segment the data received from the higher layer into PDUs.

Channels that can be used are DTCH, DCCH, CCCH (downlink only), CTCH, SHCCH (downlink only). The type of logical channel depends on if the RLC entity is located in the user plane (DTCH, CTCH) or in the control plane (DCCH/CCCH(downlink only)/SHCCH(downlink only)). One or several PDUs may be transmitted in each transmission time interval (TTI) and MAC decides how many PDUs shall be transmitted in each TTI.

The VT(US) state variable shall be updated for each UMD PDU that is transmitted.

11.2.2.1
UMD PDU contents to set

The Sequence Number field shall be set equal to VT(US).

The Extension bit shall be set to 1 if the next field is a length indicator field, otherwise it shall be set to zero.

One length indicator field shall be included for each end of a SDU that the PDU includes. The length indicator shall be set equal to the number octets between the end of the header fields and the end of the segment. If padding is needed another length indicator shall be added. If the PDU is exactly filled with the last segment of a SDU and there is no room for a length indicator field a length indicator field set to only 0’s shall be included in the next PDU.

11.2.3
Reception of UMD PDU

Upon reception of a UMD PDU the receiver shall update VR(US) state variable according to the received PDU(s).

The PDUs are reassembled into RLC SDUs. If a PDU with sequence number < VR(US) is missing then all SDUs that have segments in this PDU shall be discarded. RLC delivers the RLC SDUs to the higher layer through the UM-SAP.

11.2.4
Abnormal cases

11.2.4.1
Length Indicator value 1111110

Upon reception of an UMD PDU that contains Length Indicator value 1111110 or 111111111111110 ("piggybacked STATUS PDU", in case 7bit or 15 bit Length Indicator field is used, respectively) the receiver shall discard that UMD PDU. This Length Indicator value is not used in unacknowledged mode data transfer.

11.2.4.2
Invalid length indicator value

If the length indicator of a PDU has a value that is larger than the PDU size, the PDU shall be discarded and treated as a missing PDU.

11.2.4.3
SDU discard without explicit signalling

Upon expiry of the Timer_Discard on the sender side the sender shall discard all PDUs that contain segments of the associated SDU. If the concatenation function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded. The state variable VT(US) shall be updated.

11.3
Acknowledged mode data transfer procedure

11.3.1
Purpose

The acknowledged mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in acknowledged mode. Figure 11.3 below illustrates the elementary procedure for acknowledged mode data transfer. The sender can be either the UE or the network and the receiver is either the network or the UE.

[image: image21.wmf]AMD PDU

Sender

Receiver

Figure 11.3: Acknowledged mode data transfer procedure

11.3.2
Initiation

The sender initiates this procedure upon a request of acknowledged mode data transfer from higher layer or upon retransmission of PUs. Retransmitted PUs have higher priority than PUs transmitted for the first time.

The sender is only allowed to retransmit PUs that have been indicated missing by the receiver. An exception is the PU with SN VT(S)-1 which can always be retransmitted. In addition, the PU with highest SN that has not yet been acknowledged may be retransmitted if the peer Rx window size is less than half the maximum RLC AM sequence number.

RLC shall segment the data received from the higher layer into PUs. When the sender is in data transfer ready state one or several PUs are included in one AMD PDU, which is sent to the receiver. The PDUs shall be transmitted on the DCCH logical channel if the sender is located in the control plane and on the DTCH if it is located in the user plane. One or several PDUs may be transmitted in each transmission time interval (TTI) and MAC decides how many PDUs shall be transmitted in each TTI.

The VT(DAT) state variables shall be updated for each AMD PDU that is transmitted. The PDU shall not include any PU with Sequence Number (VT(MS).

If the poll bit is set in any of the AMD PDUs and the timer Timer_Poll shall be used the sender shall start the timer Timer_Poll.

If timer based SDU discard is used the timer Timer_Discard shall be started when the RLC entity receives an SDU from higher layer.

If the trigger for polling, "Every Poll_PU PU", is used the VT(PU) shall be increased by 1 for each PU that is transmitted.

If the trigger for polling, "Every Poll_SDU SDU", is used the VT(SDU) shall be increased by 1 for each SDU that is transmitted.

11.3.2.1
AMD PDU contents to set

If the PDU is transmitted for the first time, the Sequence Number field shall be set equal to VT(S) and VT(S) shall be updated.

The setting of the Polling bit is specified in subclause 11.3.2.1.1.

One length indicator field shall be included for each end of a SDU that the PDU includes. The length indicator shall be set equal to the number of octets between the end of the header fields and the end of the segment. If the PDU is exactly filled with the last segment of a SDU and there is no room for a length indicator field a length indicator field set to only 0’s shall be included in the next PDU. How to perform the segmentation of a SDU is specified in subclause 11.3.2.1.2.

11.3.2.1.1
Setting of the Polling bit

The Polling bit shall be set to 1 if any of following conditions are fulfilled except when the poll prohibit function is used and the timer Timer_Poll_Prohibit is active (the different triggers are described in 9.7.4):

1)
Last PU in buffer is used and the last PU available for transmission is transmitted.

2)
Last PU in retransmission buffer is used and the last PU to be retransmitted is transmitted.

3)
Poll timer is used and timer Timer_Poll has expired.

4)
Every Poll_PU PU is used and when VT(PU)=Poll_PU.

5)
Every Poll_SDU is used and VT(SDU)=Poll_SDU and the PDU contains the last segment that SDU.

6)
Poll_Window% of transmission window is used, and

[image: image22.wmf]1

–

(

Tx_Window_Size

 +

VT(MS)

–

 VT(S))

mod

Tx_Window_Size

Tx_Window_Size

* 100 >

Poll_Window

.

7)
timer based polling is used and Timer_Poll_Periodic has expired.

8)
Poll prohibit shall be used, the timer Timer_Poll_Prohibit has expired and one or several polls were prohibited during the time Timer_Poll_Prohibit was active.

11.3.2.1.2
Segmentation of a SDU

Upon reception of a SDU, RLC shall segment the SDU to fit into the fixed size of a PU. The segments are inserted in the data field of a PU. A length indicator shall be added to each PU that includes a border of a SDU, i.e. if a PU does not contain a length indicator the SDU continues in the next PU. The length indicator indicates where the border occurs in the PU. The data after the indicated border can be either a new SDU, padding or piggybacked information. If padding or piggybacking is added another length indicator shall be added, see subclause 9.2.2.8.

11.3.3
Reception of AMD PDU by the receiver

Upon reception of a AMD PDU the receiver shall update VR(R), VR(H) and VR(MR) state variables according to the received PU(s).

If any of the PUs include a Polling bit set to 1 the STATUS PDU transfer procedure shall be initiated.

If the detection of missing PU(s) shall be used and the receiver detects that a PU is missing the receiver shall initiate the STATUS PDU transfer procedure.

If timer based SDU discard without explicit signalling is used and a missing PU is detected the timer Timer_Discard is started.

11.3.4
Abnormal cases

11.3.4.1
Timer_Poll timeout

Upon expiry of the Timer_Poll the sender shall retransmit the poll. The poll can be retransmitted in either a new PDU or a retransmitted PDU.
11.3.4.2
Receiving a PU outside the receiving window

Upon reception of a PU with SN(VR(R) or SN(VR(MR) the receiver shall discard the PU. The poll bit shall be considered even if a complete PDU is discarded.

11.3.4.3
Timer_Discard timeout

11.3.4.3.1
SDU discard with explicit signalling

Upon expiry of Timer_Discard the sender shall initiate the SDU discard with explicit signalling procedure.

11.3.4.4
VT(DAT) > MaxDAT

If SDU discard after MaxDAT number of retransmission is used and VT(DAT) > MaxDAT for any PU the sender shall initiate the SDU discard with explicit signalling procedure.

If the SDU discard is not used the sender shall initiate the RLC reset procedure when VT(DAT) > MaxDAT.

11.3.4.5
Invalid length indicator value

If the length indicator of a PU has a value that is larger than the PU size, the PU shall be discarded and treated as a missing PU.

11.4
RLC reset procedure

11.4.1
Purpose

The RLC reset procedure is used to reset two RLC peer entities, which are operating in acknowledged mode. Figure 11.4 below illustrates the elementary procedure for a RLC reset. The sender can be either the UE or the network and the receiver is either the network or the UE.

[image: image23.wmf]RESET ACK

RESET

Sender

Receiver

Figure 11.4: RLC reset procedure

11.4.2
Initiation

The procedure shall be initiated when a protocol error occurs.

The sender sends the RESET PDU when it is in data transfer ready state and enters reset pending state. The sender shall start the timer Timer_RST and increase VT(RST) with 1. The RESET PDU shall be transmitted on the DCCH logical channel if the sender is located in the control plane and on the DTCH if it is located in the user plane.

The RESET PDU has higher priority than data PDUs.

11.4.2.1
RESET PDU contents to set

The size of the RESET PDU shall be equal to one of the allowed PDU sizes.

11.4.3
Reception of the RESET PDU by the receiver

Upon reception of a RESET PDU the receiver shall respond with a RESET ACK PDU. The receiver resets the state variables in 9.4 to their initial value and resets configurable parameters to their configured value.
The RESET ACK PDU shall be transmitted on the DCCH logical channel if the sender is located in the control plane and on the DTCH if it is located in the user plane.

The RESET ACK PDU has higher priority than data PDUs.

11.4.3.1
RESET ACK PDU contents to set

The size of the RESET ACK PDU shall be equal to one of the allowed PDU sizes.

11.4.4
Reception of the RESET ACK PDU by the sender

Upon reception of a RESET ACK the Timer_RST shall be stopped. The sender resets the state variables in 9.4 to their initial value and resets configurable parameters to their configured value. The sender shall enter data transfer ready state.

11.4.5
Abnormal cases

11.4.5.1
Timer_RST timeout

Upon expiry of Timer_RST the sender shall retransmit the RESET PDU and increase VT(RST) with 1.

11.4.5.2
VT(RST) (MaxRST
If VT(RST) becomes larger or equal to MaxRST the RRC layer shall be informed.
11.5
STATUS report transfer procedure

11.5.1
Purpose

The status report transfer procedure is used for transferring of status information between two RLC peer entities, which are operating in acknowledged mode. Figure 11.5 below illustrates the elementary procedure for status report transfer. A status report consists of one or several STATUS PDUs. The receiver is the receiver of AMD PDUs and it is either the UE or the network and the sender is the sender of AMD PDUs and it is either the network or the UE.

[image: image24.wmf]Sender

Receiver

STATUS PDU

Figure 11.5: Status report transfer procedure

11.5.2
Initiation

The receiver in any of following cases initiates this procedure:

1)
The poll bit in a received AMD PDU is set to 1.

2)
Detection of missing PUs is used and a missing PU is detected.

3)
The timer based STATUS transfer is used and the timer Timer_Status_Periodic has expired.

The receiver shall transmit a status report on the DCCH logical channel if the receiver is located in the control plane and on the DTCH if it is located in the user plane. Separate logical channels can be assigned for AMD PDU transfer and for Control PDU transfer.

The STATUS PDUs have higher priority than data PDUs.

There are two functions that can prohibit the receiver from sending a status report. If any of following conditions are fulfilled the sending of the status report shall be delayed, even if any of the conditions above are fulfilled:

1)
STATUS prohibit is used and the timer Timer_Status_Prohibit is active.

The status report shall be transmitted after the Timer_Status_Prohibit has expired. The receiver shall send only one status report, even if there are several triggers when the timer is running.

2)
The EPC mechanism is used and the timer Timer_EPC is active or VR(EP) is counting down.

The status report shall be transmitted after the VR(EP) has reached 0. The receiver send only one status report, even if there are several triggers when the timer is active or the counter is counting down.

If the timer based STATUS transfer shall be used and the Timer_Status_Periodic has expired it shall be restarted.

If the EPC mechanism shall be used the timer Timer_EPC shall be started and the VR(EP) shall be set equal to the number PUs requested to be retransmitted.

11.5.2.1
Piggybacked STATUS PDU

It is possible to piggyback a STATUS PDU on an AMD PDU. If a PDU includes padding a piggybacked STATUS PDU can be inserted instead of the padding. The sending of a piggybacked STATUS PDU follows the same rules as the sending of an ordinary STATUS PDU.

11.5.2.2
STATUS PDU contents to set

The size of the STATUS PDU shall be equal to one of the allowed PDU sizes. The information that needs to be transmitted in a status report can be split into several STATUS PDUs if one STATUS PDU does not accommodate all the information.

Which SUFI fields to use is implementation dependent, but the status report shall include information about which PUs have been received and which are detected as missing. No information shall be given for PUs with SN(VR(H), i.e. PUs that have not yet reached the receiver.

Padding shall be inserted if the SUFI fields do not fill an entire STATUS PDU. If the PDU contains padding the last SUFI field shall be either an Acknowledgement super-field or a No More super-field.

11.5.3
Reception of the STATUS PDU by the sender

The sender shall upon reception of the STATUS PDU/piggybacked STATUS PDU update the state variables VT(A) and VT(MS) according to the received STATUS PDU/piggybacked STATUS PDU.

If the STATUS PDU includes negative acknowledged PUs the acknowledged data transfer procedure shall be initiated and the PUs shall be retransmitted. Retransmitted PUs have higher priority than new PUs.
11.5.4
Abnormal cases

11.5.4.1
EPC reaches zero and the requested PUs have not been received

If the EPC mechanism is used and VR(EP) has reached 0 and not all PUs requested for retransmission have been received the receiver shall:

-
Retransmit the status report. The retransmitted status report may contain new or different SUFI fields in order to indicate that some PUs have been received and that some new have been lost.

11.6
SDU discard with explicit signalling procedure

11.6.1
Purpose

An SDU can be discarded with explicit signalling when MaxDAT number of retransmissions is reached or the transmission time exceeds a predefined value (Timer_Discard) for a SDU in acknowledged mode RLC. Move Receiving Window (MRW) command is sent to the receiver so that AMD PDUs carrying that SDU are discarded in the receiver and the receiver window is updated accordingly. Note that when the concatenation function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded.

The MRW command is defined as a super-field in the RLC STATUS PDU, and piggybacked to status information of transmissions in the opposite direction.

Figure 11.6 below illustrates the elementary procedure for SDU discard with explicit signalling. The sender is the sender of AMD PDUs and it is either the UE or the network and the receiver is the receiver of AMD PDUs and it is either the network or the UE.

[image: image25.wmf]STATUS PDU

 PDU

Sender

Receiver

Figure 11.6: SDU discard with explicit signalling

11.6.2
Initiation

This procedure is initiated by the sender when the following conditions are fulfilled:

1)
SDU discard with explicit signalling is used.

2)
MaxDAT number of retransmissions is reached or Timer_Discard expires for a SDU in acknowledged mode RLC.

The sender shall discard all PUs that contain a segment of the associated SDU. If the concatenation function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded.

The sender shall transmit a status report on the DCCH logical channel if the sender is located in the control plane and on the DTCH if it is located in the user plane.

If the PU with sequence number SN_MRWLENGTH contains LI indicating trailing data from the discarded SDU, the transmitter shall send SUFI MRW_N_IFL indicating to the receiver to discard the first N LIs and the corresponding data bytes. Otherwise the transmitter shall send SUFI MRW.

This status report is sent even if the 'STATUS prohibit' is used and the timer 'Timer_Status_Prohibit' is active.

The STATUS PDUs have higher priority than data PDUs.

The sender shall start timer Timer_MRW. If a new SDU discard procedure is triggered when Timer_MRW is running, no new MRW SUFIs should be sent before the STATUS PDU is received indicating the appropriate value of VR(R).

11.6.2.1
Piggybacked STATUS PDU

It is possible to piggyback a STATUS PDU on an AMD PDU. If a PDU includes padding a piggybacked STATUS PDU can be inserted instead of the padding.

11.6.2.2
STATUS PDU contents to set

The size of the STATUS PDU shall be equal to one of the allowed PDU sizes. The information that needs to be transmitted in a status report can be split into several STATUS PDUs if one STATUS PDU does not accommodate all the information.

The status report shall include the MRW/MRW_N_IFL SUFI, other SUFI fields can be used additionally. MRW/MRW_N_IFL SUFI shall convey information about the discarded SDU(s) to the receiver.

Padding shall be inserted if the SUFI fields do not fill the entire STATUS PDU. If the PDU contains padding the last SUFI field shall be a No More Data super-field.

11.6.3
Reception of the STATUS PDU by the receiver

The receiver shall upon reception of the STATUS PDU/piggybacked STATUS PDU discard PUs and update the state variables VR(R), VR(H) and VR(MR) according to the received STATUS PDU/piggybacked STATUS PDU. Additionally the receiver should indicate the higher layers of all of the discarded SDUs.

The receiver shall initiate the transmission of a status report indicating the revised value of VR(R).

In case of receiving SUFI_MRW, the receiver shall start reassembling the next SDU from the first data byte of the PU with sequence number SN_MRWLENGTH.

If the receiver receives SUFI MRW_N_IFL , it shall discard the first N LIs and the corresponding data bytes and start reassembling the next SDU from the data byte indicated by the N+1:th LI field of the PU with sequence number SN_MRWLENGTH.

11.6.4
Reception of STATUS PDU if VR(R) (SN_MRWLENGTH
The procedure is terminated in the sender when a STATUS PDU is received indicating a value of VR(R) (SN_MRWLENGTH. If this occurs Timer_MRW is stopped thereby terminating the procedure.

If new SDUs are discarded during the running of the Timer_MRW, a new discard procedure should be initiated no earlier than after the reception of STATUS PDU with VR(R) (SN_MRWLENGTH.

11.6.5
Expiration of timer Timer_MRW

If Timer_MRW expires before a STATUS PDU is received indicating a value of VR(R) greater or equal to the MRW parameter then the STATUS(MRW) shall be retransmitted, VT(MRW) is incremented by one and Timer_MRW restarted. MRW SUFI should be exactly the same as previously transmitted even though some new SDUs would have been discarded during the running of the Timer_MRW.

11.6.6
Abnormal cases

11.6.6.1
Obsolete/corrupted MRW command

If the MRW command contains outdated information about the receiver window (receiver window already moved further than MRW command is indicating), the MRW command shall be discarded and a status report containing SUFI ACK shall be transmitted.

11.6.6.2
VT(MRW) equals MaxMRW
If the number of retransmission of a MRW command (i.e. VT(MRW)) reaches MaxMRW, an error indication shall be passed to RRC and RESET procedure should be performed.
Annex A (informative):
SDL diagrams

This annex contains the SDL diagrams. For Release’99, it is meant for informative purposes only.

NOTE:
All the SDL diagrams presented are [FFS].

[image: image26.emf];

SIGNALSET

 Crlc_amconfig_req,

 Crlc_Status_ind,

 Rlc_AmData_req,

 Rlc_AmData_ind,

 Rlc_AmData_conf,

 Reset_am,

 Reset_am_ack,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu;

Virtual Process Type Acknowledged_link 1_Signals(73)

Am

(AcknowledgedLink_to_Am) (Am_to_AcknowledgedLink)

DtchDcch

(DtchDcch_to_AcknowledgedLink) (AcknowledgedLink_to_DtchDcch)

Cont

(AcknowledgedLink_to_Cont) (Cont_to_AcknowledgedLink)

[image: image27.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_Declarations(73)

DCL

 /*SDU, PDU, and PU declarations:_______________________________*/

 sdu OctetType,

 /*The sdu data from the upper layer protocol.*/

 amd_pdu, pdu AmPdu,

 /*A representation of data contained within an AmPdu.*/

 amd_pu AmPuStructType,

 /*A representation of a local am_pu*/

 status_pdu, tx_status_pdu StatPdu,

 /*A representation of data contained within an StatPdu.*/

 /*SDU, PDU, and PU array declarations:___________________________*/

 sdus OctetArrayType,

 /*An array containing SDUs.*/

 pdus AmPduArrayType,

 /*An array containing AMD PDUs created by segmenting a SDU.*/

 pus AmPuArrayType,

 /*An array containing PUs.*/

 rem_pus AmPuArrayType,

 /*An array containing PDUs to be removed from queues.*/

 status_pdus StatusPduArrayType,

 /*An array containing several STATUS PDUs.*/

 /*Queue declarations:___________________________________*/

 receiver_queue Queue,

 /*A queue used for storing PDUs as they arrive.*/

 retransmission_queue Queue,

 /*A queue used for PDUs that are to be retransmitted.*/

 assembly_queue Queue,

 /*A queue used for reassembly of received PDUs into an SDU.*/

 transmitted_queue Queue,

 /*A queue used for PDUs that have been transmitted.*/

 amd_queue Queue,

 /*A queue used for PDUs to be transmitted.*/

 mui_queue Queue;

 /*A queue used to store mui numbers for which confirmation

 has been requested.*/

[image: image28.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_Declarations(73)

DCL

/*Indicator declarations:__*/

 epc_active IndicatorType,

 /*An indicator used to store whether the Timer_EPC is active or not.*/

 poll_periodic_active IndicatorType,

 /*An indicator used to store whether the Timer_Poll_Periodic is active or not.*/

 poll_prohibit_active IndicatorType,

 /*An indicator used to store whether the Timer_Poll_Prohibit is active or not.*/

 rst_active IndicatorType,

 /*An indicator used to store whether the Timer_RST is active or not.*/

 status_periodic_active IndicatorType,

 /*An indicator used to store whether the Timer_Status_Periodic is active or not.*/

 status_prohibit_active IndicatorType,

 /*An indicator used to store whether the Timer_Status_Prohibit is active or not.*/

 empty IndicatorType,

 /*An Indicator used to determine whether a queue is empty or not.*/

 exists IndicatorType,

 /*An indicator used to determine whether a particular pdu exists

 within a queue or not.*/

 complete IndicatorType,

 /*An indicator used to determine whether an SDU has been

 completely reassembled.*/

 cnf IndicatorType,

 /*An indicator used to determine whether an SDU requires

 confirmation.*/

 possible IndicatorType,

 /*An indicator used to indicate whether status piggyback is

 possible or not.*/

 create_status IndicatorType,

 /*An indicator used to store whether a status report should be created or not.*/

 poll_triggered IndicatorType,

 /*This variable is used to record if a poll is to be transmitted or not.*/

 status_triggered IndicatorType,

 /*This variable is used to indicate whether a status report should be transmitted

 or not.*/

 suspend IndicatorType,

 /*This variable is used to indicate whether a local_suspend is in progress or not.*/

 piggyback IndicatorType;

 /*This variable indicates whether a piggybacked status report is included

 in the PDU or not.*/

[image: image29.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_Declarations(73)

DCL

/*Indicator declarations:___*/

 MRW_active IndicatorType,

 /*An indicator used to store whether the Timer_MRW is active or not.*/

 poll_active IndicatorType,

 /*An indicator used to keep track of whether the Poll_Timer is active or not.*/

 contains, mrw_ans IndicatorType,

 /*These indicators are used when checking the contents of a received

 status Pdu.*/

 discard_fli IndicatorType,

 /*This indicator is used to keep track of whether the first length indicator of a given

 PU should be discarded or not when the receiving window is moved.*/

 retrans IndicatorType,

 /*This indicator keeps track of whether retransmissions should occur or not.*/

 missing_pu_detected IndicatorType;

 /*This indicator is used to store whether he receive side has detected missing

 PUs.*/

[image: image30.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 4_Declarations(73)

DCL

/*Parameter declarations:____________________________________*/

 e_r ERParameterType,

 /*The parameter indicating the desired end state.*/

 poll_triggers PollTriggArrType,

 /*a configuration parameter dealing with when to issue poll requests.*/

 protocol_parameters ProtocolParametersStructType,

 /*A struct variable containing the protocol parameters set.*/

 status_triggers StatusTriggArrType,

 /*A configuraion parameter dealing with when to issue Status reports.*/

 timer_durations TimerDurationsStructType,

 /*A struct containing the various timer durations.*/

 discard DiscardArrayType,

 /*A configuration parameter identifying discard conditions.*/

 ciphering_mode CipheringModeType,

 /*The ciphering mode.*/

 ciphering_key CipheringKeyType,

 /*The ciphering key.*/

 ciphering_sequence_number CipheringSequenceNumberType,

 /*The ciphering sequence number.*/

 pdu_size OctetType,

 /*The size in octets of an AMD PDU. It is indicated by MAC layer*/

 pu_size OctetType,

 /*The size in octets of a PU.*/

 /*Sequence number variables:__________________________________*/

 n, sn_ack, sq SequenceNumberType,

 /*A local sequence number.*/

 poll_window SequenceNumberType,

 /*The size of the poll_window.*/

 receive_window SequenceNumberType,

 /*The receive window size.*/

 transmit_window SequenceNumberType,

 /*The transmit window size.*/

 polled_sn SequenceNumberType,

 /*This variable stores a sequence number associated with the PDU that contained

 a poll request.*/

 n_susp, sn_suspend SequenceNumberType,

 /*These variables contains sequence numbers used after a local suspend has

 been initiated.*/

 sn_mrw SequenceNumberType;

 /*This variable stores the sequence number associated with a MRW request.*/

[image: image31.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 5_Declarations(73)

DCL

 /*Local variables declarations:____________________________________*/

 logical_channel LogicalChannelType,

 /*The logical channel associated with transmissions.*/

 i, j INTEGER,

 /*A local counter.*/

 mui MuiType,

 /*The message uit identifier associated with a message to be transmitted.*/

 muis MuiArrayType,

 /*An array used to store message unit identifiers.*/

 tot_mui, k, tot_rem,

 n_sq PduIndexType,

 /*Counters used to manage the amount of PUs and SDUs received.*/

 tot_list PduIndexType,

 /*A local variable for maintaining knowledge of the total number of

 (SNi, Li)-pairs in a list super field.*/

 tot_bitmap, tot_rlist PduIndexType,

 /*A local variable for maintaining knowledge of the total length of a bitmap or codewords.*/

 n_sdu PduIndexType,

 /*A local variable for maintaining knowledge of the number of SDUs reassembled PUs.*/

 n_pdu PduIndexType,

 /*A local variable for maintaining knowledge of the number of AMD PDUs created from a SDU.*/

 n_pu PduIndexType,

 /*A local variable for maintaining knowledge of the number of PUs included in a AMD PDU.*/

 n_status PduIndexType,

 /*A local variable for maintaining knowledge of the number of STATUS PDUs

 which have been created.*/

 n_pu_per_tti PduIndexType,

 /*A local variable for maintaining knowledge of the number of PUs received within a TTI.*/

 end_state EndStateType,

 /*A variable used to ensure correct timer reset.*/

 poll_win REAL,

 /*A local variable used to store the current transmit window usage.*/

 bitmap IndicatorArrayType,

 /*This array of boolean values indicates losses experienced by the

 receiver.*/

 codewords IndicatorArrayType;

 /*This array is used to store the codewords in the rlsit super field.*/

[image: image32.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 6_Declarations(73)

DCL

 /*State variable declarations:___*/

vt_s SequenceNumberType,

 /*Send state variable: The sequence number of the next pu to be transmitted for the first time (i.e

 excluding retransmissions). It is updated after transmission of a PDU which includes not earlier

 transmitted PUs. The initial value of this variable is 0.*/

 vt_a SequenceNumberType,

 /*Acknowledge state variable: The sequence number of the next in-sequence PU expected to

 be acknowledged, thus forming the lower edge of the window of acceptable acknowledgements.

 The variable vt_a is updated based on receipt of a STATUS PDU including an ACK super-field.

 The initial value of this variable is 0.*/

 vt_ms SequenceNumberType,

 /*Maximum send state variable: The sequence number of the first PU not allowed by the peer

 receiver (i.e. the receiver will allow up t o vt_ms-1) vt_ms=vt_a+ window size. This value

 represents the upper edge of the transmit window. The transmitter shall not transmit a

 new PU if vt_s >= vt_ms. The variable vt_ms is updated based on receipt of a STATUS PDU

 incluiding an ACK and/or WINDOW super-field.*/

 vt_pu SequenceNumberType,

 /*This state variable is used when the poll every Poll_PU PU function is used. It is incremented with

 1 for each PU that is transmitted. It should be incremented for both new and retransmitted PUs.

 When it reaches Poll_PU a new poll is transmitted and the state variable is set to zero. The initial

 value of this variable is 0.*/

 vt_sdu SequenceNumberType,

 /*This state variable is used when the poll every Poll_SDU SDU function is used. It is incremented

 with 1 for each SDU that is transmitted. When it reaches Poll_SDU a new poll is transmitted and

 the state variable is set to zero. The poll bit should be set in the PU that contains the last segment

 of the SDU. The initial value of this variable is 0.*/

 vt_rst SequenceNumberType,

 /*Reset state variable: This variable is used to count the number of times a RESET PDU is transmit-

 ted. It is incremented with 1 each time a RESET PDU is transmitted. It is reset upon reception of

 a RESET ACK PDU. The initial value of this variable is 0.*/

 vr_r SequenceNumberType,

 /*Receive state variable: The sequence number of the next in sequence PU expected to be received.

 It is updated upon receipt of the next in-sequence pdu. The initial value of this variable is 0.*/

 vr_h SequenceNumberType,

 /*Highest expected state variable: The sequence number of the next highest expected pdu. The vari-

 able is updated whenever a new pdu is received with SN>=vr_h. The initial value of this variable is 0.*/

 vr_mr SequenceNumberType,

 /*Maximum acceptable receive state variable: The sequence number of the first pdu not allowed

 by the receiver (i.e. the receiver will allow up to vr_mr-1), vr_mr=vr_r+window size. The receiver

 shall discard PUs with SN>=vr_mr, (in one case, such a PU may cause the transmission of an

 unsolicited STATUS PDU).*/

 vr_ep SequenceNumberType;

 /*Estimated PDU counter state variable: The number of PUs that should be received yet as

 a consequence of the transmission of the latest STATUS PDU. In acknowledged mode,

 this state variable is updated at the end of each transmission time interval. It is decremented

 by the number of PUs that should have been received during the transmission time interval. If

 VR(EP) is equal to zero, then check if all PUs requested for retransmission in the latest STATUS

 PDU have been received. */

[image: image33.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 7_Declarations(73)

DCL

 /*State variable declarations:___*/

 vt_dat SequenceNumberType,

 /*This state variable counts the number of times a PU has been transmitted. There is one

 VT(DAT) for each PU and it is incremented each time the PU is transmitted. The initial

 value of this variable is 0.*/

 vt_mrw SequenceNumberType;

 /*It is used to count the number of times a MRW command is transmitted. VT(MRW) is

 incremented with 1 each time a MRW command is transmitted. VT(MRW) is reset upon

 the reception of a STATUS PDU which suggests the acknowledgement of a MRW

 command in the receiver or the occurrence of discarding new SDU. The initial value

 of this variable is 0.*/

[image: image34.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 8_Declarations(73)

TIMER

 Timer_Poll,

 /*This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a

 poll to the peer entity. The timer is stopped when receiving a STATUS PDU that contains an acknowledge-

 ment or negative acknowledgement of the AMD PDU that triggered the timer. The value of the timer is sig-

 nalled by RRC. If the timer expires and no STATUS PDU containing an acknowledgement or negative

 acknowledgement of the AMD PDU that triggered the timer has been received, the receiver is polled once

 more (either by the transmission of a PDU which was not yet sent, or by a retransmission) and the timer is

 restarted. If there is no PU to be transmitted and all PUs have already been acknowledged, the receiver shall

 not be polled. If a new poll is sent when the timer is running it is restarted.*/

 Timer_Poll_Prohibit,

 /*This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls within

 a certain period. A poll shall be delayed until the timer expires if a poll is triggered when the timer is active.

 Only one poll shall be transmitted when the timer expires even if several polls were triggered when the timer

 was active. If there is no PU to be transmitted and all PUs have already been acknowledged, a poll shall not

 be transmitted. This timer will not be stopped by a STATUS PDU. The value of the timer is signalled by RRC. */

 Timer_EPC,

 /*This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the

 time when the first retransmitted PU should be received after a STATUS has been sent. The timer is

 started when a STATUS report is transmitted and when it expires EPC can start decrease. The value

 of the timer is signalled by RRC.*/

 Timer_EPC_check,

 /*This timer is used to count down the state variable vr_ep at acertain interval.*/

 Timer_Discard(MuiType),

 /*This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU

 from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded. Following

 which, if the SDU discard function uses explicit signalling, a Move Receiving Window request is sent to the receiver.

 The value of the timer is signalled by RRC.*/

 Timer_Poll_Periodic;

 /*This timer is only used when the timer based polling is used. The timer is started when the RLC entity is created.

 Each time the timer expires a poll is transmitted and the timer is restarted. If there is no PU to be transmitted and

 all PUs have already been acknowledged, a poll shall not be transmitted and the timer shall only be restarted.

 The value of the timer is signalled by RRC.*/

[image: image35.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 9_Declarations(73)

TIMER

 Timer_Status_Prohibit,

 /*This timer is only used when the STATUS PDU prohibit function is used. It prohibits the receiving side

 from sending STATUS PDUs. The timer is started when a STATUS PDU is transmitted and no new STATUS

 PDU can be transmitted before the timer has expired. The value of the timer is signalled by RRC.*/

 Timer_Status_Periodic,

 /*This timer is only used when timer based STATUS PDU sending is used. The timer is started when the RLC

 entity is created. Each time the timer expires a STATUS PDU is transmitted and the timer is restarted. The

 value of the timer is signalled by RRC.*/

 Timer_MRW,

 /*This timer is used as part of the Move Receiving Window protocol. It is used to trigger the retransmission of

 a STATUS PDU containing an MRW SUFI field. The timer is started when the STATUS PDU is first transmitted.

 Each time the timer expires the STATUS PDU is retransmitted and the timer is restarted. It shall be stopped when

 a STATUS PDU is received that indicates that VR(R) ³ SN_MRW. It shall also be stopped if a new MRW procedure

 is triggered whilst it is running.*/

 Timer_RST;

 /*It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET

 PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU

 will be retransmitted.*/

[image: image36.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_LocalProcedures(73)

Sdu_am_segmentation

This procedure manages segmentation and concatenation of

sdus. If the poll_trigger EVERY_POLL_SDU is used, poll bit is

set in accordance with the value POLL_SDU. In case a SDU is

smaller than a PU and waiting next SDU, n_pdu=0 is returned.

FPAR

 IN/OUT sdu OctetType,

 IN cfn IndicatorType,

 IN/OUT np SequenceNumberType,

 IN/OUT pdus AmPduArrayType,

 IN/OUT qu Queue,

 IN poll_trigg PollTriggArrType,

 IN prtcl_parmeter ProtocolParameterStructType,

 IN/OUT vt_sdu SequenceNumberType,

 IN cip_m CipheringModeType,

 IN cip_k CipheringKeyType,

 IN cip_s CipheringSequenceNumberType,

 IN/OUT mui MuiType,

 IN pdu_s OctetType,

 IN pu_s OctetType;

Set_sequence_number

This procedure sets the sequence numbers within an AmPdu.

FPAR

 IN/OUT pdu AmPdu,

 IN vt_s SequenceNumberType;

Read_pdu

This procedure retrieves a copy of the first entry in the queue

indicated as parameter to the procedure.

FPAR

 IN/OUT qu Queue,

 IN/OUT am_pdu AmPdu;

[image: image37.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_LocalProcedures(73)

Place_several_in_queue

This procedure places several pus in the indicated queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayStructType;

Place_in_queue

This procedure places the indicated pdu within the queue

given as parameter to the procedure.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu;

Place_piggyback_in_queue

This procedure checks whether a STATUS PDU can be piggybacked

onto the first AMD PDU within a queue or not. If SN of the AMD PDU is

smaller than VT(MS) and it has enogh space for piggyback, this

procedure returns "YES".

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN/OUT stat_pdu StatPdu,

 IN vt_ms SequenceNumberType,

 IN/OUT pos IndicatorType;

Place_in_mui_queue

This procedure places a message identifier in the sdu queue.

FPAR

IN/OUT qu Queue,

IN mui MuiType;

Place_in_transmitted_queue

This procedure stores the individual pu:s within the transmission

queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu;

[image: image38.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_LocalProcedures(73)

Remove_from_queue

This procedure removes the first PDU in the queue and

returns the number of PUs within the removed PDU.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu,

 IN pdu_size OctetType,

 IN pu_sze OctetType,

 IN/OUT n_pu PduIndexType;

Remove_identified_from_queue

This procedure removes a pu with a given sequence number

from the queue identified.

FPAR

 IN/OUT qu Queue,

 IN sn SequenceNumberType,

 IN/OUT pu AmPuStructType;

Remove_acks_and_get_muis

This procedure removes all pus that have been acknowledged

from the indicated queue and stores the muis that are removed

from the queue in a special array.

FPAR

 IN/OUT tx_qu Queue,

 IN re_qu Queue,

 IN sn SequenceNumberType,

 IN/OUT tot PduIndexType,

 IN/OUT muis MuiArrayType,

 IN/OUT poll_tot PduIndexType,

 IN/OUT rem_poll SequenceNumberArrayType;

[image: image39.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 4_LocalProcedures(73)

Remove_list_from_transmitted_queue

This procedure checks whether each sequence number of missing PU

informed by LIST SUFI is within the value between vt_a and vt_s, and

removes a list of pdus indicated by sequence numbersfrom the

 transmission queue and retransmission_queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN sq SequenceNumberType,

 IN/OUT no PduIndexType,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayStructType;

Remove_bitmap_from_transmitted_queue

This procedure checks whether each sequence number of missing PU

informed by LIST SUFI is within the value between vt_a and vt_s, and

removes a list of pdus in accordance with a bitmap from the

transmission queue and retranmission queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN sq SequenceNumberType,

 IN/OUT no PduIndexType,

 IN/OUT bitmap IndicatorArrayType,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayStructType;

Remove_mui_from_queue

This procedure removes all PUs associated with a given mui

from the transmitted_queue.

FPAR

 IN/OUT mui MuiType,

 IN/OUT tx_qu Queue,

 IN/OUT retx_qu Queue;

[image: image40.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 5_LocalProcedures(73)

Remove_rlist_from_transmitted_queue

This procedure checks whether each sequence number of missing PU

informed by LIST SUFI is within the value between vt_a and vt_s, and

removes a list of pdus in accordance with a codewords from the

transmission queue and retranmission queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN sq SequenceNumberType,

 IN/OUT no PduIndexType,

 IN/OUT codewords IndicatorArrayType,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayType,

 IN/OUT poss IndicatorType;

Remove_all_below_mrw_from_queue

This procedure removes all PUs below the move receiving window

from all receiver queues.

FPAR

 IN/OUT r_qu Queue,

 IN/OUT a_qu Queue,

 IN/OUT sn SequenceNumberType;

Remove_identified_from_mui_queue

This procedure removes a specific mui from the mui

queue used to keep track of Timer_Discard instances.

FPAR

 IN/OUT sdu_queue Queue,

 IN mui MuiType;

[image: image41.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 6_LocalProcedures(73)

Virtual

Transmit_am_pdu

This procedure manages transmission of an AMD PDU across the

proper SAP.

FPAR

IN pdu AmPdu,

IN ch LogicalChannelType;

Virtual

Transmit_reset

This procedure transmits a RESET PDU on the correct logical channel.

FPAR

IN ch LogicalChannelType;

Virtual

Transmit_reset_ack

This procedure transmits a RESET ACK PDU on the correct

logical channel.

FPAR

IN ch LogicalChannelType;

Virtual

Transmit_status

This procedure transmits a STATUS PDU on the correct logical

channel.

FPAR

IN pdu StatPdu,

IN ch LogicalChannelType;

Reassemble_am_pu

This procedure reassembles Rlc pdu contents into Sdu:s as

they arrive.

FPAR

 IN/OUT qu Queue,

 IN/OUT comp IndicatorType,

 IN/OUT sdus OctetArrayType,

 IN/OUT n_sdu PduIndexType;

[image: image42.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 7_LocalProcedures(73)

Extract_status_from_pdu

This procedure extracts piggybacked status information from

the received PDU.

FPAR

IN/OUT pdu AmPdu,

IN/OUT st_pdu StatPdu;

Extract_pus

This procedure places the pus in the received AMD PDU in an array

in order to make them available for processing one by one and checks

the number of PUs in the AMD PDU.

FPAR

 IN/OUT pdu AmPdu,

 IN/OUT pus AmPuArrayType,

 IN/OUT n_pu PduIndexType;

Initialise_state_variables

This procedure sets the state variables appropriately.

FPAR

 IN/OUT vt_s, vt_ms, vt_sdu, vt_pu, vt_a,

 vr_r, vr_h, vr_mr SequenceNumberType;

Initialise_vtDAT

This procedure initialises the retransmission counters

associated with the PUs within the PDU.

FPAR

IN/OUT pdu AmPdu;

Increment_vtDAT

This procedure increments the retransmission counters

associated with the PUs within the PDU.

FPAR

IN/OUT pdu AmPdu;

Queue_initialisations

This procedure initialises all queues needed within the

process.

FPAR

IN/OUT a_qu, t_qu, retx_qu, rx_qu,

 as_qu, sdu_qu Queue;

[image: image43.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 8_LocalProcedures(73)

Create_status

This procedure creates a status report based on available information.

The information can be split into several STATUS PDUs if it can not be

mapped onto one STATUS PDU. At the same time, vr_ep is set equal to

the number of requested PUs.

FPAR

 IN vr_r SequenceNumberType,

 IN vr_h SequenceNumberType,

 IN rx_win SequenceNumberType,

 IN pdu_size OctetType,

 IN rx_qu Queue,

 IN/OUT stat_pdus StatusPduArrayType,

 IN/OUT vr_ep SequenceNumberType,

 IN/OUT n_stat PduIndexType,

 IN sn_mrw SequenceNumberType;

Exists_in_receiver_queue

This procedure checks if an identified pu exists within the

receiver queue.

FPAR

 IN n SequenceNumberType,

 IN/OUT qu Queue,

 IN/OUT exists IndicatorType;

Estimate_number_of_pus

This procedure estimates the number of PUs that have been received

within aTTI.

FPAR

 IN/OUT n_pu_tti PduIndexType;

Get_sn_mrw

This procedure sets the value of sn_mrw according to the queue status.

FPAR

 IN/OUT sn_mrw SequenceNumberType,

 IN am_qu Queue,

 IN tx_qu Queue,

 IN retx_qu Queue;

[image: image44.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 9_LocalProcedures(73)

Check_status_creation

This procedure checks if a status report should be generated.

FPAR

 IN vr_r SequenceNumberType,

 IN vr_h SequenceNumberType,

 IN qu Queue,

 IN/OUT status IndicatorType;

Check_if_queue_empty

This procedure checks if there are any PDUs remaining in the

queue given as parameter to the procedure.

FPAR

 IN qu Queue,

 IN/OUT empty IndicatorType;

Check_and_delete_timer_discards

This procedure checks if any timer polls are active and

returns the first message identifier associated with the

discard. If the queue is empty, empty=YES is returned.

FPAR

IN/OUT qu Queue,

IN mui MuiType,

IN/OUT empty IndicatorType;

Check_if_piggyback

This procedure checks if the current AMD PDU to be transmitted

contains a piggybacked STATUS PDU or not

FPAR

 IN pdu AmPdu,

 IN/OUT piggyback IndicatorType;

Check_if_MRW_answer

This procedure checks if the peer has responded to a MRW command.

FPAR

 IN sn_mrw SequenceNumberType,

 IN status_pdu StatPdu,

 IN/OUT mrw_ans IndicatorType;

[image: image45.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 10_LocalProcedures(73)

Update_state_variables

This procedure updates the state variables vt_a and vt_s.

FPAR

 IN/OUT vt_a SequenceNumberType,

 IN/OUT vt_ms SequenceNumberType,

 IN/OUT tx_win SequenceNumberType,

 IN am_qu Queue,

 IN/OUT tx_qu Queue,

 IN/OUT retx_qu Queue;

Set_poll_bit_in_queue

This procedure ensures that a poll bit is set in the amd_queue

FPAR

IN/OUT qu Queue;

Contains_polledSN

This procedure checks if the sequence number associated with

a poll request has been acknowledged in the status pdu.

FPAR

 IN polled_sn SequenceNumberType,

 IN status_pdu StatPdu,

 IN/OUT contains IndicatorType;

Calculate_polling_window

This procedure calculates the current usage of the transmit window.

FPAR

IN/OUT pdu AmPdu,

IN/OUT poll_win Real,

IN vt_ms SequenceNumberType,

IN tx_win SequenceNumberType;

[image: image46.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 11_LocalProcedures(73)

Place_in_receive_side_queue

This procedure places a PU in one of the receive side queues.

FPAR

 IN/OUT qu Queue,

 IN/OUT pu AmPuStructType;

Place_in_retransmission_queue

This procedure places a PU in the retransmission queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT pu AmPuStructType;

Remove_from_retransmission_queue

This procedure retrieves an Amd PDU from the retransmission

queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu,

 IN pdu_s OctetType,

 IN pu_s OctetType,

 IN/OUT n_pu PduIndexType;

Remove_any_from_transmitted_queue

This procedure retrieves an Amd PU from the transmitted

queue. Note: It is implementation matter which Amd PU shall

be retireved (e.g. the oldest Amd PU).

FPAR

IN/OUT qu Queue,

IN/OUT pu AmPuStructType;

[image: image47.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_ProcessTypeStart(73)

Queue_initialisations(amd_queue, transmitted_queue,

retransmission_queue, receiver_queue,

assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms, vt_sdu, vt_pu,

vt_a, vt_rst, vt_mrw, vr_r, vr_h, vr_mr, vr_ep)

end_state:=NULL

1_TimerInit

[image: image48.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerInit(73)

1_TimerInit

status_periodic_active

Reset(Timer_Status_Periodic)

status_periodic_active:=NO

poll_periodic_active

Reset(Timer_Poll_Periodic)

poll_periodic_active:=NO

epc_active

Reset(Timer_EPC)

epc_active:=NO

poll_prohibit_active

Reset(Timer_Poll_Prohibit)

poll_prohibit_active:=NO

2_TimerInit

YES

YES

YES

YES

NO

NO

NO

NO

[image: image49.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_TimerInit(73)

2_TimerInit

Check_and_delete_timer_discards

(mui_queue, mui, empty)

empty

Reset(Timer_Discard(mui))

mrw_active

Reset(Timer_MRW)

mrw_active:=NO

poll_active

Reset(Timer_Poll)

poll_active:=NO,

polled_sn:=0

3_TimerInit

NO YES

YES

NO

YES NO

[image: image50.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_TimerInit(73)

3_TimerInit

status_prohibit_active

Reset(Timer_Status_Prohibit)

status_prohibit_active:=NO

rst_active

Reset(Timer_RST)

rst_active:=NO

end_state

Set(NOW+timer_durations!rst,

Timer_RST)

rst_active:=YES

Reset_pending Acknowledged_data_transfer_ready Null

YES

YES

RST

ACK NULL

NO

NO

[image: image51.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_Null(73)

Null

Crlc_amconfig_req(e_r, logical_channel,

poll_triggers, status_triggers, timer_durations,

protocol_parameters, discard, ciphering_mode,

ciphering_key, ciphering_sequence_number,

pu_size)

e_r

The receive window can be updated dynamically

according to the status of the receiver.

transmit_window:=protocol_parameters!window_size,

receive_window:=protocol_parameters!window_size

vt_ms:=vt_s+transmit_window,

vr_mr:=vr_r+receive_window

poll_triggers(TIMER_BASED)

Set(NOW+timer_durations!poll_periodic,

Timer_Poll_Periodic)

poll_periodic_active:=YES

status_triggers(TIMER_BASED)

Set(NOW+timer_durations!status_periodic,

Timer_Status_Periodic)

status_periodic_active:=YES

- Acknowledged_data_transfer_ready

ESTABLISH

RELEASE

YES

NO

YES

NO

[image: image52.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_DataTransferReadyAndLocalSuspend(73)

1_AckDataTransferReady

Acknowledged_data_transfer_ready,

Local_suspend

Crlc_amconfig_req(e_r, logical_channel,

poll_triggers, status_triggers, timer_durations,

protocol_parameters, discard, ciphering_mode,

ciphering_key, ciphering_sequence_number,

pu_size)

Queue_initialisations(amd_queue, transmitted_queue,

retransmission_queue, receiver_queue,

assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms, vt_sdu, vt_pu,

vt_a, vt_rst, vt_mrw, vr_r, vr_h, vr_mr, vr_ep)

e_r

end_state:=ACK end_state:=NULL

1_TimerInit

ESTABLISH

RELEASE

[image: image53.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_DataTransferReadyAndLocalSuspend(73)

Acknowledged_data_transfer_ready,

Local_suspend

Reset_am

Queue_initialisations(amd_queue, transmitted_queue,

retransmission_queue, receiver_queue,

assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms, vt_sdu, vt_pu,

vt_a, vt_rst, vt_mrw, vr_r, vr_h, vr_mr, vr_ep)

Transmit_reset_ack(logical_channel)

Crlc_status_ind(EVC)

VIA Cont

end_state:=ACK

1_TimerInit

Reset_am_ack

-

[image: image54.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_AcknowledgedDataTransferReady(73)

Acknowledged_data_transfer_ready

Crlc_suspend_req(n_susp)

suspend:=YES

Crlc_suspend_cnf(vt_s)

TO SENDER

sn_suspend:=vt_s+n_susp

Local_suspend

[image: image55.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_LocalSuspend(73)

Local_suspend

Crlc_resume_req

suspend:=NO

Acknowledged_data_transfer_ready

[image: image56.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_RlcAmDataReq(73)

Acknowledged_data_transfer_ready,

Local_suspend

Rlc_AmData_req(sdu, cnf, mui)

discard(TIMER_BASED)

Set(NOW+timer_durations!discard,

Timer_Discard(mui))

Place_in_mui_queue(mui_queue, mui)

Sdu_am_segmentation(sdu, cnf, n_pdu, pdus,

amd_queue, poll_triggers, protocol_parameters, vt_sdu,

ciphering_mode, ciphering_key,

ciphering_sequence_number, mui, pdu_size, pu_size)

n_pdu=0

The parameter "pdu_size" is indicated by MAC.

2_RlcAmDataReq -

YES

NO

YES

NO

[image: image57.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_RlcAmDataReq(73)

2_RlcAmDataReq

n:=1

amd_pdu:=pdus(n)

Set_sequence_number(amd_pdu,

vt_s)

Place_in_queue(

amd_queue, amd_pdu)

AmdPduQueuedUp

TO SELF

n<n_pdu

n:=n+1 -

YES

NO

[image: image58.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_AmdPduQueuedUp(73)

Acknowledged_data_transfer_ready,

Local_suspend

AmdPduQueuedUp

Check_if_queue_empty(retransmission_queue,

empty)

empty

Check_if_queue_empty(

amd_queue, empty)

empty

Read_pdu(amd_queue, amd_pdu)

suspend

sn_suspend>

amd_pdu!sn

amd_pdu!sn<vt_ms

Calculate_polling_window(

amd_pdu, poll_win, vt_ms,

transmit_window)

AmdPduQueuedUp

TO SELF

Remove_from_queue(

amd_queue, amd_pdu,

pdu_size, pu_size, n_pu)

vt_pu:=

vt_pu+n_pu

 The pdu_size is indicated by MAC.

- 2_AmdPduQueuedUp 5_AmdPduQueuedUp

YES

NO

NO

YES

YES

NO

YES

NO

YES

NO

[image: image59.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_AmdPduQueuedUp(73)

2_AmdPduQueuedUp

Check_if_piggyback(amd_pdu, piggyback)

piggyback

status_triggers(STATUS_PROHIBIT)

Set(NOW+

timer_durations!status_prohibit,

Timer_Status_Prohibit)

status_prohibit_active:=YES

status_triggers(EPC)

Set(NOW+timer_durations!epc,

Timer_EPC)

epc_active:=YES

3_AmdPduQueuedUp

YES

NO

YES

NO

YES NO

[image: image60.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_AmdPduQueuedUp(73)

3_AmdPduQueuedUp

amd_pdu!p

poll_triggers(LAST_PU_IN_BUFFER)

Check_if_queue_empty(amd_queue, empty)

empty

poll_triggers(POLLING_WINDOW)

poll_win>=

protocol_parameters!poll_window

poll_triggers(EVERY_POLL_PU)

vt_pu>=protocol_parameters!poll_pu

vt_pu:=0

amd_pdu!p

:=YES

Initialise_vtDAT(amd_pdu)

retrans:=NO

4_AmdPduQueuedUp

NO

YES

YES

NO

NO

YES

YES

NO

NO

YES

YES

NO YES

NO

[image: image61.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 4_AmdPduQueuedUp(73)

4_AmdPduQueuedUp

amd_pdu!p

poll_triggers(POLL_PROHIBIT)

poll_prohibit_active

poll_triggered

:=YES

Set(NOW+timer_durations!poll_prohibit,

Timer_poll_prohibit)

amd_pdu!p:=

NO

poll_prohibit_active:=YES

Set(NOW+timer_durations!poll, Timer_Poll)

poll_active:=YES,

polled_sn:=amd_pdu!sn

Transmit_am_pdu(amd_pdu, logical_channel)

Increment_vtDAT(amd_pdu)

retrans

amd_pdu!p

:=NO

amd_pdu!p:=NO,

vt_s:=vt_s+n_pu

Place_in_transmitted_queue(

transmitted_queue, amd_pdu)

-

YES

NO

YES

NO YES

NO

YES

NO

[image: image62.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 5_AmdPduQueuedUp(73)

5_AmdPduQueuedUp

Remove_from_retransmission_queue(

retransmission_queue, amd_pdu,

pdu_size, pu_size, n_pu)

The pdu_size is indicated by MAC.

vt_pu:=

vt_pu+n_pu

discard(TIMER_BASED)

amd_pdu!vt_dat>protocol_parameters!maxDat

discard(MAXDAT)

1_TransmitRST 1_TimerDiscard 6_AmdPduQueuedUp

NO

NO

NO YES

YES

YES

[image: image63.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 6_AmdPduQueuedUp(73)

6_AmdPduQueuedUp

Check_if_piggyback(amd_pdu, piggyback)

piggyback

status_triggers(STATUS_PROHIBIT)

Set(NOW+

timer_durations!status_prohibit,

Timer_Status_Prohibit)

status_prohibit_active:=YES

status_triggers(EPC)

Set(NOW+timer_durations!epc,

Timer_EPC)

epc_active

:=YES

7_AmdPduQueuedUp

YES

YES

YES NO

NO

NO

[image: image64.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 7_AmdPduQueuedUp(73)

7_AmdPduQueuedUp

amd_pdu!p

poll_triggers(LAST_PU_IN_RETRANSBUFFER)

check_if_queue_empty(

retransmission_queue, empty)

empty

poll_triggers(EVERY_POLL_PU)

vt_pu>=protocol_parameters!poll_pu

vt_pu:=0

amd_pdu!p

:=YES

retrans:=YES

4_AmdPduQueuedUp

NO

YES

YES

NO

NO

YES

YES

NO

YES

NO

[image: image65.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TransmitRST(73)

1_TransmitRST

Queue_initialisations(amd_queue,

transmitted_queue, retransmission_queue,

receiver_queue, assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms,

vt_sdu, vt_pu, vt_a, vt_rst, vt_mrw,

vr_r, vr_h, vr_mr, vr_ep)

vt_rst:=1

Transmit_reset(logical_channel)

Crlc_status_ind(EVC)

VIA Cont

end_state:=RST

1_TimerInit

[image: image66.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPdu(73)

Acknowledged_data_transfer_ready,

Local_suspend

StatusPdu(status_pdu)

poll_active

Contains_polledSN(polled_sn,

status_pdu, contains)

contains

Reset

(Timer_Poll)

poll_active

:=NO

i:=1,

sn_ack:=0

mrw_active

Check_if_MRW_answer(sn_mrw,

status_pdu, mrw_ans)

mrw_ans

Reset

(Timer_MRW)

mrw_active

:=NO

2_StatusPdu

YES

NO

YES

NO

YES

NO

YES

NO

[image: image67.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_StatusPdu(73)

2_StatusPdu

status_pdu!sufis(i)!typ

1_Mrw 1_Mrwnifl

1_List 1_Bitmap 1_Rlist 1_Ack 1_Window 3_StatusPdu

MRW MRW_N_IFL

LIST BITMAP RLIST ACK WINDOW NO_MORE

[image: image68.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPduList(73)

1_List

tot_list:=status_pdu!sufis(i)!length

k:=1

sq:=status_pdu!sufis(i)!lst(k)!sn,

n_sq:=status_pdu!sufis(i)!lst(k)!l

Remove_list_from_transmitted_queue(

transmitted_queue, retransmission_queue,

sq, n_sq, tot_rem, rem_pus, possible)

possible

Place_several_in_queue(

retransmission_queue,

tot_rem, rem_pus)

k=tot_list

i:=i+1 k:=k+1

AmdPduQueuedUp

TO SELF

1_TransmitRST 2_StatusPdu

YES

NO

YES

NO

[image: image69.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPduBitmap(73)

1_Bitmap

tot_bitmap:=status_pdu!sufis(i)!length,

sq:=status_pdu!sufis(i)!fsn,

bitmap:=status_pdu!sufis(i)!bitmap

Remove_bitmap_from_transmitted_queue(

transmitted_queue, retransmission_queue,

sq, tot_bitmap, bitmap, tot_rem, rem_pus, possible)

possible

i:=i+1

Place_several_in_queue(

retransmission_queue,

tot_rem, rem_pus)

AmdPduQueuedUp

TO SELF

1_TransmitRST 2_StatusPdu

YES

NO

[image: image70.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPduRlist(73)

1_Rlist

tot_bitmap:=status_pdu!sufis(i)!length,

sq:=status_pdu!sufis(i)!fsn,

codewords:=status_pdu!sufis(i)!cw

Remove_rlist_from_transmitted_queue(

transmitted_queue, retransmission_queue,

sq, tot_rlist, codewords, tot_rem, rem_pus, possible)

possible

i:=i+1

Place_several_in_queue(

retransmission_queue,

tot_rem, rem_pus)

AmdPduQueuedUp

TO SELF

1_TransmitRST 2_StatusPdu

YES

NO

[image: image71.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPduAck(73)

1_Ack

sn_ack:=status_pdu!sufis(i)!lsn

vt_a<=sn_ack AND sn_ack<=vt_s

i:=i+1

1_TransmitRST 3_StatusPdu

YES

NO

[image: image72.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPduWindow(73)

1_Window

transmit_window:=status_pdu!sufis(i)!wsn

vt_ms:=vt_a+transmit_window

i:=i+1

2_StatusPdu

[image: image73.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_StatusPduMrw(73)

1_Mrw

discard_fli:=NO

vr_r>=status_pdu!sufis(i)!sn_mrw

vr_r:=status_pdu!sufis(i)!sn_mrw

vr_h<vr_r

vr_mr:=vr_r+receive_window

Remove_all_below_mrw_from_queue(discard_fli,

receiver_queue, assembly_queue, vr_r)

i:=i+1

discard_fli:=NO

2_Mrw

vr_h:=vr_r,

vr_mr:=vr_r+receive_window

1_Mrwnifl

discard_fli:=YES

NO

NO

YES

YES

[image: image74.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_StatusPduMrw(73)

2_Mrw 2A_Mrw

epc_active

The pdu_size is indicated by MAC.

status_triggered:=YES

Create_status(vr_r, vr_h,

receive_window, pdu_size,

receiver_queue, status_pdus,

vr_ep, n_status, sn_mrw)

j:=1

tx_status_pdu:=status_pdus(j)

Place_piggyback_in_queue(amd_queue,

retransmission_queue, tx_status_pdu,

vt_ms, possible)

2_StatusPdu 3_Mrw

YES

NO

[image: image75.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_StatusPduMrw(73)

3_Mrw

possible

j=n_status

Transmit_status(tx_status_pdu, logical_channel)

j=n_status

j:=j+1 status_triggers(EPC)

Set(NOW+timer_durations!epc, Timer_EPC)

epc_active:=YES

status_triggers(STATUS_PROHIBIT)

Set(NOW+timer_durations!status_prohibit,

Timer_Status_prohibit)

status_prohibit_active:=YES

2_StatusPdu 2A_Mrw 2_StatusPdu

YES

NO

NO

YES

NO

YES

YES

NO

YES

NO

[image: image76.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_StatusPdu(73)

3_StatusPdu

sn_ack=0

Remove_acks_and_get_muis(

transmitted_queue,retransmission_queue,

sn_ack, tot_mui, muis)

tot_mui=0

j:=1

muis(j)!cnf

Rlc_AmData_conf(muis(j)!mui)

VIA Am

Reset(Timer_Discard(muis(j)!mui))

j=tot_mui

mrw_active

Update_state_variables(vt_a, vt_ms,

transmit_window, amd_queue,

transmitted_queue, retransmission_queue)

vt_a=vt_s

poll_triggered:=NO

4_StatusPdu

j:=j+1

NO

NO

YES

YES

NO

YES

NO

YES

NO

NO

YES

YES

[image: image77.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 4_StatusPdu(73)

4_StatusPdu

poll_active

Check_if_queue_empty(

retransmission_queue, empty)

empty

Check_if_queue_empty(

transmitted_queue, empty)

empty

Remove_identified_from_queue(

transmitted_queue, vt_s-1, amd_pu)

Place_in_retransmission_queue(

retransmission_queue, amd_pu)

AmdPduQueuedUp

TO SELF

-

NO

YES

NO

YES

NO

YES

[image: image78.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerPoll(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_Poll

poll_prohibit_active

poll_triggered:=NO,

poll_active:=NO

Check_if_queue_empty(retransmission_queue,

empty)

empty

Check_if_queue_empty(

amd_queue, empty)

empty

vt_s<vt_ms

Set_poll_bit_in_queue(

amd_queue)

- 2_TimerPoll

Set_poll_bit_in_queue(

retransmission_queue)

poll_triggered:=YES,

poll_active:=NO

-

1_TimerPoll

NO

YES

NO

YES

NO

YES

NO

YES

[image: image79.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_TimerPoll(73)

2_TimerPoll

Check_if_queue_empty(transmitted_queue,

empty)

empty

Remove_any_from_transmitted_queue(

transmitted_queue, amd_pu)

amd_pu!p:=YES

Place_in_retransmission_queue(

retransmission_queue, amd_pu)

AmdPduQueuedUp

TO SELF

-

NO

YES

[image: image80.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerPollProhibit(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_Poll_Prohibit

poll_prohibit_active:=NO

poll_triggered

1_TimerPoll -

YES

NO

[image: image81.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerStatusProhibit(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_Status_Prohibit

status_prohibit_active:=NO

-

[image: image82.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerStatusPeriodic(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_Status_Periodic

Set(NOW+timer_durations!status_periodic,

Timer_Status_Periodic)

status_prohibit_active

epc_active

status_triggered:=

YES

- 1_TimerStatus

NO

YES

NO

YES

[image: image83.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerEpc(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_EPC

epc_active

:=NO

Estimate_number_of_pus(n_pu_per_tti)

vr_ep:=vr_ep-n_pu_per_tti

vr_ep<=0

Set(NOW+timer_durations!epc_check,

Timer_EPC_check)

2_TimerEPC -

NO

YES

[image: image84.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerEpcCheck(73)

2_TimerEPC

status_triggered

Check_status_creation(

vr_r, vr_h, receiver_queue,

create_status)

create_status

1_TimerStatus -

status_triggered:=NO

Acknowledged_data_transfer_ready,

Local_suspend

Timer_EPC_check

Estimate_number_of_pus(n_pu_per_tti)

vr_ep:=vr_ep-n_pu_per_tti

vr_ep<=0

Set(NOW+timer_durations!epc_check,

Timer_EPC_check)

NO

YES

NO

YES

YES NO

[image: image85.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerStatus(73)

1A_TimerStatus

tx_status_pdu:=status_pdus(j)

Place_piggyback_in_queue(amd_queue,

retransmission_queue, tx_status_pdu,

vt_ms, possible)

2_TimerStatus

1_TimerStatus

Create_status(vr_r, vr_h, receive_window,

pdu_size, receiver_queue, status_pdus,

vr_ep, n_status, sn_mrw)

j:=1

[image: image86.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_TimerStatus(73)

2_TimerStatus

possible

j=n_status

j:=j+1

1A_TimerStatus -

Transmit_status(tx_status_pdu, logical_channel)

j=n_status

status_triggers(EPC)

Set(NOW+timer_durations!epc, Timer_EPC)

epc_active:=YES

status_triggers(STATUS_PROHIBIT)

Set(NOW+timer_durations!status_prohibit,

Timer_Status_prohibit)

status_prohibit_active:=YES

-

YES

NO

YES

NO

NO

YES

YES

YES

NO

NO

[image: image87.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerPollPeriodic(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_Poll_Periodic

poll_triggered:=YES

Set(NOW+timer_durations!poll_periodic,

Timer_Poll_Periodic)

1_TimerPoll

[image: image88.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerDiscard(73)

1_TimerDiscard

Acknowledged_data_transfer_ready,

Local_suspend

Timer_Discard(mui)

Remove_mui_from_queue(mui, amd_queue,

transmitted_queue, retransmission_queue)

Get_sn_mrw(sn_mrw, amd_queue,

transmitted_queue, retransmission_queue)

Remove_identified_from_mui_queue(

mui_queue, mui)

discard(EXPLICIT)

epc_active

Set(NOW+timer_durations!mrw, Timer_MRW)

mrw_active

:=YES

vt_mrw:=1

- 1_TimerStatus

YES NO

NO

YES

[image: image89.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_TimerMRW(73)

Acknowledged_data_transfer_ready,

Local_suspend

Timer_MRW

vt_mrw:=

vt_mrw+1

vt_mrw<protocol_parameters!maxMRW

Transmit_status(tx_status_pdu,

logical_channel)

Set(NOW+timer_durations!mrw,

Timer_MRW)

- 1_TransmitRST

YES

NO

[image: image90.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_AmdPdu(73)

1_AmdPdu

Acknowledged_data_transfer_ready,

Local_suspend

AmdPdu(amd_pdu)

amd_pdu!length=PIGGYBACKED

Extract_status_from_pdu(amd_pdu, status_pdu)

StatusPdu(status_pdu)

TO SELF

Extract_pus(amd_pdu, pus, n_pu)

i:=1

i>n_pu

i:=i+1

amd_pu:=pus(i)

6_AmdPdu 2_AmdPdu

YES

NO

NO

YES

[image: image91.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_AmdPdu(73)

2_AmdPdu

amd_pu!sn<vr_mr

amd_pu!sn=vr_r

amd_pu!sn=vr_h

Place_in_receive_side_queue(

assembly_queue, amd_pu)

Reassemble_am_pu(

assembly_queue, complete,

sdus, n_sdu)

complete

j:=1

sdu:=sdus(j)

Rlc_AmData_ind(sdu)

VIA Am

j=n_sdu

j:=j+1

vr_r:=amd_pu!sn+1,

vr_h:=amd_pu!sn+1,

vr_mr:=vr_r+receive_window

5_AmdPdu 1_AmdPdu 3_AmdPdu 4_AmdPdu

YES NO

YES

NO

YES NO

YES

NO

NO

YES

[image: image92.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 3_AmdPdu(73)

3_AmdPdu

Place_in_receive_side_queue(

assembly_queue, amd_pu)

Reassemble_am_pu(

assembly_queue, complete, sdus, n_sdu)

complete

j:=1

sdu:=sdus(j)

Rlc_AmData_ind(sdu)

VIA Am

j=n_sdu

j:=j+1

vr_r:=vr_r+1,

vr_mr:=vr_r+receive_window

Exists_in_receiver_queue(

vr_r, receiver_queue, exists)

exists

Remove_identified_from_queue(

receiver_queue, vr_r, amd_pu)

1_AmdPdu

YES

NO

YES

YES NO

NO

[image: image93.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 4_AmdPdu(73)

4_AmdPdu

amd_pu!sn<vr_r

amd_pu!sn=vr_h

Place_in_receive_side_queue(

receiver_queue, amd_pu)

vr_h:=vr_h+1

1_AmdPdu

vr_h<amd_pu!sn

Place_in_receive_side_queue(

receiver_queue, amd_pu)

vr_h:=amd_pu!sn+1

missing_pu_detected:=YES

1_AmdPdu

Exists_in_receiver_queue(amd_pu!sn,

receiver_queue, exists)

exists

Place_in_receive_side_queue(

receiver_queue, amd_pu)

1_AmdPdu 1_AmdPdu

NO

YES

NO

YES

NO

NO

YES

YES

[image: image94.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 5_AmdPdu(73)

5_AmdPdu

vr_h<vr_mr

missing_pu_detected:=YES

vr_h:=vr_mr

1_AmdPdu

YES NO

[image: image95.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 6_AmdPdu(73)

6_AmdPdu

amd_pdu!p

status_prohibit_active

epc_active

status_triggered:=

YES

- 1_TimerStatus - 7_AmdPdu

YES

NO

YES

NO

YES

NO

[image: image96.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 7_AmdPdu(73)

7_AmdPdu

missing_pu_detected

status_triggers(DETECT_MISSING_PU)

missing_pu_detected

:=NO

-

status_prohibit_active

epc_active

status_triggered:=

YES

missing_pu_detected:=NO

1_TimerStatus -

YES

NO

YES

NO

YES

NO

YES

NO

[image: image97.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 1_ResetPending(73)

Reset_pending

Reset_am_ack

vt_rst:=0

Reset(Timer_RST)

rst_active:=

NO

Acknowledged_data_transfer_ready

Reset_am

Transmit_reset_ack(

logical_channel)

Crlc_amconfig_req(e_r,

logical_channel, poll_triggers,

status_triggers, timer_durations,

protocol_parameters, discard,

ciphering_mode, ciphering_key,

ciphering_sequence_number,

pu_size)

1_AckDataTransferReady

[image: image98.emf]; SIGNALSET Crlc_amconfig_req, Crlc_Status_ind, Rlc_AmData_req, Rlc_AmData_ind, Rlc_AmData_conf, Reset_am, Reset_am_ack, AmdPduQueuedUp, StatusPdu, AmdPdu;

Virtual Process Type Acknowledged_link 2_ResetPending(73)

Reset_pending

Timer_RST

rst_active:=NO

vt_rst:=vt_rst+1

vt_rst<protocol_parameters!maxRst

Transmit_reset(logical_channel)

Set(NOW+timer_durations!rst,

Timer_RST)

rst_active:=YES

-

Crlc_status_ind(EVC)

VIA Cont

Null

YES

NO

Annex B (informative):
Pseudo code describing AMD PDU header Compression

The following Pseudo-Code is an example of algorithm to describe the exact Header Compression Operation that takes place when several PUs are packed into one RLC PDU.

/* Prior to calling this procedure it must be checked that <pus_in_pdu> consecutive PU:s

 are to be transmitted (or there is padding in the end)*/

Compress_PDU (pus_in_pdu, pu_size) {

 li_addition = 0; // reset the variable that counts data in full pu:s

 Loop through pus_in_pdu {

 d_e_flag = E-flag for this PU;

 If (d_e_flag == FALSE) {

 Append PU data to PDU data; // complete PU is SDU-data

 li_addition += pu_size; // to be added to the next LI

 } else { // E-flag is TRUE, so LI-field(s) exist

 Previous E-flag in PDU = TRUE; // Either in PDU header or pdu_li_vector;

 j = 0; // reset LI-counter for this PU

 pu_data_size = 0; // reset data size counter for this PU

 Loop until (d_e_flag == FALSE) {

 d_li = next LI; // in octet j of PU;

 d_e_flag = next E_FLAG; // in octet j of PU;

 if (d_li is not PADDING) {

 pu_data_size += d_li; // to keep track of data segment size in this PU);

 d_li += li_addition; // to add data from previous PU:s to LI-value);

 li_addition = 0; // reset li_addition;

 }

 Append (d_li + d_e_flag) to pdu_li_vector;

 j++; // go to next li_octet, if d_e_flag is TRUE);

 } /* end-of-loop (exit when d_e_flag is TRUE) */

 Append pu_data_size segments starting from j to RLC-PDU data;

 } /* end-of e-flag == TRUE */

 } /* end-of loop through PU:s in PDU */

} /* end-of Compress_PDU */

Annex C (informative):
Change history

Change history

TSG-RAN#
Version
CR
Tdoc RAN
New Version
Subject/Comment

RAN_05
-
-
RP-99465
3.0.0
(10/99)
Approved at TSG-RAN #5 and placed under Change Control

RAN_06
3.0.0
001
RP-99641
3.1.0
(12/99)
RLC: Editorial corrections

RAN_06
3.0.0
002
RP-99641
3.1.0
Editorial changes on RLC protocol specification

RAN_06
3.0.0
003
RP-99643
3.1.0
MRW procedure

RAN_06
3.0.0
004
RP-99643
3.1.0
SDU Discard Functionality

RAN_06
3.0.0
005
RP-99643
3.1.0
Change in RLC control PDU format

RAN_06
3.0.0
006
RP-99642
3.1.0
Editorial corrections regarding CTCH

RAN_06
3.0.0
007
RP-99641
3.1.0
Updated RLC SDL

RAN_06
3.0.0
011
RP-99642
3.1.0
RLC Editorial Changes

RAN_06
3.0.0
013
RP-99642
3.1.0
Editorial Modification on RLC specification

RAN_06
3.0.0
014
RP-99641
3.1.0
Editorial changes

RAN_06
3.0.0
015
RP-99642
3.1.0
Change to one PU in a AMD PDU

RAN_06
3.0.0
016
RP-99643
3.1.0
Introduction of RLC suspend state

RAN_06
3.0.0
017
RP-99641
3.1.0
RLC editorial corrections

-
3.1.0
-
-
3.1.1
(01/00)
Editorial corrections in title and Annex A (SDL)

-
3.1.1
-
-
3.1.2
(01/00)
Correction of persistent error regarding SDL in Table of Contents

RAN_07
3.1.2
018
RP-000040
3.2.0
(03/00)
RLC editorial changes

RAN_07
3.1.2
021
RP-000040
3.2.0
Corrections to RLC

RAN_07
3.1.2
025
RP-000040
3.2.0
Corrections to RLC

RAN_07
3.1.2
026
RP-000040
3.2.0
STATUS PDUs

RAN_07
3.1.2
027
RP-000040
3.2.0
Clarification of RLC AMD Model

RAN_07
3.1.2
028
RP-000040
3.2.0
Corrections to Timer_discard procedures

RAN_07
3.1.2
029
RP-000040
3.2.0
Segmentation of RLC SDUs

RAN_07
3.1.2
030
RP-000040
3.2.0
Modification of SDU discard to support virtual PDCP sequence numbers

RAN_07
3.1.2
031
RP-000040
3.2.0
Removal of SCCH

RAN_07
3.1.2
032
RP-000040
3.2.0
Updated RLC SDL

RAN_07
3.1.2
033
RP-000040
3.2.0
RLC Editorial Changes

RAN_07
3.1.2
034
RP-000040
3.2.0
Order of bit transmission for RLC PDUs

Rapporteur for 3GPP TSG RAN WG2 TS 25.322 is:

CSELT

Nicola Pio MAGNANI

tel: +39 011 228 7089

GSM: +39 335 7248184

fax: +39 011 228 5295

e-mail: nicola.magnani@cselt.it

_1005737325.doc

PAD

SUFIK

Oct2

Oct1

SUFI1

SUFI1

…

PDU Type

OctN

R

_1009658885.doc

CRLC-CONFIG-Req

CRLC-CONFIG-Req

CRLC-SUSPEND-Conf

CRLC-RESUME-Req

CRLC-SUSPEND-Req

Received signal

Sent signal

CRLC-CONFIG-Req

3.

Local

Suspend

CRLC-CONFIG-Req

CRLC-CONFIG-Req

1.

Null

2.

Unack.

Data Transfer

Ready

CRLC-CONFIG-Req

_1015844729.doc

OctN

(Optional)

Oct1

PAD

Data

.

.

.

Length Indicator

E

(Optional)

Length Indicator

E

(Optional)

Sequence Number

E

_1015848800.doc
[image: image1.bmp]

Tr-SAP

Segmentation

Transmission buffer

Transm.

Tr-Entity

BCCH/PCCH/DCCH

CCCH/DTCH/SHCCH

BCCH/PCCH/DCCH

CCCH/DTCH/SHCCH

Radio Interface

Tr-SAP

Reassembly

Receiver

 buffer

Receiving

Tr-Entity

_1012802773.doc
[image: image1.bmp]

AM-Entity

DCCH/

DTCH**

DCCH/�DTCH**

Remove RLC header & Extract Piggybacked information

AM-SAP

DCCH/

DTCH*

Deciphering

Acknowledgements

Received acknowledgements

RLC Control Unit

Add RLC header

Set fields in RLC Header (e.g. set poll bits). Optionally replace PAD with piggybacked information.

MUX

Retransmission buffer & mangement

Segmentation/Concatenation

Transmission buffer

Demux/Routing

Ciphering

DCCH/

DTCH**

DCCH/DTCH**

DCCH/

DTCH*

Receiver buffer & Retransmission management

Transmitting Side

Receiving Side

Reassembly

Piggybacked status�Optional

_1007466441.doc
[image: image1.bmp]

UM-SAP

UM-SAP

CCCH/DCCH/DTCH/ SHCCH�CTCH

Transmission buffer

Segmentation & Concatenation

Transm.

UM-Entity

Ciphering

Receiver

buffer

Remove RLC header

Receiver

UM-Entity

Radio Interface

CCCH/DCCH/ DTCH/SHCCH�CTCH

Add RLC header

Deciphering

Reassembly

_1009364679.doc

CRLC-CONFIG-Req

CRLC-CONFIG-Req

CRLC-SUSPEND-Conf

CRLC-RESUME-Req

CRLC-SUSPEND-Req

Received signal

Sent signal

CRLC-CONFIG-Req

3.

Local

Suspend

CRLC-CONFIG-Req

CRLC-CONFIG-Req

1.

Null

2.

Ack.

Data Transfer

Ready

CRLC-CONFIG-Req

_1009305784.doc

1 –

(Tx_Window_Size + VT(MS) – VT(S))modTx_Window_Size

Tx_Window_Size

* 100 > Poll_Window

_1007466081.doc

OctN

Oct2

Oct1

PAD or a piggybacked STATUS PDU

Data

.

.

.

Length Indicator

E

D/C

Sequence Number

Sequence Number

P

HE

Length Indicator

E

(Optional) (1)

Oct3

_998933934.doc

1.

Null

2.

Transparent

Data Transfer

Ready

Received signal

Sent signal

CRLC-CONFIG-Req

CRLC-CONFIG-Req

_1000259747.doc

Data

_1005666626.doc

PAD

SUFIK

Oct2

Oct 1

SUFI1

…

D/C PDU type SUFI 1

OctN

_1000260513.doc

D/C

R

PDU Type

PAD

Oct1

OctN

_1000045435.doc

CRLC-CONFIG-Req

]RESET

RESET ACK

RESET ACK

RESET

3.

Reset.

Pending

CRLC-CONFIG-Req

CRLC-CONFIG-Req

1.

Null

2.

Ack.

Data Transfer

Ready

Received signal

Sent signal

RESET

RESET ACK

RESET ACK

_998769768.doc

Sender

Receiver

RESET

RESET ACK

_998832657.doc

UMD PDU

Sender

Receiver

_998921378.doc

Receiver

Sender

TrD PDU

_998921363.doc

Receiver

Sender

STATUS PDU

 PDU

_998821646.doc

Receiver

Sender

AMD PDU

_998829599.doc

Receiver

Sender

STATUS PDU

_993380258.unknown

_993380293.unknown

_981809995.doc

Transm. UM-Entity

Transm. Tr-Entity

AM-Entity

Radio Interface

Receiv. Tr-Entity

Receiv.

UM-Entity

Receiving side

Transmitting side

Receiv. Tr-Entity

Receiv.

UM-Entity

Transm. Tr-Entity

MS

RLC

AM-Entity

UTRAN

Transm. UM-Entity

Receiving side

Transmitting side

MAC

Higher layer

