[bookmark: _GoBack]3GPP TSG-RAN WG2 Meeting #112 electronic	R2-2009368
Online, November 2nd – 13th, 2020

Source:	CATT
[bookmark: Title]Title:	Analysis on SDT without context relocation
[bookmark: Source]Agenda Item:	8.6.5
[bookmark: DocumentFor]Document for:	Discussion and Decision

[bookmark: _Ref528762725]Introduction
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]In Email discussion[1], it is proposed that RACH based SDT is supported with and without context relocation. In this contribution, we focus on the SDT procedures without context relocation based on the preliminary assumptions made in the email discussion..
Discussion
It has been confirmed in the email discussion that a RLC configuration stored in UE Context will be used in SDT. Under this assumption, the serving gNB which does not have UE context can’t perform small data processing.
It is also agreed that RACH based SDT is supported with and without UE context relocation. So both SDT with UE context relocation and SDT without UE context relocation are needed to be studied. It is common understanding that SDT with context relocation can reuse the legacy UE context relocation procedure as much as possible. In this procedure, after UE context relocation and path switch, the uplink data can be decoded at the serving gNB. Then the UL data are transferred to the core network. But for SDT without context relocation, solutions are not clear. In the following sections, we discuss the potential solutions of SDT without context relocation and three alternatives are provided below.
Alternative 1: the serving gNB sends UL data together with RETRIEVE UE CONTEXT REQUEST to the anchor gNB without buffering.
Alternative 2: Small data is buffered at the serving gNB and will be sent to anchor gNB when response from anchor gNB is received.
Alternative 3: decode or partly decode the small data at the serving gNB.
In the following sections, we analyze and compare the above alternatives and proposals are provided.
2.1. Alternative 1
In Alternative 1, after the serving gNB receives the Small data of the UE, the serving gNB sends RETRIEVE UE CONTEXT REQUEST as well as UL data to the anchor gNB. Since there is no UE context at serving gNB, the UL data can’t be processed. So it will be directly forwarded to anchor gNB. The anchor gNB performs decoding, e.g. deciphering of the uplink data. This is shown in Figure 1.

Figure 1: Transferring UL data anchor gNB in SDT without UE context relocation.
In CU-DU split scenario, the procedure is more complex which is illustrated in Figure 2.

Figure 2: Transfer UL data anchor CU in SDT without UE context relocation in CU-DU
In CU-DU split scenario, both serving CU and DU do not have the UE context. One possible procedure could be that MAC PDUs are transparently transferred to anchor CU without data processing as shown in Figure 2. However, it has not been specified how to transfer the uplink data from the serving CU to the anchor CU. Potential options can be that
· tunnels are setup between the serving CU and the anchor CU; or,
· special RRC messages are defined to support transferring small data.
But it is up to RAN3 to make final decisions on these options.
[bookmark: _Toc54337962]Observation 1: Handling on tunnelling setup or signalling enhancements when small data is transferred together with RETRIEVE UE CONTEXT REQUEST should be discussed in RAN3.
2.2. Alternative 2
In this alternative, UL data is buffered at gNB until context retrieval procedure is completed, i.e. RETRIVE UE CONTEXT FAILURE is received. This procedure is illustrated in Figure 3. UL data transferred to the AMF can only be performed after the finalization of the UE context retrieval procedure.

Figure 3: UL data if buffered at gNB until context retrieval procedure is completed without UE context relocation.

Figure 4: UL data if buffered at gNB until context retrieval procedure is completed without UE context relocation in CU-DU
In CU-DU split scenario, one possible procedure is depicted in Figure 4. The Small data is buffered at serving DU until it receives anchor’s response that context relocation is not allowed.
It can be seen that buffering of data at serving gNB/DU might results in impact on the latency performance of RACH based SDT.
Both scenarios with/without CU-DU split in Alternative 2, how to forward the UL data from serving node to the anchor node, e.g. setting up tunnels , is within the scope of in RAN3 discussion.
[bookmark: _Toc54337963]Observation 2: Latency may be increased when uplink data is buffered at serving node.
[bookmark: _Toc54337964]Observation 3: In case uplink data is buffered at serving node, how to forward the UL data from serving node to the anchor node, e.g. setting up tunnel between the serving node and anchor node, is within the scope of RAN3 discussion.
2.3. Alternative 3
This alternative is proposed in the Email discussion [1] corresponding to proposal 5.
	Proposal 5: FFS if a solution for decoding or partly decoding the SDT transmission at the Receiving gNB to lower the delay of decoding those PDUs is needed, e.g. if parts of UE context may be needed to be transferred in all cases of context relocation.

The procedure is depicted in Figure 5. In this procedure, only partial UE context are delivered to gNB, which may bring benefits on lowering the delay of the decoding PDUs.

Figure 5: UL data is decoded or partially decoded at serving gNB

Figure 6: UL data is decode or partially decoded at serving gNB in CU-DU
In CU-DU split scenario, anchor CU sends partial UE context, e.g. RLC and PDCP context to the serving CU. Then, the serving CU setup (partial) UE context for the serving DU. After receiving the (partial) UE context, serving DU/CU may perform the packets decoding correspondingly. Then, the (partial) decoded PDUs are transferred to anchor CU. Since the anchor is not changed.
For this alternative, if small data is subsequent data transmission, PDUs are pre-processed after (partial) UE context is received at the serving node. This may bring benefits on lowering the total delay. But data are still needed to be sent to the anchor node and then to the AMF. If the small data is one shot, no much gain is foreseen. Since the PDU is processed and sent to anchor node after UE context has been transferred to the serving node which is the same as Alternative 2.
Another issue is the complexity impact. The data format transferred between serving gNB and anchor gNB can be MAC PDU, RLC PDU or PDCP PDU. It totally depends on which kind of (partial) UE context transferred from anchor Node. Obviously, specification work of RAN3 is not negligible. It shows great complexity on the tunneling setup as well as packets processing procedures.
[bookmark: _Toc54337965]Observation 4: New signalling like setting up partial UE context and setting up new tunnels between anchor node and the serving node needs to be specified in RAN3 in Alternative 3.
[bookmark: _Toc54337966]Observation 5: Partial UE context delivering brings some complexity on the tunneling setup as well as packets processing procedures.
[bookmark: _Toc54337967]Observation 6: In one shot small data transmission, no much gain on latency reduction has been foreseen.
2.4. Summary of the 3 alternatives
It can be concluded that:
-	Alternative 2 shows its vulnerability to the latency delay of whole procedure;
-	The benefits on latency reduction in Alternative 3 are not so obvious and may bring complexity to RAN3.
Therefore, we slightly prefer Alternative 1.
And we propose that:
Proposal: the following can be informed to RAN3 in one LS:
-	handling on setting up tunnels between serving node and anchor node, or signalling enhancements when small data is transferred together with RETRIEVE UE CONTEXT REQUEST in Alternative 1;
-	handling on setting up tunnels between serving node and anchor node when RETRIEVE UE CONTEXT FAILURE from anchor node is received in Alternative 2;
-	handling on setting up tunnels between serving node and anchor node or signaling enhancements, e.g. setting up (partial) UE context after (partial) UE context is received from anchor node in Alternative 3.
Conclusion
This contribution discussed in signaling procedures of SDT without context relocation. And from the analysis above and the observation 1-6:
Observation 1: Handling on tunnelling setup or signalling enhancements when small data is transferred together with RETRIEVE UE CONTEXT REQUEST should be discussed in RAN3.
Observation 2: Latency may be increased when uplink data is buffered at serving node.
Observation 3: In case uplink data is buffered at serving node, how to forward the UL data from serving node to the anchor node, e.g. setting up tunnel between the serving node and anchor node, is within the scope of RAN3 discussion.
Observation 4: New signalling like setting up partial UE context and setting up new tunnels between anchor node and the serving node needs to be specified in RAN3 in Alternative 3.
Observation 5: Partial UE context delivering brings some complexity on the tunneling setup as well as packets processing procedures.
Observation 6: In one shot small data transmission, no much gain on latency reduction has been foreseen.
Proposal: the following can be informed to RAN3 in one LS:
-	handling on setting up tunnels between serving node and anchor node, or signalling enhancements when small data is transferred together with RETRIEVE UE CONTEXT REQUEST in Alternative 1;
-	handling on setting up tunnels between serving node and anchor node when RETRIEVE UE CONTEXT FAILURE from anchor node is received in Alternative 2;
-	handling on setting up tunnels between serving node and anchor node or signaling enhancements, e.g. setting up (partial) UE context after (partial) UE context is received from anchor node in Alternative 3.
Reference
[1]. [bookmark: _Ref54269349]Summary of email discussion [Post111-e][926][SmallData] Context Fetch;
oleObject1.bin
�

2. RETRIEVE UE CONTEXT REQUEST
ResumeMAC-I + UL Data

3. UL Data

UE

Serving gNB

1. RRCResumeRequest
Resume MAC-I, UL data and etc.�

5. RRCRelease
Suspend Indication�

RRC_INACTIVE

4. RETRIEVE UE CONTEXT FAILURE

Anchor gNB

AMF

image2.emf
UEDU-S

RRC_INACTIVE

CU-S

CU-Anchor

DU-Anchor

1. RRCResumeRequest

Resume MAC-I, UL data

and etc.

2. RRCResumeRequest

UL data.

AMF

3. RETRIEVE UE CONTEXT

REQUEST

UL data

8. RETRIEVE UE CONTEXT

FAILURE

9. UE CONTEXT SETUP

FAILURE

6. Data is decoded

7. UL Data

5. UL Data

10. RRCRelease

Suspend Indication

4. UE Context Setup

oleObject2.bin
�

UE

DU-S

CU-Anchor

RRC_INACTIVE

DU-Anchor

�

1. RRCResumeRequest
Resume MAC-I, UL data and etc.

�

2. RRCResumeRequest
UL data.

�

AMF

CU-S

3. RETRIEVE UE CONTEXT REQUEST
UL data

�

8. RETRIEVE UE CONTEXT FAILURE

�

9. UE CONTEXT SETUP FAILURE

5. UL Data

10. RRCRelease
Suspend Indication

6. Data is decoded

7. UL Data

�

4. UE Context Setup

image3.emf
UEgNB-S

1. RRCResumeRequest

Resume MAC-I, UL data and etc.

3. RRCRelease

Suspend Indication

RRC_INACTIVE

Anchor gNBAMF

RETRIEVE UE CONTEXT REQUEST

ResumeMAC-I

UL Data

RETRIEVE UE CONTEXT FAILURE

UL Data

Data is buffered

oleObject3.bin
�

UE

gNB-S

1. RRCResumeRequest
Resume MAC-I, UL data and etc.�

3. RRCRelease
Suspend Indication�

RRC_INACTIVE

Anchor gNB

AMF

RETRIEVE UE CONTEXT REQUEST
ResumeMAC-I

UL Data

RETRIEVE UE CONTEXT FAILURE

UL Data

Data is buffered

image4.emf
UEDU-S

RRC_INACTIVE

CU-S

CU-Anchor

DU-Anchor

1. RRCResumeRequest

Resume MAC-I, UL data

and etc.

2. RRCResumeRequest

AMF

3. RETRIEVE UE CONTEXT

REQUEST

4. RETRIEVE UE CONTEXT

FAILURE

5. UE CONTEXT SETUP

FAILURE

11. UL Data

12. RRCRelease

Suspend Indication

8. UE Context Setup

6. UL Data

7. UL Data

9. UL Data

10. Data is decoded

Data is buffered

oleObject4.bin
�

UE

DU-S

RRC_INACTIVE

CU-S

CU-Anchor

DU-Anchor

�

1. RRCResumeRequest
Resume MAC-I, UL data and etc.

�

2. RRCResumeRequest

AMF

�

3. RETRIEVE UE CONTEXT REQUEST

�

4. RETRIEVE UE CONTEXT FAILURE

�

5. UE CONTEXT SETUP FAILURE

Data is buffered

11. UL Data

�

10. Data is decoded

12. RRCRelease
Suspend Indication

8. UE Context Setup

6. UL Data

7. UL Data

9. UL Data

image5.emf
UEgNB-S

1. RRCResumeRequest

Resume MAC-I, UL data and etc.

3. RRCRelease

Suspend Indication

RRC_INACTIVE

Anchor gNBAMF

RETRIEVE UE CONTEXT REQUEST

ResumeMAC-I

UL Data

RETRIEVE UE CONTEXT RESPONSE

Partial UE Context(RLC, PDCP)

UL Data

PDCP or RLC SDU

oleObject5.bin
�

UE

gNB-S

1. RRCResumeRequest
Resume MAC-I, UL data and etc.�

3. RRCRelease
Suspend Indication�

RRC_INACTIVE

Anchor gNB

AMF

RETRIEVE UE CONTEXT REQUEST
ResumeMAC-I

UL Data

RETRIEVE UE CONTEXT RESPONSE
Partial UE Context(RLC, PDCP)

UL Data
PDCP or RLC SDU

image6.emf
UEDU-S

RRC_INACTIVE

CU-S

CU-Anchor

DU-Anchor

1. RRCResumeRequest

Resume MAC-I, UL data

and etc.

2. RRCResumeRequest

AMF

3. RETRIEVE UE CONTEXT

REQUEST

4. RETRIEVE UE CONTEXT

RESPONSE

Partial UE Context(RLC,

PDCP)

Data is buffered

6. Data is (partially) decoded

7. UL Data

8. UL Data

9. UL Data

10. RRCRelease

Suspend Indication

5. UE Context Setup

Partial UE Context(RLC)

oleObject6.bin
�

UE

�

DU-S

RRC_INACTIVE

CU-S

CU-Anchor

DU-Anchor

�

1. RRCResumeRequest
Resume MAC-I, UL data and etc.

�

2. RRCResumeRequest

AMF

�

3. RETRIEVE UE CONTEXT REQUEST

�

4. RETRIEVE UE CONTEXT RESPONSE
Partial UE Context(RLC, PDCP)

5. UE Context Setup
Partial UE Context(RLC)

Data is buffered

6. Data is (partially) decoded

7. UL Data

8. UL Data

9. UL Data

10. RRCRelease
Suspend Indication

image1.emf
UEServing gNB

1. RRCResumeRequest

Resume MAC-I, UL data and etc.

5. RRCRelease

Suspend Indication

RRC_INACTIVE

Anchor gNBAMF

2. RETRIEVE UE CONTEXT REQUEST

ResumeMAC-I + UL Data

3. UL Data

4. RETRIEVE UE CONTEXT FAILURE

