


3GPP TSG-RAN WG2 Meeting #109-e	R2-2001051
Online, 24 February – 6 March 2020	


Agenda item:	6.7.2.3
Source:	Nokia, Nokia Shanghai Bell
Title:	Ethernet Header Compression remaining issues
WID/SID:	NR_IIOT - Release 16
Document for:	Discussion and Decision
1	Introduction
This contribution addresses two remaining issues in Ethernet Header Compression (EHC), namely:
1. Details on how EHC header removal operates with different types of Ethernet header structures which may or may not contain 802.1Q tags and may use the TYPE/LENGTH field either as TYPE or LENGTH.
2. What is the default length of Context ID and how to support a larger context ID space when needed.

Each of these issues is covered respectively in a dedicated section below.
2	Operation with different Ethernet frame formats
RAN2#107 bis meeting made the following conclusion:
· The EHC can remove the following fields: SOURCE/DESTINATION ADDRESS, TYPE, and EHC do not support multiple formats 

RAN2#108 meeting additionally concluded:
· Q-TAGs can be removed in EHC, considering all sub-fields, assuming this is static (i.e. no dynamic indications in EHC)

This still leaves the following questions open. For each an answer is proposed:
· Do “Q-TAGs” denote both IEEE 802.1Q and 802.1ad headers, and in case of multiple tags (“QinQ”, “double tagging” are all of them always removed? 
Since both 802.1Q and 802.1ad headers are very common in contemporary Ethernet networks, we think both frame types should be handled by EHC.
Proposal 1: EHC will always remove all Q-Tags regardless of how many of them the frame has, including both IEEE 802.1Q and IEEE 802.1ad tags/headers.
· How are traffic flows with dynamic/variable Q-Tag PCP and DE fields handled?

There are 16 (4 bits) different PCP/DE values per Q-Tag, and with multiple tags this can in theory lead to combinatory explosion of contexts, it is assumed that in practice a single flow between two MAC addresses will only be marked with a small number of combinations (e.g. two different priorities, two different DE values.) For this reason the combinatory explosion is not considered a real issue.
Proposal 2: Each different PCP/DE value combination in a flow across all Q Tags will create a separate context.

· How is TYPE/LENGTH handled in case it denotes LENGTH can be variable in a flow?
The use of LENGTH is very rare in today’s networks, but needs to be addressed by EHC. As with PCP/DE values, it is not likely that a single traffic flow between two MAC addresses will carry a large number of different payload sizes. Unless evidence to the contrary is available, creating a new context per different LENGTH value is not considered a real issue. Alternatively, the EHC compressor may, by implementation, choose to send some of the frames as uncompressed if a certain Ethernet stream carries frame with highly variable frame sizes.
Proposal 3: No special handling for LENGTH is needed but each different value in a flow will create a separate context. 
· How to handle unsupported/unknown Ethernet/IEEE header fields?
Extension fields are identified by specific TYPE. Whenever EHC compressor encounters TYPE/LENGTH that is larger than 1500 but different from IEEE 802.1Q or IEEE 802.1ad types, it can simply stop its operation and the unknown TYPE is the last field to be removed. It should be noted however that the “payload” carried by EHC may not always be a real upper layer protocol packet such as an IP packet but can contain still contain uncompressed Ethernet/IEEE headers before the actual upper layer payload. One example of such an extension is IEEE 802.1CB header used for Frame Replication and Elimination for Redundancy (FRER).
2.1	Processing of different Ethernet header structures
There are basically three different Ethernet frame header formats that are widely used in real networks:
· Ethernet II format with DESTINATION MAC, SOURCE MAC and ETHERTYPE header fields
· Ethernet II format extended with a single 802.1Q VLAN header/tag
· Ethernet II format extended with one or more 802.1ad header/tag (known as S-tags) followed by a single 802.1Q VLAN header (known as a C-tag).
These formats are depicted, respectively, in the figure below.
[image: ]
In addition to Ethernet II format also IEEE 802.3 format is used to some (very small nowadays) extent. Its main difference to the baseline Ethernet II format is that the ETHERTYPE field is interpreted as LENGTH (which may be variable even within a single flow of frames between two end stations).
It is possible for the compressor and decompressor to parse all the four above frame header structures (three based on Ethernet II with or without 802.1Q and 802.1ad and also the IEEE 802.3 baseline) independently and based on that conclude which header fields are (to be) removed, without explicit signalling or multiple profiles. To achieve that, the compressor would have to work according to the following rules:
· If TYPE/LEN value is equal or smaller than 1500:
· Identification: This is an IEEE 802.3 format frame
· Compressor/decompressor operation: Remove/restore DESTINATION MAC, SOURCE MAC and TYPE/LEN
· If TYPE/LEN value is larger than 1500 but not (0x8100 OR 0x88a8)
· Identification: This is an Ethernet II format frame without IEEE 802.1Q or IEEE 802.1ad headers/tags
· Compressor/decompressor operation: Remove/restore DESTINATION MAC, SOURCE MAC and TYPE/LEN
· If TYPE/LEN value is 0x8100
· Identification: This is an Ethernet II format frame with an IEEE 802.1Q VLAN header/tag
· Compressor/decompressor operation: Remove/restore DESTINATION MAC, SOURCE MAC, IEEE 802.1Q VLAN header and TYPE/LEN
· If TYPE/LEN value is 0x88a8
· Identification: This is an Ethernet II format frame with one or more IEEE 802.1ad headers/tags (S-tags) followed by an IEEE 802.1Q VLAN header/tag (C-tag)
· Compressor/decompressor operation: Remove/restore DESTINATION MAC, SOURCE MAC, one or more IEEE 802.1ad headers, IEEE 802.1Q VLAN header and TYPE/LEN
· Note: The existence of multiple 802.1ad headers (S-tags) is identified by inspecting if the TPID field value in the 802.1ad header:
· If TPID value is 0x8a88 the next header is 802.1ad header
· If TPID value is 0x8100 the next header is 802.1Q VLAN header
With these rules EHC can compress all of these four frame header formats into a single byte with simple header removal and restoration. 

3	Maximum number of contexts
Length of CID space should be able to accommodate small to large number of context IDs. Assuming EHC header will have one bit for D/C differentiation and 1 reserved bit for potential EHC extensions (e.g. additional profiles support), with one-byte long EHC header, we could utilize 6 bits of CID and support up to 64 contexts. Having an EHC header consisting of only a single byte is of course optimal from overhead reduction effectiveness point of view. On the other hand, it is risky to assume that 64 contexts will always be sufficient as the UE may serve traffic of multiple Ethernet devices operating behind it. It would be then beneficial to introduce a configurable EHC_MAX_CID parameter which would determine the maximum CID value that can be used. EHC_MAX_CID can be either small, which means that CIDs can take values between 0 and 2^6 – 1 = 63, or large, which means that CIDs take values between 0 and 2^14 - 1 = 16383.
If EHC_MAX_CID is not configured by upper layers, 6 bits CID shall be used i.e. 0 to 63.
Proposal 4: EHC header should contain 1 reserved bit for potential future extensions of EHC.
Proposal 5: Context ID default configuration should be 6 bits length (i.e. CID can take values between 0 to 63), and should also have the option for extension of CID length via configuration. 
4	Conclusion
Proposal 1: EHC will always remove all Q-Tags regardless of how many of them the frame has, including both IEEE 802.1Q and IEEE 802.1ad tags/headers.
Proposal 2: Each different PCP/DE value combination in a flow across all Q Tags will create a separate context.
Proposal 3: No special handling for LENGTH is needed but each different value in a flow will create a separate context. 
Proposal 4: EHC header should contain 1 reserved bit for potential future extensions of EHC.
Proposal 5: Context ID default configuration should be 6 bits length (i.e. CID can take values between 0 to 63), and should also have the option for extension of CID length via configuration. 
[bookmark: _GoBack]A TP for TS 38.323 considering these changes is provided in Annex A.


Annex A – TP for TS 38.323
5.X	Ethernet header compression and decompression
5.X.1	Supported header compression protocols
The EHC protocol is based on the Ethernet Header Compression (EHC) framework defined in Annex A.
5.X.2	Configuration of EHC
PDCP entities associated with DRBs can be configured by upper layers TS 38.331 [3] to use EHC. Each PDCP entity carrying user plane data may be configured to use EHC. Every PDCP entity uses at most one EHC compressor instance and at most one EHC decompressor instance.
5.X.3	Protocol parameters
/* Editor’s Note: The need for configuration parameters is FFS.
The following EHC configuration parameters are configured by RRC:
- 	ehc-maxCID: This is an optional parameter and represents the maximum CID value that can be used by EHC compressor. If not provided from RRC, the maximum CID value is 63;
5.X.4	Header compression using EHC
If EHC is configured, the EHC protocol generates two types of output packets:
-	EHC compressed packets, each associated with one PDCP SDU;
-	standalone packets not associated with a PDCP SDU, i.e. EHC feedback.
An EHC compressed packet is associated with the same PDCP SN and COUNT value as the related PDCP SDU. The header compression is not applicable to the SDAP header and the SDAP Control PDU if included in the PDCP SDU.
EHC feedback are not associated with a PDCP SDU. They are not associated with a PDCP SN and are not ciphered.
5.X.5	Header decompression using EHC
If EHC is configured by upper layers for PDCP entities associated with user plane data, the PDCP Data PDUs are decompressed by the EHC protocol after performing deciphering as explained in clause 5.8. The header decompression is not applicable to the SDAP header and the SDAP Control PDU if included in the PDCP Data PDU.
5.X.6	PDCP Control PDU for EHC feedback
/* Editor’s Note: It is assumed that interspersed EHC feedback is transmitted using PDCP Control PDU. The text needs to be updated if interspersed EHC feedback is transmitted differently.5.X.6.1	Transmit Operation
When an EHC feedback is generated by the EHC protocol, the transmitting PDCP entity shall:
-	submit to lower layers the corresponding PDCP Control PDU as specified in clause 6.2.3.X i.e. without associating a PDCP SN, nor performing ciphering.
5.X.6.2	Receive Operation
At reception of a PDCP Control PDU for EHC feedback from lower layers, the receiving PDCP entity shall:
-	deliver the corresponding EHC feedback to the EHC protocol without performing deciphering.

Annex A (normative):
Ethernet Header Compression (EHC) protocol
A.1 EHC principle
The Ethernet header compression (EHC) protocol compresses Ethernet header as shown in figure A.1.X-1 [xx]. The fields that are compressed by the EHC protocol are: 
· DESTINATION ADDRESS: Removed, 
· SOURCE ADDRESS: Removed, 
· 802.1Q TAGs: Each is removed if present. This applies to both 802.1Q 802.1ad tags., and 
· TYPE/LENGTH: Removed. 
The fields PREAMBLE, SFD, and FCS are not transmitted in 5GS, and thus not considered in EHC protocol.




Figure A.1.X-1: Ethernet header format [xx]
It should be noted that the payload following the EHC compressed Ethernet header fields may be an actual upper layer payload such as an IP packet, but may also still contain uncompressed Ethernet extension headers.
The EHC compressor and the EHC decompressor store original header field information as a "EHC context". Each unique combination of compressed header field values will create a separate EHC context. Each EHC context is identified by a unique identifier, called Context ID (CID). The EHC context must be synchronized between the EHC compressor and the EHC decompressor; otherwise, the EHC decompressor erroneously decompresses the "Compressed Header (CH)" packets.
For an Ethernet packet stream, the EHC compressor establishes the EHC context and associates it with the CID. Then, the EHC compressor transmits the "Full Header (FH)” packet to the EHC decompressor including the associated CID. The EHC compressor keeps transmitting the FH packets until the EHC feedback is received from the EHC decompressor.
When the EHC decompressor receives the FH packet, the EHC decompressor establishes the EHC context identified by the CID, and transmits the EHC feedback to the EHC compressor to indicate that the EHC context associated with the CID is successfully established in the EHC decompressor.
After receiving the EHC feedback, the EHC compressor starts to transmit the CH packets to the EHC decompressor including the associated CID. The CH packet includes only the header fields not stored in the EHC context. 
When the EHC decompressor receives the CH packet, the EHC decompressor restores original header fields based on the stored EHC context identified by the associated CID.
Figure A.1.X-2 represents conceptual view of EHC operation.


Figure A.1.X-2: EHC operation

A.2 EHC packet format
/* Editor’s Note: Formats of EHC full header packet, EHC compressed header packet, and EHC feedback packet will be specified.

A.3 Detailed operation on different Ethernet header structures
EHC operates on different Ethernet frame formats as follows:
· If TYPE/LEN value is different from 0x8100 or 0x88a8:
· Compression context is: DESTINATION MAC, SOURCE MAC and TYPE/LEN
· If TYPE/LEN value is 0x8100 (IEEE 802.1Q VLAN header)
· Compression context is: DESTINATION MAC, SOURCE MAC, IEEE 802.1Q VLAN header and TYPE/LEN
· If TYPE/LEN value is 0x88a8 (IEEE 802.1ad header)
· Compression context is: DESTINATION MAC, SOURCE MAC, IEEE 802.1ad headers, any additional IEEE 802.1ad or IEEE 802.1Q VLAN headers and TYPE/LEN
· The existence of additional 802.1ad or 802.1Q VLAN headers is recursively identified by inspecting the TYPE/LEN value following the current header:
· If TYPE/LEN (TPID) value is 0x8a88 the next header is 802.1ad header
· If TYPE/LEN (TPID) value is 0x8100 the next header is 802.1Q VLAN header
· If TYPTE/LEN (TPID) value is different from 0x8100 or 0x88a8 there are no additional 802.1ad or 802.1Q VLAN headers
Compressor compares the resulting compression context with all existing compression contexts to determine if there is an existing context the frame belongs to, or whether a new context needs to be established.



image1.png

image2.emf
Compressed by EHCEXTENSIONPREAMBLE7 octets : Not transmitted in 5GSSTART OF FRAME DELIMITER (SFD)DESTINATION ADDRESS1 octet : Not transmitted in 5GS6 octetsSOURCE ADDRESS6 octets802.1Q TAG4 octetsLENGTH/TYPE2 octetsPAYLOAD (+PAD)42-1500 octetsFRAME CHECK SEQUENCE (FCS)4 octets : Not transmitted in 5GS


Microsoft_Visio_Drawing.vsdx
Compressed by EHC
EXTENSION
PREAMBLE
7 octets : Not transmitted in 5GS
START OF FRAME DELIMITER (SFD)
DESTINATION ADDRESS
1 octet : Not transmitted in 5GS
6 octets
SOURCE ADDRESS
6 octets
802.1Q TAG
4 octets
LENGTH/TYPE
2 octets
PAYLOAD (+PAD)
42-1500 octets
FRAME CHECK SEQUENCE (FCS)
4 octets : Not transmitted in 5GS



image3.emf
Compressed by EHCEXTENSIONPREAMBLE7 octets : Not transmitted in 5GSSTART OF FRAME DELIMITER (SFD)DESTINATION ADDRESS1 octet : Not transmitted in 5GS6 octetsSOURCE ADDRESS6 octets802.1Q TAG (optional)4 octetsTYPE/LENGTH2 octetsPAYLOAD (+PAD)42-1500 octetsFRAME CHECK SEQUENCE (FCS)4 octets : Not transmitted in 5GS802.1Q TAG (optional)4 octets


Microsoft_Visio_Drawing1.vsdx
Compressed by EHC
EXTENSION
PREAMBLE
7 octets : Not transmitted in 5GS
START OF FRAME DELIMITER (SFD)
DESTINATION ADDRESS
1 octet : Not transmitted in 5GS
6 octets
SOURCE ADDRESS
6 octets
802.1Q TAG (optional)
4 octets
TYPE/LENGTH
2 octets
PAYLOAD (+PAD)
42-1500 octets
FRAME CHECK SEQUENCE (FCS)
4 octets : Not transmitted in 5GS
802.1Q TAG (optional)
4 octets



image4.emf
CompressorDecompressorCIDxFHPayloadCIDxFeedbackPayloadEthernet HeaderPayloadEthernet HeaderCIDxCHPayloadCIDxEHC ContextCIDyEHC ContextCIDzEHC ContextCIDxEHC ContextCIDyEHC ContextCIDzEHC Context


Microsoft_Visio_Drawing2.vsdx
Compressor
Decompressor
CIDx
FH
Payload
CIDx
Feedback
Payload
Ethernet Header
Payload
Ethernet Header
CIDx
CH
Payload
CIDx
EHC Context
CIDy
EHC Context
CIDz
EHC Context
CIDx
EHC Context
CIDy
EHC Context
CIDz
EHC Context








