Page 1

3GPP TSG-RAN WG2 Meeting #107
R2-1910764
Prague, Czech Republic,26th - 30th August 2019
Agenda item:
11.7.2.3
Source:
Qualcomm Incorporated

Title:
Principles for Ethernet Header Compression
WID/SID:
NR_IIOT (NR Industrial Internet of Things)
Document for:
Discussion and Decision

1 Introduction
Following a study on header compression for Industrial IoT (TR 38.825, Section 6.6), a work item was agreed including the following objective:
	· Specify Ethernet header compression based on structure-aware algorithm [RAN2].
· Ethernet header compression solution for LTE to be specified once the design principle for NR is agreed. The impacted LTE specifications to be added latest at RAN#85.

At RAN2#106, the following agreements were made:

	· Ethernet Header Compression (EHC) is configured per DRB, separately for UL and DL.

· Use context ID concept such that compressor and decompressor associates a context ID with Ethernet header contents.

· Compression is done with following principle:
- For Ethernet flow resulting in creation of new context, compressor transmits at least one packet with full header and context id (to establish context in decompressor).

- After above, compressor starts transmits compressed packets. FFS if multiple transmissions and/or feedback is needed.
· EHC header format is designed to include following mandatory fields: Context ID, Indication of header format (i.e. full header and compressed header), FFS other field, e.g. profile ID

In this paper, we provide some proposals to address the open issues.
2 Architecture

RAN2 has already concluded that the header compression is performed by a 3GPP defined protocol. We make the following assumptions as natural consequences of RAN2 decision.

We assume that this compression protocol would be part of the PDCP layer, and primarily reside in the header compression/decompression functions shown in “Figure 4.2.2-1: PDCP layer, functional view”.

[image: image1.emf]Radio Interface (Uu)

UE/NG-RAN NG-RAN/UE

Transmitting

PDCP entity

Ciphering

Header Compression

Receiving

PDCP entity

Transmission buffer:

Sequence numbering

Integrity Protection

Add PDCP header

Header Decompression

Deciphering

Remove PDCP Header

Integrity Verification

Packets associated

to a PDCP SDU

Packets associated

to a PDCP SDU

Packets not

associated to a

PDCP SDU

Packets not

associated to a

PDCP SDU

Routing/Duplication

Reception buffer:

Reordering

Duplicte discarding

The basic architecture principles are captured in the following proposal:
Proposal 1a: PDCP Ethernet header compression utilizes the architecture of header compression/decompression function that already exists in Rel-15 PDCP architecture (Figure 4.2.2-1).
Proposal 1b: The presence of the 3GPP defined Ethernet header compression function is negotiated and configured for a PDCP entity following similar principles as the negotiation and configuration of RoHC.
Proposal 1c: The 3GPP defined Ethernet header compression function defines its own compression sub-header, which we refer to as PDCP Ethernet Compression sub-header.
3 PDCP Sub-header for Ethernet Header Compression
3.1 Compressed header structure and why ProfileID is not needed
The structure of an Ethernet header is shown in the Tables below:
Table 1: Ethernet header without VLAN (14 octets)

	SRC
	DST
	EtherType

	6 octets
	6 octets
	2 octets

Table 2: Ethernet header with one VLAN Tag (18 octets)
	SRC
	DST
	VLAN (4 octets)
TPID | TCI
	EtherType

	6 octets
	6 octets
	0x8100 | 2 octets
	2 octets

Table 3: Ethernet header with two VLAN tags (22 octets)
	SRC
	DST
	VLAN (4 octets)
TPID | TCI
	VLAN (4 octets)
TPID | TCI
	EtherType

	6 octets
	6 octets
	0x9100 | 2 octets
	0x8100 | 2 octets
	2 octets

It should first be noted that the Ethernet header does not contain sequence number, timestamp or other variable fields. This is in contrast with VoIP use case with IP/UDP/RTP packets that include timestamp and packet sequence numbers, that are compressed with a master sequence number with RoHC framework.

Observation1a: Ethernet header does not have any fields that can benefit from sequence number based compression.

If we consider the set of Ethernet packets flowing through to a given UE in an Industrial IoT setting, the packets can correspond to specific flows, with some examples given below
· A control/automation flow between a Controller and a Sensor/Actuator (e.g. a TSN flow)

· A logging or diagnostic flow between a server and a machine

· A management/provisioning flow between a provisioning system and a machine

· A safety flow between a safety panel and an alarm
For each of the examples above, the entire Ethernet header remains constant for packets within a flow.
Observation 1b: Ethernet packets can be grouped into flows, where packets within a flow have identical and unchanging values for all Ethernet header fields. Each such flow can be assigned a Context ID.
It was shown during the IIoT study item that benefits for header compression are highest for flows with small packets, such as automation flows. Automation packets also require low latency, making it important to avoid complexity the compressor and decompressor operations.
Observation 1c: Benefits of header compression were shown to be highest for short packets, that are typical for automation flows. Such flows also require low-latency processing, making it important to avoid complex processing.
Proposal 2: The compressed packet should consist of a compression sub-header (that includes the Context ID) and the Ethernet payload (i.e. the Ethernet packet with the Ethernet header removed).

[image: image2.emf]PDCP Hdr

D/C set to ͞D͟

Type=Compressed

CID Value=X

Ethernet Payload

Ethernet Payload Ethernet Header

PDCP and Compression Sublayer

(sender)

Proposal 3: There is no need for multiple compression profiles, and a single compression profile that unambiguously specifies the value of all Ethernet header fields is adequate.
Note1: Proposals 1 and 2 rule out partial header compression, i.e. compressing a subset of header fields (e.g. only source_address) while not compressing other header fields (e.g. a destination address). Such flexibility is not needed for automation flows which will have a fully predictable header and as noted earlier, which have most potential gain with header compression. Compression of partial fields involves additional complexity for the following reasons:

· Definition of compressed header formats that include some Ethernet header fields and remove other Ethernet header fields, which could have a large number of combinations of included/omitted fields.

· Compressor processing to create the header with partial compression

· Decompressor processing to create the full header based on the received header
Complexity is particularly important to avoid for URLLC flows such as TSN that require fast processing.
3.2 Creation of compression context

The following agreement was made in RAN2 #106.
	· Compression is done with following principle:
- For Ethernet flow resulting in creation of new context, compressor transmits at least one packet with full header and context id (to establish context in decompressor).

With the compression framework outlined by Proposals 1 and 2, the creation of a compression context can be done as follows:

[image: image3.emf]PDCP Hdr

D/C set to ͞D͟

Type=Context Setup

CID Value=X

Ethernet Payload

Ethernet Payload Ethernet Header

Ethernet Header

PDCP and Compression Sublayer

(sender)

Proposal 4: For a new context, the compressor transmits an uncompressed full packet together with compression sub-header consisting of type=“Context Setup” and value of the new CID.
3.3 Feedback for context creation
The following agreement and open issues resulted from RAN2#106.

	· Compression is done with following principle:
- For Ethernet flow resulting in creation of new context, compressor transmits at least one packet with full header and context id (to establish context in decompressor).

- After above, compressor starts transmits compressed packets. FFS if multiple transmissions and/or feedback is needed.

We compare the options with feedback and with multiple transmissions, to solve the issue the decompressor handling compressed packets for a context that does not exist at the decompressor.
Option with feedback: In this option, the decompressor sends an acknowledgement to the compressor whenever a new context is created. This removes the possibility of state mismatch which can result in a non-decompressible packet being received at the decompressor. This option requires the definition of an ack packet, and hence has more complexity in standardization. However, it has lower complexity in implementation because a simple Ack based state machine can be implemented.

Option with multiple transmissions: In this option, the compressor sends multiple context setup packets and assumes that the decompressor state has been setup after an implementation-dependent number of packets. With sufficient repeats, this option makes state mismatch likelihood close to zero. This option does not require the definition of an ack packet and hence has lower complexity of standardization. However, it has higher complexity of implementation because the number of transmissions needs to be selected depending on the lower layer error statistics.

	
	Explicit Setup Ack Feedback
	Multiple transmission without explicit Ack

	State mismatch possibility
	None
	Small

	Standards complexity
	Medium
	Small

	Implementation complexity
	Small
	Medium

Proposal 5: To reduce state mismatch, it is recommended to include a feedback packet following context setup. This packet can be sent using a PDCP data PDU with no data. The compressor does not send compressed packets until feedback has been received from the decompressor.

[image: image4.emf]PDCP Hdr

D/C set to “D”

Type = SetupAck

CID Value X

Using PDCP data PDU for these operations is generally better as they are robust to out of order delivery due to retransmissions and HARQ delays (since duplicate PDCP data PDUs which may be created due to RLC retransmissions are discarded at receiving PDCP entity, whereas PDCP control PDUs are not). This is explained further in the next section with an example.
We are proposing to send PDCP data PDU with no data since there may not necessarily be data that decompressor may want to send to the compressor.
3.4 Context state management
It is possible that after some time, the compressor realizes that a certain Context ID is not seeing any traffic, and the compressor may want to reuse the Context ID to compress a different flow.

There are two broad approaches that are possible

(1) Send a context create packet with a new compression context for an existing Context ID, with the receiver interpreting this create packet as replacing the old compression context.

(2) First delete the compression context for that Context ID and subsequently create a compression context for the Context ID

We argue below that the first approach places additional burden on the decompressor

· The decompressor has to be prepared that any incoming packet will replace an existing compression context, in this case it has to deliver this packet to higher layers within the tight URLLC deadlines, as well as execute context modification procedures. This adds complexity to the receive path for established Context IDs.

· The decompressor has to be prepared for frequent changes to the compression context for a given CompressionID, including cases when a context creation packet is received while the decompressor is in process of setting up a context for the previous received context creation packet (unless the standard provides a minimum time-spacing between context creation packets).
· In case PDCP is configured for out-of-order delivery, and context creation packets are sent close to each other, the decompressor may set its state to an older compression context. Solving this would either require the decompressor to be come aware of the PDCP sequence number, or there to be minimum time-spacing between context creation packets).
For the reasons above, we propose
Proposal 6: Before modifying the compression context associated with a Context ID that is already in use, the decompressor shall use a Context delete procedure. The decompressor shall send a Context delete Ack using a PDCP data PDU with no data, and the compressor shall only create a new context for that Context ID upon receiving the Context delete Ack using a PDCP data PDU with no data.

[image: image5.emf]PDCP Hdr

D/C set to “D”

Type = Delete

CID Value X

PDCP Hdr

D/C set to “D”

Type = DeleteAck

CID Value X

As mentioned earlier, using PDCP data PDU for these operations is generally better as they are robust to out of order delivery due to RLC retransmissions and HARQ delays. Use of PDCP control PDUs can cause issues illustrated in the following example sequence of events:
1. PDCP Control PDU for Context Setup, not yet acknowledged

2. 1st Retransmission: PDCP Control PDU Context Setup, not yet acknowledged

3. 2nd Retransmission: PDCP Control PDU Context Setup, not yet acknowledged

4. PDCP Context Setup Acknowledged

5. Few data packets sent
6. PDCP Control packet Context Delete, Acknowledged

7. 2nd Retransmission of PDCP Control PDU for Context Setup is processed at receiver (reception delayed by HARQ delays).

If PDCP data PDUs are used instead, PDCP data PDU is discarded at receiving PDCP entity (in step 7) due to duplicate detection for received PDCP data PDUs. There is no such duplicate detection for PDCP control PDUs.
3.5 Header format for the compression sublayer
Based on the proposals made in this paper, the compression sublayer of PDCP needs to support the following functions
1. Sending of uncompressed packets for which compression is not needed

2. Sending of uncompressed packets for context setup

3. Sending of compressed packets

Additional functions such as ack for context setup can be handled via PDCP Control plane, and does not need the definition of a compression sublayer header.

The compression sublayer header can hence take the following form, allowing for 64 compression flows to be created.

	Type (3 bits)

000: Uncompressed
001: Context setup

010: Compressed

011: Reserved

100: Delete

101: DeleteAck

110: SetupAck

111: Reserved
	Context ID (5 bits)

Receiver shall ignore this field for Type 000, 110 and 111.

Proposal 7: The compression sublayer header can be one octet, with 3 bits for header type and 5 bits for Context ID. The type can be “uncompressed”, “context setup”, “SetupAck”, “compressed”, “delete”, “DeleteAck”, or “reserved”.
Additional compression headers can be created in future releases (if needed) by adding additional negotiation mechanisms in PDCP.
4 Conclusion

In this paper, we provided some basic principles to help define a solution for Ethernet header compression in PDCP.

The following observations and proposals were made.

Proposal 1a: PDCP Ethernet header compression utilizes the architecture of header compression/decompression function that already exists in Rel-15 PDCP architecture (Figure 4.2.2-1).

Proposal 1b: The presence of the 3GPP defined Ethernet header compression function is negotiated and configured for a PDCP entity following similar principles as the negotiation and configuration of RoHC.

Proposal 1c: The 3GPP defined Ethernet header compression function defines its own compression sub-header, which we refer to as PDCP Ethernet Compression sub-header.
Observation1a: Ethernet header does not have any fields that can benefit from sequence number based compression.

Observation 1b: Ethernet packets can be grouped into flows, where packets within a flow have identical and unchanging values for all Ethernet header fields. Each such flow can be assigned a Context ID.

Observation 1c: Benefits of header compression were shown to be highest for short packets, that are typical for automation flows. Such flows also require low-latency processing, making it important to avoid complex processing.
Proposal 2: The compressed packet should consist of a compression sub-header (that includes the Context ID) and the Ethernet payload (i.e. the Ethernet packet with the Ethernet header removed).

Proposal 3: There is no need for multiple compression profiles, and a single compression profile that unambiguously specifies the value of all Ethernet header fields is adequate.

Proposal 4: For a new context, the compressor transmits an uncompressed full packet together with compression sub-header consisting of type=“Context Setup” and value of the new CID.
Proposal 5: To reduce state mismatch, it is recommended to include a feedback packet following context setup. This packet can be sent using a PDCP data PDU with no data. The compressor does not send compressed packets until feedback has been received from the decompressor.

Proposal 6: Before modifying the compression context associated with a Context ID that is already in use, the decompressor shall use a Context delete procedure. The decompressor shall send a Context delete Ack using a PDCP data PDU with no data, and the compressor shall only create a new context for that Context ID upon receiving the Context delete Ack using a PDCP data PDU with no data.

Proposal 7: The compression sublayer header can be one octet, with 3 bits for header type and 5 bits for Context ID. The type can be “uncompressed”, “context setup”, “SetupAck”, “compressed”, “delete”, “DeleteAck”, or “reserved”.
5 References

[1] RP-190728, “WID: Support of NR Industrial Internet of Things (IoT)”
[2] 3GPP TR 38.825, “Study on NR Industrial Internet of Things (IoT)”
PDCP Hdr
D/C set to “D”
Type=Context Setup
CID Value=X
Ethernet Payload
Ethernet Payload
Ethernet Header
Ethernet Header
PDCP and Compression Sublayer (sender)

_1627308712.vsd
PDCP Hdr
D/C set to “D”

Type = Delete
CID Value X

PDCP Hdr
D/C set to “D”

Type = DeleteAck
CID Value X

_1627308724.vsd
PDCP Hdr
D/C set to “D”

Type = SetupAck
CID Value X

PDCP Hdr
D/C set to “D”
Type=Compressed
CID Value=X
Ethernet Payload
Ethernet Payload
Ethernet Header
PDCP and Compression Sublayer (sender)

_1618318069.vsd

