
3GPP TSG-RAN WG2 Meeting 106
R2-1907333
Reno, USA, 13th – 17th, May, 2019

Agenda item:
11.7.2.3
Source:
Huawei, HiSilicon

Title:
Context establishment for Ethernet header compression
Document for:
Discussion and Decision

1. Introduction
In the WID for NR IIoT, structure-aware algorithm based Ethernet header compression has been agreed as following [1]:

	Specify Ethernet header compression based on structure-aware algorithm [RAN2].
· Ethernet header compression solution for LTE to be specified once the design principle for NR is agreed. The impacted LTE specifications to be added latest at RAN#85.

In last RAN2 #105bis meeting, it has been agreed that 3GPP will design a pure Ethernet header compression, instead of extending the ROHC [2].
	· We develop Ethernet header compression 100% in 3GPP TS (not by extending ROHC)

In this contribution, we will discuss some details of context establishment for Ethernet header compression.
2. Discussion
The first issue in Ethernet header compression is whether multiple context tables or a single context table should be used. In a context table, each entry represents a context, which is indicated by a context ID, and each context specifies a specific value of some static Ethernet header fields. For multiple context tables, contexts of different context tables represent values of separate Ethernet header fields. For example, contexts in one context table represent only the values of Source Address, and contexts in another table represent only the values of Destination Address, etc. In this case, when an Ethernet packet is compressed, multiple contexts from different context tables will be used to implement header compression. Several table IDs and context IDs should be conveyed in the compressed packet. On the contrary, with a single context table, context IDs shall be maintained to represent values of all Ethernet header fields. Thus only a context ID needs to be conveyed in the compressed packet. Considering the complexity of maintaining and reconfiguring multiple context tables, and the final sizes of compressed packets, a single context table is preferred.
One may argue multiple context tables are beneficial to support header compression for multiple Ethernet protocols. Different Ethernet protocols have different Ethernet header fields, each context table can be maintained for an Ethernet protocol, which means the context IDs in a context table represent values of all Ethernet header fields for a specific protocol. When an Ethernet packet of a specific Ethernet protocol is compressed, only one table ID and one context ID can be conveyed in the compressed packet. However, if every context ID is defined to denote a bit stream of different length, then the single context table can also be used for a DRB serving TSC traffic with different Ethernet protocols. As shown in Fig. 1, there are 3 entries in the context table. Two entries are for Ethernet 2, and the last entry is for Ethernet 2+802.1QTag. Context ID with ‘0001’ and ‘0010’ denote bit streams of 14 bytes, and ‘0011’ denotes a bit stream of 18 bytes. When receiving an Ethernet packet, the compressor will determine its type, and choose the corresponding context ID to denote it. The de-compressor could rebuild the Ethernet header as it maintains the same context table.

[image: image1.emf]DST addrSRC addrType662compressordecompressorContext = 000100101011010...01100 (14 Bytes) Context = 001110101011010...01000101100 (18 Bytes)0001payloadpading802.1Q TagDST addrSRC addrType24660010payloadpadingEthernet 2Ethernet 2 +802.1Q TagContext = 001000111010010...01010 (14 Bytes) Context = 000100101011010...01100 (14 Bytes) Context = 001110101011010...01000101100 (18 Bytes)Context = 001000111010010...01010 (14 Bytes)

Fig.1: example of single context
Observation 1: Both single context table and multiple context tables can be used for a DRB serving TSC traffic where different Ethernet protocol packets included.
Proposal 1: For simplicity, single context table to be used for Ethernet header compression.

The second issue is when to exchange the compression context table. For ROHC, In-line context exchanging is adopted, which means context information exchanging happens during data transmission. The efficiency of compression is thus low at the beginning of session and gradually increases. For IIoT scenarios, the Ethernet header structure is usually static or predictable, the context could be exchanged before the session starts. Two alternatives are illustrated in Fig.2.

[image: image2.emf]UEgNBDataEthernet headerUEgNBDataEthernet header...DataEthernet headerAlternative 1: context exchanging before data transmissionContext info for header compressionAlternative 2: context exchanging during data transmissionData transmission with compressed headerData transmission with compressed header

Fig.2: Two alternatives for Ethernet header compression context exchanging

Alternative 1: context exchanging before the session starts

For this alternative, the gNB and the UE could exchange the context table for Ethernet header compression before data transmission, thus Ethernet header compression can be implemented from the first packet. Higher efficiency could be achieved with the cost of extra messages to exchange the context table beforehand. A RRC message can be used to exchange the context information.
Alternative 2: In-line context exchanging
This alternative is similar to that applied in the current ROHC for IP header. Since the compression context is exchanged after data transmission starts, the Ethernet header of the first several packets could not be compressed. Nevertheless alternative 2 does not need the extra message exchanging beforehand.

The two alternatives are compared in table 1. Considering alternative 1 could bring in steady and high compression efficiency from the beginning, which is beneficial for IIoT scenarios, we prefer to adopt alternative 1 in Ethernet header compression.
Table 1: Comparison of two alternatives for Ethernet header compression

	
	Alternative 1
	Alternative 2

	Compression efficiency
	high
	From low to high

	Need extra RRC message
	Yes, but unicast RRC signalling overhead is not an issue
	No

	Need extra field in user packet for context exchanging
	No
	Yes

Proposal 2: The compression context shall be exchanged before data transmission starts.
3. Conclusion
In this paper, some issues about context establishment for Ethernet header compression were discussed, and we made the following observation and proposals:

Observation 1: Both single context table and multiple context tables can be used for a DRB serving TSC traffic where different Ethernet protocol packets included.
Proposal 1: For simplicity, single context table to be used for Ethernet header compression.

Proposal 2: The compression context shall be exchanged before data transmission starts.
4. Reference

[1] RP-190728, Support of NR Industrial Internet of Things (IoT).
[2] Report of 3GPP TSG RAN2#105bis meeting
DST addr
SRC addr
Type
6
6
2
compressor
decompressor
Context = 0001
00101011010...01100 (14 Bytes)
Context = 0011
10101011010...01000101100 (18 Bytes)
0001
payload
pading
802.1Q Tag
DST addr
SRC addr
Type
2
4
6
6
0010
payload
pading
Ethernet 2
Ethernet 2 +802.1Q Tag
Context = 0010
00111010010...01010 (14 Bytes)
Context = 0001
00101011010...01100 (14 Bytes)
Context = 0011
10101011010...01000101100 (18 Bytes)
Context = 0010
00111010010...01010 (14 Bytes)

UE
gNB

Data
Ethernet header
DRB setup (Context exchange for header compression)
UE
gNB

DRB setup (without Context exchange for header compression)

Data
Ethernet header

...
Data
Ethernet header

Alternative 1: context exchanging before data transmission

Context info for header compression
Alternative 2: context exchanging during data transmission
Data transmission with compressed header
Data transmission with compressed header

