[bookmark: _GoBack]3GPP TSG-RAN WG2 #102	R2-1806762
Busan, Republic of Korea, 21st – 25th May 2018

Agenda Item:	10.4.1.8.2
Source:	Ericsson
Title:	Further reducing the size of access barring information
Document for:	Discussion, Decision

1	Introduction
At RAN2#101bis we agreed:
Agreements for LTE/5GC and NR
1:	Barring information common to multiple Access Categories are specified. Number of different sets of barring parameters is small [e.g. 2 or 4 or 8]
2	For each Access Category there is a link to which of the sets of barring information is to be used; or
	For each set of barring inform there are links (e.g. bit map) to which Access Categories use the barring set
FFS Link direction to be concluded considering at least the worst case situation

Agreements
1	Adopt option 1 (Link from AC to the parameter set).
2	The parameter barring sets are configured in SI

Working assumption
1	Number of barring sets in SI will be up to N. N will be at most 8.

[bookmark: _Hlk513450197][101bis#45][NR] TP on AC (LG)
	Update TP based on agreements from this meeting and progress some open FFS points
	Intended outcome: Report and TP to next meeting.
	Deadline: Thursday 2018-05-10

This contribution addresses further reduction of the size of access barring information, with the aim of fitting it into SIB1.
[bookmark: _Ref178064866]
2	Discussion
2.1 	Estimation of size of the baseline
As the baseline for the discussion, we use, the current (at the time of writing) ASN.1 TP circulated in the [101bis#45][NR] TP on AC (LG) e-mail discussion (here referred to as the "LGE proposal"):
SIBX ::=		SEQUENCE {

[bookmark: _Hlk513700091]	uac-BarringForCommon				UAC-BarringPerCatList			OPTIONAL,

	uac-BarringPerPLMN-List				UAC-BarringPerPLMN-List			OPTIONAL,

	uac-BarringInfoSetList				UAC-BarringInfoSetList			OPTIONAL,

}

UAC-BarringPerPLMN-List ::= 		SEQUENCE (SIZE (1.. maxPLMN)) OF UAC-BarringPerPLMN	

	-- maxPLMN = 12

UAC-BarringPerPLMN ::=			SEQUENCE {
	plmn-IdentityIndex					INTEGER (1..maxPLMN),
	uac-barringPerCatList				UAC-BarringPerCatList
}																	

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat 	

UAC-BarringPerCat ::= SEQUENCE {
	AccessCategory				INTEGER (1..maxAccessCat-1),
	uac-barringInfoSetIndex			INTEGER (1.. maxBarringInfoSet)
}																	

UAC-BarringInfoSetList			SEQUENCE (SIZE (1..maxBarringInfoSet)) OF UAC-BarringInfoSet
-- FFS: maxBarringInfoSet = at most 8

UAC-BarringInfoSet ::= SEQUENCE {
	uac-BarringInfo			SEQUENCE {
		uac-BarringFactor			ENUMERATED {
										p00, p05, p10, p15, p20, p25, p30, p40,
										p50, p60, p70, p75, p80, p85, p90, p95},
		uac-BarringTime				ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512},
		uac-BarringForAccessIdentity			BIT STRING (SIZE(7))
-- maxAccessIdentity = 7
-- bit 0 in the bit string corresponds to AI1, bit 1 to AI2, bit 2 to AI11, bit 3 to AI12 and so on
-- Value 0 indicates that access attempt is allowed for the corresponding access identity
	}	
}																	

For the LGE proposal, we do the following calculation on size of each IE assuming worst case (12 PLMNs, 63 access categories, 8 barring sets):
[bookmark: _Hlk513697237]Table 1: Size calculation for version used in the LGE proposal
	IE
	Size

	UAC-BarringInfoSet
	4+3+7=14 bits

	UAC-BarringInfoSetList
	3+8*14=115 bits

	UAC-BarringPerCat
	6+3= 9 bits

	UAC-BarringPerCatList
	6+63*9=573 bits

	UAC-BarringPerPLMN
	4+573=577 bits

	UAC-BarringPerPLMN-List
	4+12*577=6928 bits

	Total
	3+573+6928+115=7619 bits

[bookmark: _Hlk513700284]However, the version in the email discussion assumes that only some of the Access Categories are listed, and uses a variable size list + explicitly includes the access category in each list element:

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat 	

UAC-BarringPerCat ::= SEQUENCE {
	AccessCategory				INTEGER (1..maxAccessCat-1),
	uac-barringInfoSetIndex			INTEGER (1.. maxBarringInfoSet)
}
																	

During the RAN2#101bis meeting discussion on the other hand, the assumption was that all categories are always listed, somewhat like below

UAC-BarringPerCatList ::= SEQUENCE (SIZE (maxAccessCat-1)) OF UAC-BarringPerCat 	

UAC-BarringPerCat ::= SEQUENCE {
	uac-barringInfoSetIndex			INTEGER (1.. maxBarringInfoSet)
}

	
We refer to this as the RAN2#101bis structure, and we do the following calculation on size of each IE assuming worst case (12 PLMNs, 63 access categories, 8 barring sets):
Table 2: Size calculation for version used in the RAN2#101bis structure
	IE
	Size

	UAC-BarringInfoSet
	4+3+7=14 bits

	UAC-BarringInfoSetList
	3+8*14=115 bits

	UAC-BarringPerCat
	3 bits

	UAC-BarringPerCatList
	63*3=189 bits

	UAC-BarringPerPLMN
	4+189=193 bits

	UAC-BarringPerPLMN-List
	4+12*193=2320 bits

	Total
	3+195+2320+115=2633 bits

[bookmark: _Hlk513726750]So for the RAN2#101bis structure, the total size for the worst case comes down. However, since all access categories are always listed, this approach is less efficient when not all access categories are used.
For both the LGE proposal and the RAN2#101bis structure, the dominating factor remains to be the references from the access categories for each of the PLMNs - UAC-BarringPerPLMN-List.
Since there can be up to 63 access categories for each PLMN, we observe:
[bookmark: _Toc513726886]For the worst case, the dominant factor is still the access categories for each of the PLMNs.
Based on the reply LS from RAN1 [1], 7619 bits for access barring information alone is way too large if we want to fit SIB1 into a single transport block also in the worst case, since RAN1 replied that 2976 bits is the upper limit for the max TBS. We observe:
[bookmark: _Toc513726887]Further optimizations of the access barring information is needed if we want to fit SIB1 into a single transport block also in the worst case.
In previous estimations, such as in [2] and [3] the size of SIB1 was estimated to around 1200-1300 bits, excluding access barring info. The RAN1 reply may indicate that there is still room for at least 1500 bits for the access barring information, assuming the old size estimations of other information in SIB1 are still valid.
[bookmark: _Ref189046994]One can discuss the cases when for a given PLMN, all access categories are needed, including all the operator-defined access categories 32-63 and all the reserved access categories 8-31.
We observe:
[bookmark: _Toc513726888]To use all the 63 access categories for a single PLMN is an extreme case.
And extending it to all PLMNs, it becomes a really remote case:
[bookmark: _Toc513726889]To use all the 63 access categories for 12 PLMN at the same time is an even more extreme case.
So, having 12 PLMNs where each of them uses all the 63 access categories is not seen as a realistic deployment.
We propose:
[bookmark: _Toc513726925]RAN2 needs to discuss limitations in the configuration of access control, and focus on the more realistic deployments.
2.2	Possible ways to further reduce the size
The worst case with 12 PLMNs and a unique combination of barring sets for each of the 63 access categories for each PLMN seems like a very remote case and is not a typical and probably not even a realistic deployment. Still, by applying this worst case may result that the size of the system information block SIB1 would exceed the maximum available transport block size.
We can think of a number of ways for how the specification can restrict the total size:
· [bookmark: _Hlk513726671]Alternative 1: Introduce restrictions on possible combinations of number of PLMNs and number of access categories. For example, when number of PLMNs increases the amount of access categories decreases. A CHOICE on the top level can be used to select between a number of scenarios. This alternative is applied on the LGE proposal.
· Alternative 2: Divide the list of access categories into a mandatory part, with the currently standardised access categories, and an optional part with the operator-defined access categories. This alternative is applied on the RAN2#101bis structure.
[bookmark: _Hlk513726872]2.2.1 	Alternative 1: Optimization for the LGE proposal
In this alternative, we reduce the number of access categories for the PLMN-specific barring information UAC-BarringPerPLMN, but still keep it possible to use all the access categories for the common barring information uac-BarringForCommon. This also means that we would apply this alternative on the LGE proposal, where only some of the Access Categories are listed in the PLMN-specific barring information, and uses a variable size list + explicitly includes the access category in each list element.
As one limitation, we propose to specify a limit for how many access categories that can be overridden by a PLMN. As indicated above, to use override for all 63 access categories is very unlikely. We propose that an upper limit should be 32 access categories. The PLMN common access barring information should still have up to 63 access categories.
[bookmark: _Toc513726926]When using the LGE proposal, where only some of the Access Categories are listed in the PLMN-specific barring information, limit the number of access categories to 32.
As a second step, to reduce the information size, we think that it is not likely that PLMN-specific barring for these 32 access categories are specified for all PLMNs. Especially when a high number of PLMNs is deployed (up to 12), that all these PLMN has use of PLMN-specific barring for 32 access categories seems unlikely.
Below we illustrate the size of IE UAC-BarringPerPLMN, as function of number of access categories. We also can see that multiplying this figure with certain number of PLMNs results in the approximate same size of the UAC-BarringPerPLMN-List.

	#AC
	# PLMNs
	[bookmark: _Hlk513700108]UAC-BarringPerPLMN
	UAC-BarringPerPLMN-List

	32
	2
	293 bits
	586 bits

	16
	4
	148 bits
	592 bits

	8
	8
	75 bits
	600 bits

	6
	12
	57 bits
	684 bits

So by trading the number of access categories and number of PLMNs we can keep the same size. Since we would have different sizes per PLMN, we can further trade: E.g. one PLMN with 63 categories (577 bits) can be exchanged into four PLMNs with 16 categories (148*4=592 bits) or into one PLMN with 32 categories (293 bits) and two PLMNs with 16 categories each (148*2=296 bits, in total 589 bits). To allow such mixes we can use SEQUENCE of CHOICES.
The below example contains a sequence of two groups and each group has four options:
	One PLMN with up to 32 categories (293 bits)
	Up to two PLMNs with up to 16 categories each (148*2=296 bits)
	Up to four PLMNs with up to 8 categories each (75*4=300 bits).
Up to six PLMNs with up to 6 categories each (57*6=342 bits)

UAC-BarringPerPLMN-List ::= 		SEQUENCE {SIZE 1..2)) OF UAC-BarringPerPLMN-Group

UAC-BarringPerPLMN-Group ::=	 CHOICE {
			option1						UAC-BarringPerPLMN-opt1,
			option2						SEQUENCE (SIZE (1.. 2)) OF UAC-BarringPerPLMN-opt2,
			option3						SEQUENCE (SIZE (1.. 4)) OF UAC-BarringPerPLMN-opt3,
			option4						SEQUENCE (SIZE (1.. 6)) OF UAC-BarringPerPLMN-opt4
}

UAC-BarringPerPLMN-opt1 ::=			SEQUENCE {
	plmn-IdentityIndex					INTEGER (1..maxPLMN),
	uac-barringPerCatList				UAC-BarringPerCatList-opt1
}

UAC-BarringPerCatList-opt1 ::= SEQUENCE (SIZE (1..32)) OF UAC-BarringPerCat 	

UAC-BarringPerPLMN-opt2 ::=			SEQUENCE {
	plmn-IdentityIndex					INTEGER (1..maxPLMN),
	uac-barringPerCatList				UAC-BarringPerCatList-opt2
}

UAC-BarringPerCatList-opt2 ::= SEQUENCE (SIZE (1..16)) OF UAC-BarringPerCat 	

UAC-BarringPerPLMN-opt3 ::=			SEQUENCE {
	plmn-IdentityIndex					INTEGER (1..maxPLMN),
	uac-barringPerCatList				UAC-BarringPerCatList-opt3
}

UAC-BarringPerCatList-opt3 ::= SEQUENCE (SIZE (1..8)) OF UAC-BarringPerCat 	

UAC-BarringPerPLMN-opt4 ::=			SEQUENCE {
	plmn-IdentityIndex					INTEGER (1..maxPLMN),
	uac-barringPerCatList				UAC-BarringPerCatList-opt4
}

UAC-BarringPerCatList-opt4 ::= SEQUENCE (SIZE (1..6)) OF UAC-BarringPerCat 	

			

With the above approach, the size of each group in the UAC-BarringPerPLMN-List becomes for each choice:
	UAC-BarringPerPLMN-Group CHOICE
	size of one UAC-BarringPerPLMN-Group

	option1
	295 bits

	option2
	299 bits

	option3
	304 bits

	option4
	347 bits

So in the worst case, where the UAC-BarringPerPLMN-List contains two groups, each using option4, the size of the UAC-BarringPerPLMN-List would be 2+2*347= 696 bits.

Total size of the access barring information with these optimizations would in the worst case be 3+573+696+115 = 1387 bits.
We have shown that with restrictions on the number of possibilities for PLMN-and access category-specific override, in particular for deployments with many PLMNs, the size of access barring information can be reduced to a reasonable size.
[bookmark: _Toc513726890]By introduce restrictions on which combinations of number of PLMNs and number of access categories, the maximum size of access barring information can be significantly reduced.
[bookmark: _Toc513726927]Introduce restrictions on what combinations that can be signalled as long as they not affect realistic deployments.
2.2.2	Alternative 2, optimization for the RAN2#101bis structure
In this alternative, for both the common and PLMN-specific access barring information, the barring information for the standardised access categories are always present, and for those we will use the RAN2#101bis structure, where access category is not explicitly included. Since only a fraction of the range 0-31 are currently used (only access category 0-7), we can save space by limit the number of standardised access categories. We propose to limit the number of standardised access categories to 16.
[bookmark: _Toc513726928]When using the RAN2#101bis structure, where all access categories are included, introduce a limitation for the standardized access categories, where only access categories 0-15 are used.
Then, for the operator-defined access categories, these should be optional to include. Using the RAN2#101bis structure, also for these, it will look like:

UAC-BarringPerCatList ::= SEQUENCE (
 catListStandardized			SEQUENCE(SIZE(16)) OF UAC-BarringPerCat,
 catListOperatorDefined		SEQUENCE(SIZE(maxAccessCat-32)) OF UAC-BarringPerCat OPTIONAL
}

UAC-BarringPerCat ::= INTEGER (1.. maxBarringInfoSet)

For the alternative here, we can calculate the size:
	IE
	Size (no operator-defined)
	Size (with operator-defined)

	UAC-BarringInfoSet
	4+3+7=14 bits
	

	UAC-BarringInfoSetList
	3+8*14=115 bits
	

	UAC-BarringPerCat
	3 bits
	

	UAC-BarringPerCatList
	1+16*3=49 bits
	1+16*3+32*3=145 bits

	UAC-BarringPerPLMN
	4+49=53 bits
	4+145=149 bits

	UAC-BarringPerPLMN-List
	4+12*53= 640 bits
	4+12*149=1792 bits

	Total
	3+49+640+115=807 bits
	3+145+1792+115=2055 bits

In this alternative, the total size is brought down to 807 bits in worst case (12 PLMNs), unless operator-defined access categories are used.
If we for the operator-defined access categories, use the LGE proposal, where only some of the Access Categories are listed, and also limit how many operator-defined access categories that can be present for the PLMN-specific access barring information to maximum 16 (for the common information all 32 operator-defined access categories can still be used, as the PLMN-specific will only list this that override), it will look like this:

uac-BarringForCommon				UAC-BarringPerCatListCommon			OPTIONAL,

UAC-BarringPerCatListCommon ::= SEQUENCE (
 catListStandardized			SEQUENCE(SIZE(16)) OF UAC-BarringPerCatStandardized,
 catListOperatorDefined		SEQUENCE(SIZE(1..32)) OF UAC-BarringPerCatOperatorDefined OPTIONAL
}

UAC-BarringPerPLMN ::=			SEQUENCE {
	plmn-IdentityIndex					INTEGER (1..maxPLMN),
	uac-barringPerCatList				UAC-BarringPerCatListPerPLMN
}	

UAC-BarringPerCatListPerPLMN ::= SEQUENCE (
 catListStandardized			SEQUENCE(SIZE(16)) OF UAC-BarringPerCatStandardized,
 catListOperatorDefined		SEQUENCE(SIZE(1..16)) OF UAC-BarringPerCatOperatorDefined OPTIONAL
}

UAC-BarringPerCatStandardized ::= INTEGER (1.. maxBarringInfoSet)

UAC-BarringPerCatOperatorDefined ::= SEQUENCE {
 AccessCategory INTEGER (1..maxAccessCat-1),
 uac-barringInfoSetIndex INTEGER (1.. maxBarringInfoSet)
}

Size estimation:
	IE
	Size (no operator-defined)
	Size (with operator-defined)

	UAC-BarringInfoSet
	4+3+7=14 bits
	

	UAC-BarringInfoSetList
	3+8*14=115 bits
	

	UAC-BarringPerCat
	3 bits
	

	UAC-BarringPerCatListCommon
	1+16*3=49 bits
	1+16*3+32*3=145 bits

	UAC-BarringPerCatListPerPLMN
	1+16*3=49 bits
	1+16*3+16*3= 97 bits

	UAC-BarringPerPLMN
	4+49=53 bits
	4+97=101 bits

	UAC-BarringPerPLMN-List
	4+12*53= 640 bits
	4+12*101 = 1216 bits

	Total
	3+49+640+115=807 bits
	3+145+1216+115=1479 bits

This variant results that in the worst case, and when operator-defined access categories are used, we bring down the maximum size to 1479 bits., which with more restrictions or optimizations can be brought down even further (such as reducing amount of standardized and/or operator-defined access categories even more).
3	Conclusion
In the previous sections we made the following observations:
Observation 1	For the worst case, the dominant factor is still the access categories for each of the PLMNs.
Observation 2	Further optimizations of the access barring information is needed if we want to fit SIB1 into a single transport block also in the worst case.
Observation 3	To use all the 63 access categories for a single PLMN is an extreme case.
Observation 4	To use all the 63 access categories for 12 PLMN at the same time is an even more extreme case.
Observation 5	By introduce restrictions on which combinations of number of PLMNs and number of access categories, the maximum size of access barring information can be significantly reduced.

Based on the discussion in the previous sections we propose the following:
Proposal 1	RAN2 needs to discuss limitations in the configuration of access control, and focus on the more realistic deployments.
Proposal 2	When using the LGE proposal, where only some of the Access Categories are listed in the PLMN-specific barring information, limit the number of access categories to 32.
Proposal 3	Introduce restrictions on what combinations that can be signalled as long as they not affect realistic deployments.
Proposal 4	When using the RAN2#101bis structure, where all access categories are included, introduce a limitation for the standardized access categories, where only access categories 0-15 are used.

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref513553480][bookmark: _Ref174151459][bookmark: _Ref189809556]R2-1806614/ R1-1805653, LS on Maximum TBS for PDSCH containing RMSI, RAN WG1, 3GPP TSG RAN WG2#102, Busan, Korea, 21 - 25 May, 2018
[bookmark: _Ref513574818]R2-1802329, Size of remaining minimum system information, Ericsson, 3GPP TSG-RAN WG#101, Athens, Greece, Feb 26 – Mar 2, 2018
[bookmark: _Ref513575704]R2-1803356, The maximum size of RMSI, Huawei, HiSilicon, 3GPP TSG-RAN2 Meeting #AH-1801, Athens, GR, 26th Feb - 2nd Mar 2018
[bookmark: _Hlk513648548]R2-18xxxxx, [101bis#45][NR] TP on AC (LG), LG Electronics Inc. (Email discussion Rapporteur), 3GPP TSG RAN WG2#102, Busan, Korea, 21 - 25 May, 2018
