The ASN.1 Encoding Control Notation (ECN) - a Tutorial

by John Larmouth and Frank Schramm

NOTE — This paper provides an informal introduction to the terminology and approaches adopted in the Encoding Control Notation work. The paper was produced by John Larmouth based on concepts originated by Frank Schramm.

1
Status

This paper is an output document from the second Somerset New Jersey meeting of ASN.1, following further informal discussions in Frankfurt in the post-editing phase of that meeting. It represents the latest agreements of those meetings, as reflected in the minutes of the meetings.

It is intended that this paper be included as a tutorial Annex in early drafts of the Encoding Control Notation Standard. In later drafts it may be possible to reduce the material covered in the Tutorial Annex as the body of the Recommendation/Standard matures.

It is also intended that this paper be included on a Web site, and widely circulated, with a request for comments on:

· Whether there are sufficient Encoding Control features:

· to enable known legacy protocols to be defined using ASN.1 with ECN;

· to enable specialised encodings to be applied to parts of an ASN.1 specification for which the bulk is being encoded using standard encoding rules.

· Whether there are features that are considered unnecessary for the first version of the Recommendation/Standard, but which might be added later if a need is identified.

It is hoped that an initial draft of the Encoding Control Notation Recommendation (aligned with this tutorial) will go for ITU-T determination at its March 2000 meeting, if ITU-T time-scales for submission permit this. Otherwise it will go for determination at the next ITU-T meeting, with simultaneous balloting as an ISO Draft Proposal. (The latter is on the assumption that the ISO New Work Item ballot achieves the necessary approvals).

2
Structure

The tutorial starts in a general way, but ends with two specialised annexes. One gives a more detailed example of the application of ECN to an ASN.1 specification, and illustrates the syntax currently proposed for ECN. The second annex is intended as a first draft for an annex to the base ECN standard, and describes certain constraints that have to be satisfied for an ECN specification to be well-formed - that is, to produce encodings that are decodable.

3
What is the Encoding Control Notation?

It was recognised during 1998 that there were users of the ASN.1 notation that had requirements for encodings of the types that they were defining that were not provided by existing standardised encoding rules.

The decision was taken to try to design (and to standardise) an Encoding Control Notation that would enable the encoding of ASN.1 types to be specified using a formal notation that could be supported by ASN.1 tools.

It is not intended that ECN should replace the use of standardised encoding rules such as the Basic Encoding Rules (BER) or the Packed Encoding Rules (PER) for the majority of applications, but rather that it would be used under specialised circumstances.

Three areas became apparent during 1998/99:

· People wishing to write ASN.1 types (and get the support of ASN.1 tools in implementation) for "legacy" - see below - protocols where the encoding was already determined.

· People wishing for various reasons to produce industry-specific encoding rules closely related to standardised rules, but with some differences.

· People wishing to hand-craft encodings in small parts of protocols which were otherwise "standard" ASN.1 (particularly for the contents of some octet or bit strings).

· People wishing to use "special encodings" for some fields or types, notably for integer types, in order to produce highly optimised encodings of the Huffman variety (small number of bits for common values, more bits for less common values).

The Encoding Control Notation work set itself the ambitious target of satisfying the needs of all these groups, and perhaps also of being capable of extension to allow it to be used to formally define the existing standardised encoding rules (BER and PER in their various versions).

This tutorial first introduces some terminology which is important in relating ASN.1 types to their encodings, then discusses the features of the Encoding Control Notation itself.

4
Introduction to ASN.1

Abstract Syntax Notation One (ASN.1) is a notation for the definition of data types (types) which is platform and language independent. It has been widely applied for the definition of messages in computer protocols. It is normally used in conjunction with standardised encoding rules that determine the bit-patterns to be used to convey values of the defined types.

The ASN.1 type which (after resolution of references) defines a complete set of protocol messages for some application is referred to as the top-level type for that application. Any value of this top-level type is called an abstract syntax value for this application, and the set of all such values is called the abstract syntax of the application.

An ASN.1 type is typically defined using primitive types (such as INTEGER and BOOLEAN) and construction mechanisms (such as SEQUENCE, CHOICE, and SEQUENCE OF). Within a type definition, values of primitive types are called abstract syntax component values. The same name can also be applied to values of a type defined using SEQUENCE, CHOICE or SEQUENCE OF which is then used within some enclosing SEQUENCE, CHOICE or SEQUENCE OF. Thus, in general, abstract syntax component values can themselves consist of (smaller) abstract syntax component values.

The set of bit-patterns used to represent the abstract syntax values of an application (after application of some Encoding Rules) is called the transfer syntax for that application. A bit-pattern in the transfer syntax is typically made up of fields (contiguous bits or octets) each of which carries a value corresponding to some abstract syntax component. Such fields are called transfer syntax components.

5
The ASN.1 contents constraint

NOTE — This constraint is discussed here because one of the earliest applications identified for the Encoding Control Notation was to provide specialised encodings for contained types (see below). This application was later generalised to the provision of specialised encodings for any abstract syntax component.

The contents constraint is a recent addition to ASN.1, and permits the contents of an OCTET STRING or a BIT STRING to be specified as the values of a given ASN.1 type. The notation is:

 OCTET STRING (CONTAINING <type>) or

 OCTET STRING (CONTAINING <type> ENCODED BY <value>)

The <type> in this construct is called a contained type, and for many purposes is analogous to a top-level type, which differs from a contained type only in that the carrier is defined separately, and may be defined by notations other than ASN.1. (Whilst it is not a requirement that carrier protocols provide delimitation of the encodings of their contents, this is the norm, at least where the contents are known to be an integral number of octets.)

A contained type is best viewed as having its own abstract syntax components, but itself forming a single component of the type within which it is contained. The concepts of abstract and transfer syntax can be applied to the values and encodings of a contained type as well as to the values and encodings of a top-level type.

Because the encoding of a contained type (and usually of a top-level type) is externally delimited, this can provide some additional flexibility in the available encodings of such types.

NOTE — Editor's note: The question of whether the PER encoding of a contained type should always be an integral multiple of eight bits (as is the case for a top-level type) requires resolution, as there is currently no text related to the contents constraint in PER.

6
Relations between abstract and transfer syntax components

With the standardised ASN.1 Encoding Rules, there are generally a number of transfer syntax components corresponding to any one abstract syntax component. Examples follow.

BER encodings:

 INTEGER (an abstract syntax component)

is encoded as

 Identifier Octets plus Length Octets plus Contents Octets

 (three transfer syntax components)

PER CHOICE encodings:

 CHOICE {a1 A, a2 B}

is encoded as

 Choice Index plus an encoding of A or B

 (two transfer syntax components)

PER OPTIONAL encodings:

 INTEGER (0..7) OPTIONAL (in a SEQUENCE)

is encoded with

 a "Present" bit plus an encoding of the INTEGER

 (two transfer syntax components)

When transfer syntax components are used to identify:

· the lengths of other (usually later) components,

· the choice between alternatives, or

· the presence or absence of optional elements,

then we describe these transfer syntax components as length determinants, choice determinants, and presence determinants respectively.

We define the abstract values (to which semantics are applied) of the abstract syntax components as primary values, and values that are encoded as transfer syntax components to support the encoding (such as length, choice and presence determinants) as auxiliary values. Auxiliary values generally carry no application semantics, and are present solely to support transfer of abstract values as a string of bits or octets.

It is important to note that any encoding scheme for ASN.1 has (like the standardised encoding rules) to address the issue of how to provide length, choice, and presence determinants, because abstract syntax components for auxiliary values are not normally included in an ASN.1 specification.

A well-formed encoding has to ensure that transfer syntax fields are either of a length which a decoder can determine from an inspection of the ASN.1 type they purport to be an encoding of, or have an associated length determinant. Similarly for choice and presence determinants.

There are also constraints on a well-formed encoding specification related to the positioning of determinants in relation to the field whose length, choice, or presence they are determining. Requirements in these areas are addressed in Annex B to this tutorial.

It should be noted that the strict TLV approach of BER provides all necessary length and choice and presence determinants through the tag and length fields, plus the requirements on ASN.1 for uniqueness of tags. PER takes a somewhat different approach to length, choice, and presence determinants, but still addresses these issues.

A final point to note is that encodings which support the extensibility requirements of ASN.1 have to satisfy additional requirements related to the ability for a decoder to detect the presence of material added in later versions, and to have available a length determinant for that material. This again gives rise to additional auxiliary values (additional transfer syntax components).

7
Mappings to programming language data types

Many tools exist which map ASN.1 type definitions to data types in specific programming languages such as C, C++ and Java, and support the encoding of values placed in these data types, and the decoding of bit-patterns into values of these data types.

Such tools provide a simple mapping between the primary values and values of variables in the chosen programming language. It is, however, normal (indeed necessary) in such tools to use features (such as NULL termination of strings) in the programming language, or additional variables (for optionality or choice identification) that correspond to auxiliary values. The precise form of language structure used to represent auxiliary values in the programming language will generally differ from tool to tool.

Thus, when using ASN.1 tools with standardised encoding rules, only primary values appear in the ASN.1 type definitions, but auxiliary values appear (with some form of representation) in both mappings to programming languages and as transfer syntax components. (We see below that when legacy protocols are being supported directly by ASN.1 with ECN, the picture can be somewhat different.)

8
Models for Encoding Control

8.1
The one-to-one model

It is relatively easy to provide notation that gives flexible control over the encoding of primary values into a transfer syntax field. It is in the provision of notation to specify the insertion of auxiliary values in a controlled and flexible way that poses more difficulty.

In the simplest model (called one-to-one) of use of ECN, we use ASN.1 to specify a type with an abstract syntax component for every transfer syntax field. Some of these abstract syntax components will be primary components, some will provide auxiliary values.

NOTE — This distinction is not always clear-cut when working with legacy protocols. In general, an abstract syntax component may provide useful application semantics (for example, number of attendees at a conference) - a primary value - but at the same time act as a length determinant - an auxiliary value - for a "SEQUENCE OF" giving details of each attendee.

This model is generally the simplest to apply, and is probably the most applicable and easiest to use for legacy protocol support (see below). It can, however, offend the "purist", because the ASN.1 specification is no longer describing purely "abstract" values. Nonetheless, this model is the simplest use of ECN, and will satisfy the requirements of many users.

8.2
The one-to-many model

In this model, the base ASN.1 specification contains only primary values. (As is normally the case when using standard encoding rules).

For those parts of this specification which require specialised encoding through the application of ECN, an auxiliary ASN.1 specification is provided for each such part.

A "part" will generally be a single ASN.1 primitive type, but could be a series of - adjacent - types if, for example, it was desired to define an encoding in which these types all shared a common length or choice determinant.

The ECN provides notation which enables a normal base ASN.1 specification (containing only primary values) to be supplemented with auxiliary ASN.1 specifications which provide a one-to-one mapping from the components of the auxiliary specification into transfer syntax fields. The application of ECN as in the one-to-one model above then provides for the specialised encoding of the required fields in the base specification.

The role of ECN in this case therefore has to cover the linkage between the auxiliary definition and the primary components needing specialised encoding, as well as providing flexible control over the encoding of the components of the auxiliary definition.

9
Support for legacy protocols

NOTE — This clause describes a direct application of ECN using the one-to-one model where the ASN.1 definition contains abstract syntax components for both primary and auxiliary values (that is, there is a one-to-one correspondence between components of the ASN.1 type and fields of the transfer syntax). The next clause describes the use of ECN with an auxiliary ASN.1 definition, where the base ASN.1 definition contains only primary values. Where a protocol is predominantly encoded in a manner that is close to a standardised encoding rule, the latter approach is the more appropriate. Where the desired encoding is unrelated to a standardised encoding rule for most of the parts of the encoding, the one-to-one model is the simplest.

A legacy protocol is one which has been defined without use of ASN.1.

Typically, such protocols use pictures of bit and octet layouts, and/or tabular definition (or other specialised conventions applied using natural language) to determine the transfer syntax. Semantics are generally applied directly to those transfer syntax components that contain primary values. These approaches are called bit-level definition (BLD), and are extremely varied in both the complexity of structure that they can handle and in the approach they take to encoding of both primary and auxiliary values. The primary challenge in developing the Encoding Control Notation is to provide sufficient richness to be able to cover the many varied approaches to encoding of abstract syntax components (and the mechanisms for length, choice and presence determination) in BLD specifications.

Bit-level definition makes it very difficult to apply application-independent tools (such as ASN.1 compiler tools) to such applications, as the precise nature of the BLD notation/figures/tables typically differs from application to application. There is, however, increasing interest in providing the means to re-define such applications as ASN.1 types, with an additional encoding specification (using a formal language - which can be supported by tools - to define the encoding). The encoding specification applied to the ASN.1 type should give exactly and precisely the bits-on-the-line that are mandated by the bit-level definition. This is what ECN provides.

In order to enable ASN.1 tools (enhanced with support for the Encoding Control Notation) to be used for the implementation of legacy protocols, two things are needed:

· Guidance on how to produce ASN.1 type definitions to describe the legacy protocol in such a way that application of Encoding Control Notation will be easy and will result in the bit-patterns of the legacy protocol. (The production of these ASN.1 type definitions for the legacy protocol is done by human beings. It cannot in general be automated, as there are many BLD approaches, most of which are not expressed using a computer-readable language, and sometimes are not even formally defined.)

· A means of formally specifying the encodings of the abstract syntax components of those ASN.1 types (the Encoding Control Notation).

The task of providing ASN.1 support for legacy protocols is eased if the ASN.1 types used to describe these protocols contain abstract syntax components corresponding to the auxiliary values as well as to the primary values. There is then a one-to-one mapping between abstract syntax components and transfer syntax components and ECN can then be directly applied to the base ASN.1 definition.

Notice that there is a certain consistency in having auxiliary values as abstract syntax components, as such values appear in both the language mappings of ASN.1 type definitions (as produced by existing ASN.1 compiler tools) and as transfer syntax components.

However, consider the application of pre-ECN, unchanged, ASN.1 compiler tools to types which have abstract syntax components which represent auxiliary values. This will in general result in the auxiliary values being represented twice in the programming language data structures, once as pseudo-primary values, and once using whatever features of the programming language were originally used to communicate auxiliary values between the application and the encode/decode routines. This is a tool-vendor's issue, and such replication can be removed by further development of the tool, or simply accepted as a penalty. As a minimum, a tool which supports ECN should check that for both encoding and decoding the two indications of auxiliary values are consistent.

(If the tool is to be modified further to cope with ASN.1 plus ECN, then it can recognise when auxiliary values have an associated explicit abstract syntax component, and can avoid double representation of such values in the programming language data structures. This is not, however, essential for the provision of useful tool support to an implementor of a protocol defined using ASN.1 and ECN.)

This problem does not change the decision that, for simple support for legacy protocols, the ASN.1 types produced to describe them should normally contain explicit abstract syntax components for auxiliary values: that is, that there should be a one-to-one correspondence between abstract syntax components and transfer syntax components in the definition of ASN.1 types to support a legacy protocol. The approach of the next clause is also available for legacy protocols, but will in general require more work and produce a more verbose specification.

10
The determinant concept

The terms "length determinant", "choice determinant", and "presence determinant" have been informally introduced earlier, but are discussed further here.

Where a field of the transfer syntax is of variable length, then some other field will be used to determine its length. (The length may be determined by a count in a variety of forms, or by something similar to the "more-bit" concept - ECN has to support the specification of all common forms of length determination.) That transfer syntax field will correspond to either an abstract syntax component in the base specification (the one-to-one model), or to an abstract syntax component in the auxiliary ASN.1 specification (the one-to-many model). In both cases, notation is needed (and provided by ECN) to enable the ECN user to specify precisely which component is the length determinant for the variable length component (and precisely how it determines the length).

We say that we assign a length determinant property to component A, as the length determinant for a component B.

A similar concept applies for the assignment of choice determinant and presence determinant properties to various components. We talk in general about determinant assignment.

Thus the ECN notation has essentially two main aspects:

· Specification of how to encode individual components.

· Assignment of length (or choice or presence) determinant properties for component B (the determined component) to some component A (the determining component), with specification of how the determination is performed.

For a user to fully understand ECN, it is necessary to understand the full range of ECN statements for the encoding of individual components, and the full range of ECN statements for determination mechanisms and the assignment of determination properties. Full details in these areas go beyond this current tutorial (not least because at the present time the details are still unstable!).

11
ECN with auxiliary ASN.1 definitions and user functions

This aspect of ECN support is designed mainly to handle the case where a standardised encoding rule is to be applied to the bulk of a base ASN.1 specification which contains only primary abstract syntax components, but there is a requirement for different (specialised) encodings for some parts of that specification, called the ECN-encoded parts.

In the very simplest case, each ECN-encoded part will be a single abstract syntax component which is a primitive ASN.1 type and which does not require any determinant (fixed length encoding, no choices, no presence optionality). In this case, ECN can be used directly to over-ride the standard encoding for that ECN-encoded part.

In general, however, the ECN-encoded part will require some auxiliary components to be encoded as determinants. These would normally be automatically inserted if standardised encoding rules were in use, but now that the user has taken control, their form and placement needs to be made explicit. In this case the base ASN.1 specification is supplemented by the specification of one or more auxiliary types. The ECN specification then identifies (for each ECN-encoded part) which auxiliary type is to be encoded in place of the component(s) in the ECN-encoded part, and specifies the precise encoding (with determinant assignment as necessary) of each of the components of the auxiliary type. We say that the ECN specification has linked the (encoding of the) auxiliary type to the ECN-encoded part.

It should be noted here that in a well-formed ECN specification, this replacement and encoding is self-contained: the encoding of each ECN-encoded part requires no determinants external to the encoding of that part. ECN-tools will check this (and other) integrity requirements for well-formed ECN specifications.

There is one final encoding option that is supported by ECN. This is the linkage of a user encoding function to an ECN-encoded part instead of linking an auxiliary type to it. The user encoding function mechanism allows the specification of the encoding (and the corresponding decoding) of an ECN-encoded part using notation that is not standardised within ECN (including use of human language, or by using a more formal language for defining bit patterns, such as Concrete Syntax Notation One - CSN.1). Within the ECN specification, the body of the function is defined, and the function is linked to the ECN-encoded part.

Tool support for user encoding functions is likely to be via the invocation of an actual function in the application code from the encode/decode routines. On encoding, the function will return:

· the length for the current value of the ECN-encoded part to which the function has been linked, in bits; and

· the encoding for the current value of that ECN-encoded part.

Similarly for decoding the corresponding transfer syntax component.

Note that when identifying ECN-encoded parts of an ASN.1 specification, two mechanisms are available:

· Specification that all occurrences within a module of a given type are to be ECN-encoded (with linkage of that type to an auxiliary type or to a user encoding function). Or

· Specification that some individual abstract syntax component in a SEQUENCE, SET, or CHOICE is to be ECN-encoded (with linkage of that component to an auxiliary type or to a user encoding function).

We now have six notational aspects of ECN that need to be understood if the full power of ECN is to be used. These are:

· The specification of the encoding of individual abstract syntax components (as before).

· The assignment of determinant properties for component B to some component A (as before).

· The identification of an ECN-encoded part (either all occurrences of a given type, or a single abstract syntax component) and the linking of an auxiliary type to that ECN-encoded part.

· The definition of a user encoding function.

· The identification of an ECN-encoded part (as above) and the linking of a user encoding function to that ECN-encoded part.

In a later version of this tutorial, each of these aspects of ECN will be treated fully in separate clauses, but in what follows these various aspects are simply illustrated by examples.

It is, however, worth noting that in a complete ECN-encoded specification (see Annex A to this tutorial) there are in general four types of modules present:

· (Normal ASN.1) Modules providing the base specification.

· (Normal ASN.1) Modules defining any needed auxiliary types.

· ECN modules identifying ECN-encoded parts of an ASN.1 module and defining encodings and assigning determinant properties for those parts.

· A single ECN link module (ELM) that provides linkages between ECN-encoded parts and standard encoding rules, auxiliary types, or user encoding functions.

12
Global definition of encodings and scope rules

ECN provides one further linkage specification. This is the linkage of a defined encoding rule (using its object identifier) to either a top-level type or to a contained type. As before, in the case of the contained type, the linkage can be established so that the defined encoding rule is applied to all uses of a type as a contained type, or just to a single instance.

If an encoding rule is applied to all uses of a type, this can be over-ridden for a single instance. Similar, application of an encoding rule to a top-level or contained type does not prevent the definition of ECN-encoded parts within that type, and definition of ECN-encoding for all occurrences of a certain type within a module does not prevent the definition of separate ECN-encoding for some occurrences of that type.

Finally, it should be noted that if ECN is applied to some or all parts of a type definition (either through global application within a module or by direct application to an individual component), then that encoding is carried with that type if it is subsequently exported from the module in which it is defined and imported into other modules. It is not over-ridden by any encoding environment established in the module into which it is imported.

13
Mapping legacy protocols to ASN.1 - further details

NOTE — This clause is written in terms of mapping legacy protocols, but is more appropriately interpreted as restrictions on what ASN.1 constructions can be linked to as ECN-encoded parts. In the case of legacy protocols, the whole of the specification is ECN-encoded, and hence these restrictions apply to the whole ASN.1 specification. In the more general use of ECN, they only apply to the ECN-encoded parts, and statements about the ASN.1 definition apply to the auxiliary type definitions, not to the base ASN.1 definition.

If ECN (and the associated tools) is to be applied to the definition of a legacy protocol, then the following recommendations must be adhered to.

Legacy protocols can be mapped to ASN.1 in such a way that all transfer syntax components (primary and auxiliary values) are represented as abstract syntax components.

Example: Length fields in the legacy protocol will generally appear as INTEGER components in the ASN.1 types. Fields indicating presence or absence of optional elements in the legacy protocol will generally appear as BOOLEAN components in the ASN.1 types. Fields identifying which alternative has been chosen for a CHOICE construction will generally appear as an ENUMERATED or an INTEGER field in the ASN.1 types.

NOTE — There are other mechanisms available in ECN for handling auxiliary values. These are described later.

It is necessary for those defining the ASN.1 for legacy protocols to have some understanding of the way in which ECN can be applied to ASN.1 definitions, and to define the ASN.1 in such a way that it is easy to apply ECN to generate the same bit-patterns as the legacy protocol.

The following types and notations can be used in the ASN.1 type definitions:

NOTE — (Editor) The following list is believed to be complete and appropriate, but there may be a need for further additions. It is also intended that a later version of the following material will be put into tabular form, listing types and the qualifiers that can be used with them.

 INTEGER

 Range constraints on INTEGER (Any PER-visible constraint

 is ECN-visible, other constraints are information for the

 application code.)

 Distinguished values of INTEGER types.

 BOOLEAN

 ENUMERATED

 NULL (Useful only as an alternative in a CHOICE type.)

 IA5String (ASCII characters with control characters.)

 VisibleString (Printing ASCII characters.)

 BIT STRING

 Length constraints on BIT STRING (Any PER-visible constraint

 is ECN-visible.)

 OCTET STRING

 Length constraints on OCTET STRING (Any PER-visible constraint

 is ECN-visible.)

 A contents constraint "(CONTAINING <type>)" on an OCTET

 STRING or BIT STRING type.

 SEQUENCE

 OPTIONAL and DEFAULT in SEQUENCE

 SEQUENCE OF

 Iteration ranges on SEQUENCE OF (Any PER-visible constraint

 is ECN-visible.)

 CHOICE

 Value reference names may be freely assigned and used.

 Parameterisation may be freely used.

 User-defined constraints may be included, but these are not

 ECN-visible.

 Extensions markers (see clause 11.3.5) at the top-level of

 the top-level type or the <type> in a contents constraint

 construct, possibly followed by version brackets.

 Exception markers may be included, but these will not affect the

 encoding.

The following types and notations shall not be used if ECN is to be applied:

NOTE — (Editor) This list is not exhaustive - it needs to be completed.

 SET

 SET OF

 OBJECT IDENTIFIER

 RELATIVE-OID

 Object Descriptor

 Open Types

 EXTERNAL

 EMBEDDED PDV

 Time types

 Character string types other than VisibleString and IA5String

 REAL

NOTE — There is a view that there are legacy protocols that require SET. SET, however, poses problems because we need the concept of an "order determinant" or "identification field" to let the receiver know the order in which the components have been encoded. There are clearly many possible approaches to this, with perhaps use of some form of "tag" being the most common approach. At present ECN does not support use of SET. A partial solution can be to use SEQUENCE OF CHOICE in place of SET, with an application-level constraint restricting the SEQUENCE OF to contain no more than one instance of each CHOICE alternative.

In general, when defining the ASN.1 types for a legacy protocol, the most descriptive mapping should be used. Thus, where applicable, INTEGER and BOOLEAN and ENUMERATED types should be preferred to BIT STRING types (with BOOLEAN preferred to ENUMERATED where applicable). This does not affect the ability to apply ECN, but makes maximum use of the semantic implications of ASN.1 types, leading to a clearer final specification.

14
Overall approach to ECN specification

There are six main areas of ECN specification in relation to encoding of components and assignment of determinant properties. These are discussed in more detail below. These are:

· space definition;

· value definition;

· determinant assignment;

· combination definition;

· container-related definition; and

· function assignment.

These definitions and assignments specify certain properties of the component (or in some cases to the type within a module) to which they are assigned.

Space and value definition are controls applied to (primitive) individual abstract syntax components (or types within a module) to determine their encoding.

Determinant assignment assigns to individual abstract syntax components a property that relates their value to the length, presence, or alternative choice of another (identified) component. Such components are normally auxiliary values which do not carry any application semantics.

Combination definition is applied to types defined using SEQUENCE and SEQUENCE OF. It determines the way in which the total encoding of the SEQUENCE or SEQUENCE OF is produced from the encodings of the components.

Container-related definition specifies the relation between one or more consecutive components (which may be primitive or may be defined using SEQUENCE) and the length of some container in which they are to be placed.

NOTE — In general, the container may be some outer carrier not defined using ASN.1, or may be an "OCTET STRING (CONTAINING <type>)" or a "BIT STRING (CONTAINING <type>)" construction within an ASN.1 specification that is subject to the standard PER or BER encoding rules. Later extensions may allow the container to be a delimited SEQUENCE, but the initial work only recognises external carriers (for the top-level type) and "OCTET STRING (CONTAINING <type>)" and "BIT STRING (CONTAINING <type>)" (for contained types).

Container-related definition serves to reduce the size of messages when trailing optional elements are missing, and also provides support for version handling.

This is not illustrated in the examples below.

14.1
Space and value definition

NOTE — A later version of this tutorial will include illustrative diagrams in this clause.

ECN has two main tasks in relation to the encoding of primitive fields (INTEGER, BOOLEAN, etc).

The first task is the definition of the number of bits or octets to be taken up by the corresponding transfer syntax component. (This may be fixed or variable - depending on the definition of the abstract syntax component and the nature of the space definition assigned to it.) This is space definition. Space definition also includes any alignment to 4-bit or octet or word (16-bit) or double-word (32-bit) boundaries that may be required for this component, with the definition of any necessary padding (called pre-padding).

The second task is the definition of the way in which the value of the abstract syntax component is to be encoded and positioned within the defined space, including the specification of any padding within the space. This is value definition.

NOTE — One important variation of value definition is concerned with the placement of the most-significant bit of an octet of the value in the high-order or the low-order bit of an octet of the encoding. Another is concerned with whether the high-order or low-order octet of a multi-octet integer value is transmitted first or last. Yet another is concerned with whether values of constrained or semi-constrained integers are encoded directly, or are (as in PER) encoded as an offset from the lower bound.

14.2
Determinant assignment

We speak of determinant assignment when we specify (in ECN) that some auxiliary component is to be used to determine the length or presence of some other component, or the alternative being encoded for a CHOICE.

The assignment of determinants to abstract syntax components normally occurs where those components are auxiliary values with no inherent semantics of their own. Where the auxiliary components are in an auxiliary ASN.1 type (defined separately from the base specification) then no semantics can be applied to the auxiliary component, but where they are embedded in the base specification the attribution of semantics to such fields would be unusual, but is not forbidden. Determinant assignment designates abstract syntax components as:

· length determinants,

· choice determinants, or

· presence determinants

for some (other) specified abstract syntax component. The abstract syntax component whose length, alternative selection or presence is being determined by the determinant is called the determined component. The precise way in which the components assigned these properties perform their determinant role is specified as part of the determinant assignment. Several mechanisms are available - see below.

There are requirements specified in ECN to ensure that the placement of determinants in the overall protocol enables decoding of the determined field. (For example, a length determinant that is a simple integer count of bits or octets or iterations is required to precede the determined component in the overall protocol.) The precise rules are complicated by the presence of SEQUENCE OF constructions and by optionality, and are described in Annex B to this tutorial.

For the simpler mechanisms, a determinant will always precede the determined field, but for more complex mechanisms, such as choice determination in a SEQUENCE OF CHOICE, a tag-based approach may be used. Similarly, length determination may be achieved using some unique terminator for a SEQUENCE OF or for a string (for example, a zero octet, or a "more bit" approach). In these more complex cases, the determinant may be embedded within the determined component. In all cases the ECN specification determines necessary rules to ensure that unambiguous decoding is always possible. (See Annex B.)

Tools providing ECN support are expected to diagnose any violation of these rules in the ASN.1/ECN specification.

14.3
Combination definition

For types that are defined using SEQUENCE or SEQUENCE OF, ECN assignments can be used to specify the way in which the encodings of the components of the SEQUENCE or SEQUENCE OF are to be combined, using either simple juxtaposition at the bit-level, or the use of padding to obtain alignment between components or at the end of the SEQUENCE or SEQUENCE OF. This is combination definition.

14.4
Container-related definition

The operation of ECN in relation to the length of a container is perhaps the most complex functionality provided by ECN. Here ECN specifies that the length (in bits, octets, words, etc) of the container is to relate to the sum of the lengths (as determined by the other elements of encoding control) of identified components which are concatenated into the container.

There is a strong similarity between a container and the encoding of a SEQUENCE - both involve concatenation of other encodings. There is, however, one very important difference. In the case of SEQUENCE, every element of the SEQUENCE is encoded, and contributes to the overall length of the SEQUENCE. In the case of a container, it is possible to specify that, under defined conditions, trailing elements for inclusion may not be present in received material. This is container-related definition.

This relates to the omission of both the presence determinant and the corresponding element, for trailing optional elements that are all absent, and to the omission of trailing elements that are declared to be part of a later version of the specification than that which the current implementation supports.

A similar approach is also possible for handling extensibility.

14.5
Function assignment

Function assignment enables the ECN to assign a user encoding function to one or several adjacent fields. This is discussed in more detail in 10.1 below.

14.6
Summary of definitions and assignments

In summary, we have:

· Space definition (for primitive types).

· Value definition (for primitive types).

· Determinant assignment (for primitive types).

· Combination definition (for SEQUENCE and SEQUENCE OF types).

· Container-related definition (for types in a container).

· Function assignment.

These definitions and assignments are all supported by specific syntax in the ECN that can be applied to a specific abstract syntax component.

15
Scope rules and defaults

A number of mechanisms are provided to enable the easy definition of encoding control without undue repetition or tedious specification of common cases.

15.1
ECN-wide defaults

The ECN-wide defaults are expected to be sufficient for the encoding specification of many legacy protocols (or at least for the majority of components within them).

Any types which contribute to a component or type that is ECN-controlled have default space and values assigned that are determined by ECN-wide defaults.

15.2
ECN-module defaults

An ECN-specification consists of a number of ECN-modules. Each module can establish ECN-module defaults for space and value (etc) assignment.

There is also a special Encoding Link Module (ELM) whose purpose is to provide linkages between ASN.1 and ECN modules. Any given ASN.1 module has associated with it (in the ELM) at most one ECN module which identifies all the ECN-encoded parts of that ASN.1 module and provides ECN-module defaults for any types or components in those ECN-encoded parts that are not specifically given encodings in that ECN-module.

Where auxiliary definitions are to be applied, they are imported into an ECN-module and then linked to the ECN-encoded part of the base specification which they replace. The actual encoding of the auxiliary definitions will be determined by the ECN-module (usually, but not necessarily, a different one) that has been linked in the ELM to the ASN.1 module containing the auxiliary type definitions.

An ECN-module can establish ECN-module defaults for space and value assignments for various types. These defaults over-ride the ECN-defaults for any ECN-controlled part to which this ECN-module is applied

All space and value assignments are made in an ECN-module and are applied to types or components in the ASN.1 module(s) to which this ECN-module is linked by the ELM.

NOTE — There will normally be a one-to-one correspondence between ECN modules and ASN.1 modules, and there is a requirement that any given Encoding Link Module specifies mappings between ASN.1 modules and ECN modules such that each ASN.1 module referenced in the ELM is associated with precisely one ECN module. It is, however, permissible for an ECN module to be associated (by statements in a given ELM) with multiple ASN.1 modules. In this case that ECN may reference types within any of the associated modules for the purposes of defining ECN-encoded parts of those types.

In the simplest case, an ECN-module will contain no encoding control statements, but simply serves to identify the ECN-encoded parts of the ASN.1 module it is linked to, and to apply the ECN-wide defaults for encoding the primitive types and the SEQUENCE and SEQUENCE OF types. If these defaults are acceptable, no further ECN statements are need for the encoding of these abstract syntax components. It may, however, be necessary to assign determinant (length, choice, or presence) properties to one or more abstract syntax components in the ECN-encoded parts of this module. Such assignments can never be done by default, but require explicit ECN statements.

ECN-wide defaults are currently specified (in the ECN Recommendation/Standard) using English text, but it is anticipated that this will be replaced by a more formal definition of the defaults, using the ECN notation itself. All such space defaults give rise to a fixed-size space whenever possible.

NOTE — (Editor) An example of an ECN-module header setting ECN-module defaults is given later, and it is intended that these become the ECN- wide defaults, but further discussion is needed on this issue.

As a broad summary, ECN-wide defaults encode into the minimum number of bits required for the "largest" value of the type, where this is finite, and are undefined (a length determinant has to be supplied) otherwise. (Tools will diagnose cases where space or value definitions and/or determinants are required but are not provided.)

Where the default gives rise to a fixed space - for example, of twenty octets for a string which is "IA5String (0..20)", and the application requires a variable length string taking up to 20 octets with a length determinant, then the default has to be over-ridden with an explicit space definition and a length determinant has to be assigned to some component.

The decision to make the default a fixed size space definition in all cases was partly for simplicity and partly because use of a variable space requires that some other abstract syntax component be identified as the length determinant for this component. Users are more likely to recognise the need for this if they are required to over-ride the default to get a variable length space.

ECN-wide defaults are also provided for combination definition, but there are no ECN-wide defaults for determinant assignment or for container-related definition.

ECN-module defaults can be specified at the head of each ECN-module for the space definition, value definition and combination definition of some or all of the primitive types (and of types defined using SEQUENCE) in the ECN-encoded parts of the corresponding ASN.1 module. These ECN-module defaults can be used to over-ride the ECN-wide defaults for specified primitive types and for all types defined using SEQUENCE within the ECN-encoded part of the associated ASN.1 module.

No ECN-module defaults are possible for determinant assignment or for container-related definition.

ECN-module defaults may be imported from one ECN-module into a different one. Thus application-specific defaults for space, value, and combination definition need be defined once only and can then be applied to all ASN.1 modules containing types used in that application.

15.3
Units for lengths

When specifying the length of a field, there are a number of units that can be used. A field can be specified as either a given number of units, or as a requirement that (depending on the value being encoded) it shall be an integral multiple of the specified units. The following units are recognised for use in such specifications:

 bits

 bit (number)

 nibbles (equivalent to "bit(4)")

 octets (equivalent to "bit(8)")

 words (16 bits)

 dwords (32 bits)

 iterations

If the units are not specified in an ACN statement, then the default is "bits".

15.4
ECN definition within a module

15.4.1
Space and value definitions for primitive types

Within an ASN.1 module, any type reference name assigned to a primitive type within that module can have its default space and value definitions over-ridden by an explicit statement (referencing that type reference name) within the body of the ECN module that points to it.

Within an ASN.1 module, any component of a SEQUENCE or alternative of a CHOICE within that module that is a primitive type can have its default space and value definitions over-ridden by an explicit statement (referencing the component using the "ItemSpec" notation of clause 14.3 of X.680/ISO 8824-1) within the body of the ECN module that points to it.

15.4.2
Combination definition for SEQUENCE types

Within an ASN.1 module, any type reference name assigned to a SEQUENCE type can have its default combination definition over-ridden by an explicit statement (referencing that type reference name) within the body of the ECN module that points to it.

Within an ASN.1 module, any SEQUENCE within that module that is a component of a SEQUENCE or an alternative of a CHOICE can have its default combination definition over-ridden by an explicit statement (referencing the component using the "ItemSpec" notation of clause 14.3 of X.680/ISO 8824-1) within the body of the ECN module that points to it.

15.4.3
Determinant assignment

Certain primitive types may be assigned length determinant, presence determinant, or choice determinant properties. The following table shows the determinant properties that can be assigned to each primitive type that is supported by ECN.

NOTE — It is permitted, but would be unusual, to assign more than one determinant to any abstract syntax component, or to use it to determine more than one other determined component

NOTE — A later version of this tutorial will make this into a table.

The allowed assignments are:

 INTEGER length determinant

 presence determinant

 choice determinant

 BOOLEAN presence determinant

 length determinant (*)

 ENUMERATED presence determinant

 choice determinant

 length determinant (*)

 BIT STRING length determinant (*)

 OCTET STRING length determinant (*)

 IA5String length determinant (*)

 VisibleString length determinant (*)

(*)These only occur with embedded determinants - see clauses 17 and 18

When a determinant is assigned to a primitive type (called the determinant), the component that is controlled by that determinant (called the determined component) is identified by the "ItemSpec" notation.

When a determinant is assigned to a component, the mapping from values of that component to the length or presence or chosen alternative of the determined component is specified.

NOTE — It is still to be determined whether some arithmetic functions may need to be included in the ECN syntax.

15.4.4
Container-related definition

For the outer-level type of a specification, and for a contained type, it is permissible to allocate a length determinant to the keyword "CONTAINER". In this case the determinant of the length of the determined component is the length field of the container or of the OCTET STRING or BIT STRING in which the type is contained.

In defining this length determinant, there are options to state that certain trailing fields may (or must) be omitted. There are two cases here:

· It can be specified that if all trailing fields from some point are presence determinants for determined components that are absent, then all such trailing fields are required to be omitted when encoding (and may be absent when decoding).

· It can be specified that trailing fields from one or more identified positions may be absent in a received encoding. This is to support receipt by a version 2 (or later) system of encodings produced by an earlier system.

15.4.5
The extension marker

The extension marker may be included in the ASN.1 specification if the top-level type (or the type in a "(CONTAINING <type>)" construction) is a SEQUENCE, or a CHOICE in which some or all alternatives are SEQUENCEs. The extension marker may be placed in these sequences, and version 2 material followed by version 3 material may appear after the extension marker.

NOTE — The extension marker must be at the end of the SEQUENCE in version 1 of ECN - there is no support in ECN for insertion points that are not at the end. Version brackets may be included, but they are ignored by ECN.

The extension marker performs its usual function of alerting implementations to the possible presence of additional elements of the SEQUENCE following those that they know about. An ECN decoder determines the presence of such elements by noting that there is more material within the container than is in the ASN.1 specification in use. The added material will be passed to the application code for handling in accordance with any exception specification (likely to be "silently ignore").

The marker also alerts later versions to the possibility that the container may become exhausted at the end of the decoding of any element following the ellipsis, and again this occurrence should be flagged to the application code for possible exception handling.

Length, presence, or choice determinants shall not be used unless the determinant and the determined component are either both before the ellipsis or both after the ellipsis, nor should the conceptual link between them span the boundary between two versions.

16
Detailed discussion of the functionality of available statements

NOTE — For a formal description of the syntax supporting this functionality, see the actual Recommendation/Standard.

The syntax is described and illustrated with examples in the following clauses. The meaning of each statement and the various options available are covered.

The following text has made certain changes to the detailed syntax in the previous draft of the Recommendation/Standard. These changes should be regarded as proposals for discussion at this time.

The syntax is designed to support the following functions (not all of which are illustrated below):

· The specification of one or more ECN modules which contain the bulk of the ECN statements for an application.

· The specification of an Encoding Link Module (ELM) which associates ECN modules with ASN.1 modules.

NOTE — A well-formed ECN specification starts with a single ELM which identifies a number of ASN.1 modules and ECN modules. If an ECN module is referenced in an ELM, then it has to obey certain constraints, and in particular can only import and reference (for the purposes of encoding control) types from one of the ASN.1 modules with which it is associated in the ELM.

· Within an ECN module, the definition (in the module header) of ECN-module defaults for space and value and combination properties of generic types.

· Within an ECN module, the definition (in the body of the module) of:

· type references or components of types within an ASN.1 module which are to be subject to encoding control by this ECN module;

· the encoding of those components or fields where this differs from the ECN-module defaults;

· the assignment of determinants for components that are ECN-encoded and require determinants.

NOTE — A determinant can be assigned to a component that is not itself an ECN-encoded part, but all ECN-encoded parts must have any necessary determinant assigned, either within that part or external to it. Where the determinant is external to an ECN-encoded part, there are restrictions on where it may occur (see Annex B to this tutorial).

17
The ECN-module header

17.1
Functionality

The ECN-module header supports four functions:

· Unambiguous identification of the ECN module (exactly as in ASN.1).

· Definition of user encoding functions that are assigned by this ECN- module to ECN-encoded parts of some ASN.1 module (optional).

· Specification of ECN-module defaults (optional), consisting of either:

· a list of space and value definitions for ASN.1 primitive types and of combination definition for the SEQUENCE type (in any order); or

· reference to another ECN-module from which the defaults are imported.

When specifying the default space definition for types in the ECN module header, each primitive type identifier supported by ASN.1 can appear precisely once, with one exception. The INTEGER type can appear three times, once each with the qualifiers UNCONSTRAINED (no upper or lower bound), SEMI-CONSTRAINED (lower bound but no upper bound), and CONSTRAINED (both an upper and a lower bound). The forms of space definition that are available in these three cases are different, but even where they are not, the writer of the ECN-module may choose to determine different defaults for each of these cases.

The notations available for space and value definition for constrained and semi-constrained integers provide (inter alia) for definition in terms of offset from a lower bound, and for reference to the minimum integral number of units that is to contain the range. The latter may give rise to a fixed length (equal to that minimum number of units) or to a variable length (where the number of units used depends on the value). In the latter case, the field will require a length determinant specifying a length in the same units.

Complications also arise with string types which may be UNCONSTRAINED (no upper bound on size), and CONSTRAINED (an upper bound on the size). In the UNCONSTRAINED case the only option is the variable option, but the integer that is assigned the length determinant for the string may be given a lower bound of zero. In the CONSTRAINED case, the determinant may be given the same bounds as the size (with the space constraint on the string defined as variable), or the space constraint on the string may be declared as fixed or min-for-val or fixed.

Note that in both the INTEGER and string cases, the case of an upper bound equalling the lower bound is not treated as a special case, but is covered by the CONSTRAINED case.

NOTE — (Editor) There will be a need for clear text to ensure that the bounds (if any) allocated to a determinant are sufficient for it to represent all necessary values to describe the possible values of the determined component. This is another example of many rules that can (and should) be specified about what constitutes a well-formed ECN specification. It is, however, recognised that it may not be possible to specify all the rules needed to ensure that the two fundamental conditions are met: that all values of the abstract syntax can be encoded, and that decoding is always possible and produces the abstract value that was encoded.

17.2
Example

NOTE — As in ASN.1, comment is introduced by a pair of hyphens.

 ECN-Header-Example {itu-t question(1) spec(0) ecn-header(1)}

 -- The object identifier value is optional.

 ENCODING-DEFINITIONS

 ::= BEGIN

 IMPORTS Foo FROM ASN1-ModuleR {1 2 3 4};

 ENCODING-DEFAULTS FROM ECN-moduleX;

 MyProc USER-FUNCTION ::=

 -- Description or definition of specialized encodings

 -- for the MyProc function, for example using CSN.1.

 -- MyProc is now available for assignment in the body of

 -- this ECN-module, and can be exported and imported into

 -- other ECN-modules.

 USER-FUNCTION-END

-- NOTE: The following lines are over-riding the defaults from

-- ECN-moduleX (which themselves are over-riding ECN-wide defaults), but

-- represent the currently intended ECN-wide defaults, and hence would

-- never occur in this form in practice (but this would not be

-- forbidden).

 CONSTRAINED INTEGER SPACE-DEFINITION {min-for-offset},

 -- This means that the minimum number of bits is allocated for

 -- the largest offset from the base assuming a positive integer

 -- encoding. Other options are:

 -- fixed 16 (for example)

 -- min-for-pos-val (only if all vals are pos)

 -- min-for-val (min for a 2's complement encoding)

 -- variable (needs a length determinant)

 -- In the last case, a length determinant will be needed.

 -- Can also be followed by a comma and the keyword

 -- PRE-PAD-TO 4-bit

 -- (or octet or word or dword) WITH zeros (or ones or '0101'B

 -- meaning fill with a pattern. Notice that filling with a

 -- pattern does occur in some GSM standards.

 SEMI-CONSTRAINED INTEGER SPACE-DEFINITION {variable}

 -- no other options

 UNCONSTRAINED INTEGER SPACE-DEFINITION {variable}

 -- no other options

 INTEGER VALUE-DEFINITION {offset,

 msb-first, -- (most significant bit of each

 -- octet goes into most

 -- significant bit of

 -- the encoded octet) or

 -- msb-last (the reverse) and

 low-byte-last}, --(least significant byte

 -- transmitted last)

 -- low-byte-first (the reverse)

 -- Note that lsb-last is a synonym for msb-first

 -- and similarly lsb-first, high-byte-last,

 -- high-byte-first.

 -- pos-value (encode as a positive integer)

 -- value (encode as a 2's complement integer)

 -- bcd (encode in BCD)

 -- character (encode as ISO 646 digits)

 -- Note that offset can be used if and only if the space definition is

 -- min-for-offset or variable or fixed

--(Editor's note: A clear table will in due course be needed of the

--allowed combinations for different forms of constraint. The work in

--this area is currently immature.

 ENUMERATED SPACE-DEFINITION {min-for-offset},

 -- Or: fixed 32, or min-for-val (all enumeration

 -- values are positive). It can again be

 -- optionally followed by

 -- ", PRE-PAD TO ... WITH ..."

 ENUMERATED VALUE-DEFINITION {offset, -- (or value)

 msb-first,

 low-byte-last},

 -- just as for INTEGER.

 BOOLEAN SPACE-DEFINITION {fixed 1}, -- or 8, or whatever

 -- Again optionally followed by PRE-PAD.

 BOOLEAN VALUE-DEFINITION {TRUE= zero,

 FALSE=non-zero,

 -- the key-words here are

 -- "zero" and either "one" or "non-zero"

 -- assigned to TRUE or FALSE in either

 -- combination.

 left-in-field}, -- or right-in-field--

 -- optionally followed by ",PAD WITH" (default

 -- is to pad with zeros if no PAD WITH

 -- statement).

 NULL SPACE-DEFINITION {fixed 0},

 -- Or fixed 1 or 8 (say).

 -- NULL VALUE-DEFINITION (if and only if fixed greater than zero)

 -- { VALUE = 'FFFF'H} (hex or binary value that

 -- must fit the space definition.)

 IA5String SPACE-DEFINITION {Variable},

 -- or fixed 48 (say) or min-for-val

 -- optionally followed by ",PRE-PAD etc"

 -- IA5String VALUE-DEFINITION (only if not "variable")

 -- {left-in-field} (or right-in-field)

 -- optionally followed by ",PAD WITH..."

-- Question: Alphabet constraints have so far not been mentioned, and

-- were not listed in earlier text. It is suggested that we make them

-- invisible to ECN for the present. Things for space and

-- value definition to handle them can be added later.

 VisibleString SPACE-DEFINITION {variable},

 -- All other possibilities are exactly as for IA5String

 BIT STRING SPACE-DEFINITION {variable},

 -- Again other possibilities as for IA5String

 -- If we wanted to cope with a legacy protocol that does the

 -- BER trick of having a length count in octets and an extra

 -- transfer syntax component saying the number of unused bits in

 -- the last octet, then we probably need a modulo 8 function

 -- and the ability to do arithmetic. Discuss.

 OCTET STRING SPACE-DEFINITION {variable},

 -- Again other options as for IA5String

 SEQUENCE COMBINATION-DEFINITION {adjacent},

 -- Or "ALIGN 8" (say) followed by ",PAD ... WITH ..."

 -- Optionally followed by "PRE-PAD TO etc".

 -- Optionally followed by "POST-PAD TO etc" to pad to

 -- (eg) an octet boundary at the end of the SEQUENCE.

 SEQUENCE OF COMBINATION-DEFINITION {adjacent}

 -- Other options exactly as for SEQUENCE

 -- CHOICE The only option here is PRE-PAD TO etc. and POST-PAD TO.

 -- The ECN-wide default is no padding.

END

In this example the ECN-module body is empty - all we have done is set the application-wide defaults by setting them as ECN-module defaults in this module. Other modules would then typically import these defaults, rather than repeating them in every ECN-module.

As well as specifying the ECN-wide default (based on bits and a minimum width for SPACE-DEFINITION), it would be possible to provide examples in the Recommendation/Standard of setting defaults where the space is always a multiple of eight bits, and/or where everything is consistently the wrong way round (little-endian, and/or lsb-first). It would also be possible to provide the ability to import a standardised default set rather than using either the ECN-wide defaults or having to type in your own defaults explicitly. This all adds complication and further work in writing the Recommendation/Standard, but giving users a small number of useful default definitions that they can select from could make the ECN more acceptable initially. In the interests of simplicity, however, the current decision is that there will be just one set of ECN-wide defaults.

18
Over-riding defaults in the body of the ECN-module

Individual occurrences of primitive types and the SEQUENCE type in an ASN.1 module can have their space and value definitions over-ridden by statements in the body of the ECN-module. Here is the body of a simple ASN.1 module, followed by the ECN-module body. (Headers are not included for either.)

The intention of these examples is to illustrate options. They are not necessarily typical of what might be written to support real legacy protocols - getting real-world examples such as TETRA, GSM specs, INAP, and 3GPP is an important exercise that needs to be undertaken.

There is also text to appear in the Recommendation/Standard that will have to spell out exactly when various combinations of specification are allowed, and the impact (meaning) of such specifications in the presence of unconstrained, constrained, and semi- constrained integers (and similarly for string lengths). There is still detailed work to be done in these areas.

The ASN.1 module is:

 Example-ASN1-module DEFINITIONS

 ::= BEGIN

 My-int ::= INTEGER

 My-seq ::= SEQUENCE

 { f1 INTEGER,

 f2-presence BOOLEAN

 f2 IA5String OPTIONAL,

 f3 SEQUENCE

 {f31 BOOLEAN} ,

 f4-len-det INTEGER,

 f4 SEQUENCE OF INTEGER,

 f5-ch-det ENUMERATED {e1,e2,e3},

 f5 CHOICE

 { alt1 INTEGER,

 alt2 INTEGER} },

 f6-special INTEGER }

 END

The ECN-module is:

 Examplel-ECN-module ENCODING-DEFINITIONS

 ::=BEGIN

 <Here the setting of ECN-module defaults occurs as above.>

 My-int SPACE-DEFINITION

 { UNITS octets,

 variable,

 PRE-PAD TO octet WITH zeros}

 My-int VALUE-DEFINITION

 {lsb-first,

 lowest-byte-first}

 -- The actual options here are exactly as for INTEGER

 -- in the module defaults given earlier. In the

 -- definition above we are saying we pre-pad to an

 -- octet boundary then use a variable number of octets

 -- (the minimum necessary, two's complement, as with

 -- BER. (Notice that if My-int had been constrained other

 -- options open up.) We could also have added POST-PAD

 -- but that would have done nothing because we pre-padded

 -- to an octet boundary and set UNITS to octets, so the

 -- integer value always takes an integral number of

 -- octets.

 My-seq.f1 VALUE-DEFINITION {

 --etc, exactly as before. -- }

 My-seq.f3 COMBINATION-DEFINITION {

 --etc, exactly as before. -- }

 My-seq.f4 COMBINATION-DEFINITION {

 -- etc, exactly as before. -- }

 My-seq.f4.* SPACE-DEFINITION {

 -- Space definition for the INTEGER in

 -- the SEQUENCE OF

 -- Similarly for the VALUE-DEFINITION of

 -- the INTEGER. -- }

 My-seq.f6-special ENCODED-BY MyProc

-- This last line applies the function MyProc defined earlier to

-- the field f6 of My-seq.

19
Assigning simple presence, length, and choice determinants

We keep the same ASN.1 body as in the previous clause (repeated below for ease of reference), but in the ECN-body we are now assigning a presence-determinant to f2-presence, a length determinant to f4-len-det, and a choice determinant to f5-ch-det.

 Example-ASN1-module DEFINITIONS

 ::= BEGIN

 My-int ::= INTEGER

 My-seq ::= SEQUENCE

 { f1 INTEGER,

 f2-presence BOOLEAN

 f2 IA5String OPTIONAL,

 f3 SEQUENCE

 {f31 BOOLEAN} },

 f4-len-det INTEGER,

 f4 SEQUENCE OF INTEGER,

 f5-ch-det ENUMERATED {e1,e2,e3},

 f5 CHOICE

 { alt1 INTEGER,

 alt2 INTEGER} }

 END

The ECN-module body now contains:

 My-seq.f2-presence PRESENCE-DETERMINANT

 { FOR My-seq.f2,

 PRESENT = FALSE,

 ABSENT = TRUE }

 -- These three lines are always required. The above

 -- is the opposite way round from what will usually

 -- apply, but illustrates the point. If f2 was a type

 -- with more than two values (enumerated or integer),

 -- then we need to consider whether to allow something

 -- like (suppose it was f5-ch-det we are assigning to):

 -- PRESENT = e1

 -- ABSENT = NOT e1

 -- or whether we do not allow options. I favour not

 -- allowing options, but they may be necessary for some

 -- legacy protocols.

 My-seq.f4-len-det LENGTH-DETERMINANT

 { FOR My-seq.f4,

 UNITS iterations}

 -- Could have been bits or octets etc.

 -- It would be an incorrect encoding if the

 -- length in bits or octets did not include

 -- an integral number of iterations.

 -- There are also some difficult issues to address

 -- if f4.len.det is constrained and the SEQUENCE OF

 -- is also constrained, and the constraints are

 -- mutually incompatible. The problem is, how to get

 -- a clear definition of "mutually incompatible"?

 -- Ideas needed! (My inclination is to say that

 -- the determinant must permit all values which could be

 -- needed for any possible allowed value of the

 -- determined field, but unless the determinant field is

 -- unbounded this may be hard to check.)

 My-seq.f5-ch-det CHOICE-DETERMINANT

 { FOR My-seq.f5,

 alt1=e1,

 alt2=e3}

Clear text is needed on rules about where the components that are assigned determinants can be placed (see Annex B for a draft of such text). In this case it is fairly obvious, but rigorous text is needed, and rules should be as relaxed as possible.

20
Other forms of presence determinant

No other forms of presence determinant are envisaged. We use either a BOOLEAN or an INTEGER or an ENUMERATED for the determinant, and have to specify the value(s) of the determinant that mean "PRESENT", and the value(s) that mean "ABSENT".

It would be possible to allow any type with more than two values (such as IA5String) to be used as a presence determinant, but there seems little value in adding this flexibility.

21
Other forms of length determinant

The only other form of length determinant that is envisaged is to assign the length determinant for f4 to one of the abstract syntax components of the type following SEQUENCE OF. This is called an embedded length determinant. In this case we have a primitive type, so all we could do would be to define:

 My-seq4.* LENGTH-DETERMINANT

 { FOR My-seq4,

 TERMINATES WHEN 99 }

Note that as listed in 1.3.3 above, this form of length determinant (where a specific value of a component type ends the iteration) can be applied not only to INTEGER types, but also to BOOLEAN, ENUMERATED, BIT STRING, OCTET STRING ,IA5String or to a VisibleString, if there is such a type as a non-optional abstract syntax component of seq4.

22
Other forms of choice determinant

The only other form of choice determinant that is envisaged is to assign the choice determinant for f5 to one of the abstract syntax components of f5. This is called an embedded choice determinant, and mirrors the use of a TLV approach to determining choices. In this case it is likely that f5 would be something like:

 f5 CHOICE

 {noOp NoOperation,

 recordRoute RecordRoute,

 streamID StreamID }

 NoOperation ::= TLV {0}

 RecordRoute ::= TLV {1}

 StreamID ::= TLV {2}

 TLV {INTEGER: code} ::= SEQUENCE

 { type INTEGER (code),

 len-det INTEGER,

 val OCTET STRING}

We can then define:

 TLV.type CHOICE-DETERMINANT

 { FOR f5,

 noOp = 0,

 recordRoute = 1,

 streamID = 2 }

Annex A of the Recommendation/Standard specifies restrictions on the positioning of an embedded CHOICE determinant. In essence, it must be possible for a decoder to locate the CHOICE determinant without knowledge of which alternative has been encoded.

As with the embedded form of length determinant, this form of choice determinant can also be applied to a BIT STRING, OCTET STRING, IA5String or a VisibleString as stated in 11.3.3 above.

23
Conclusion

This completes the tutorial presentation of the ECN and of some of its syntax.

The concepts of ECN-encoded parts is fairly stable (but there may need to be recognition of some nesting of this concept), as is the concept of space and value definition and determinant assignment.

The concept of a top-level ELM providing the link between ECN modules and ASN.1 modules is also stable.

This tutorial (and the following annexes) may not be totally consistent in the placement of certain functions, on the need or otherwise for import statements in ECN-modules, and on the precise syntax to be employed. This reflects mainly a failure on the editor to totally remove/change earlier text, rather than lack of (interim) agreement in these areas. It is, however, in the areas of scoping, the need for importation, global structure, the definition of a well-formed ECN specification, and detailed syntax that most changes are likely in future work.

Annex A

An example of providing specialized encodings for INTEGER and ENUMERATED

A.1
Introduction

This note describes the approach being taken to specialised encodings of INTEGER and ENUMERATED components of an abstract syntax, using ECN.

The following text contains five modules as follows:

· The primary ASN.1 module ("ASN-main") of the application.

· An auxiliary ASN.1 module ("ASN-aux") that defines types which relate directly to transfer syntax components in the specialised encodings of the primary types.

· An ECN-module ("ECN-aux") that determines the encodings of the types in the auxiliary ASN.1 module.

· An ECN-module ("ECN-main") that replaces the normal (PER) encoding of specified types in the primary module with the encoding of types in the auxiliary ASN.1 module, generating the required specialised encodings.

· The ECN linkage module ("ECN-link") that ties these modules together.

It is assumed that there are three generic types in "ASN-main" that need specialised encodings:

· INTEGER types that are normally small, and frequently very small.

· INTEGER types that are frequently small, but can get quite (indefinitely) large.

· ENUMERATED types with a small number of enumerations, but where low enumerations are frequent.

· CHOICE types where the number of alternatives is small, but the first few alternatives are the most frequently chosen.

NOTE — This latter type is included in this list because the techniques described below can clearly be applied to handle this case, but it is not illustrated in the examples (due to lack of time).

In the primary module, we define user-defined types called "SpecialInt1" and "SpecialInt2" for the first two respectively. For the third we refer directly to occurrences of these ENUMERATED types in ECN- main. This is because ENUMERATED types with different enumerations are all different types in the ASN.1 semantic model, and cannot be used interchangeably. Nonetheless, the rules for specifying auxiliary ASN.1 modules enable a single specification of the encoding for all such enumerated types. A similar approach would be needed for the special encoding of CHOICE. Here we assume just two occurrences of ENUMERATED that require special encoding. These are both placed within one SEQUENCE for simplicity, but they could occur anywhere in the module (or in types imported into the module). They have component names "enum1", "enum2". Handling more than two follows naturally.

The auxiliary ASN.1 module is a normal ASN.1 module, except that the keyword "PRIMARY" can be used to refer to (is replaced by) a type in the primary ASN.1 module for which an encoding is being defined.

NOTE — It might be thought possible to use parameterised type notation to avoid this keyword. However, this is probably less clear, and an initial inspection indicated that the type-matching rules of ASN.1 are probably too rigid for the use of a parameterised type to work.

A.2
The main ASN.1 module

ASN-main {1 2 3} DEFINITIONS ::=

BEGIN

 EXPORTS SpecialInt1, SpecialIint2, PDU;

 SpecialInt1 ::= INTEGER (0..MAX)

 -- small and normally very small

 -- an upper bound could be included to

 -- help the application, but is not

 -- for the application of ECN.

 SpecialInt2 ::= INTEGER (0..MAX)

 PDU ::= SEQUENCE

 { f1 SpecialInt1 (0..15),

 f2 SpecialInt2 (0..64435),

 f3 ENUMERATED {now(0), soon(1), days(2), weeks(3),

 months(4), years(5)},

 f4 ENUMERATED {e1,e2,, e31},

 f5 SpecialInt1 (0..127),

 f6 OCTET STRING,

 f7 VisibleString }

END

ASN-aux {1 2 4} DEFINITIONS ::=

BEGIN

 EXPORTS Int1Encoding, Int2Encoding, EnumEncoding;

 Int1Encoding {Dummy} ::= SEQUENCE

 {length INTEGER (0..MAX),

 value Dummy }

--NOTE: "Dummy" will be instantiated with an actual parameter which

--is the primary component that this auxiliary definition replaces for

--the purposes of encoding definition.

 Int2Encoding {Dummy} ::= SEQUENCE

 { length INTEGER (1..MAX),

 value Dummy }

 EnumEncoding {Dummy} ::= SEQUENCE

 { length INTEGER (0..MAX),

 value Dummy }

 F6Encoding {Dummy} ::= SEQUENCE

 { length INTEGER (0..MAX),

 value Dummy }

 F7Encoding {Dummy} ::= SEQUENCE

 { length NULL,

 value Dummy }

END

ECN-aux {1 2 5} DEFINITIONS ::=

BEGIN

 IMPORTS Int1Encoding, Int2Encoding, EnumEncoding

 FROM ASN-aux {1 2 4};

 Int1Encoding.length ::= ENCODING

 {SPACE {variable-self-delim},

 -- Represents values 1,2,3,4 etc

 -- 0 => 1, 10 => 2, 110 => 3, 1110 =>4

 VALUE {bit-count-simple-0} ,

 LENGTH-DETERMINANT FOR Int1Encoding.value }

 Int1Encoding.value ::= ENCODING

 {SPACE {variable-min UNITS bits(2)},

 VALUE {offset-suppress-zero}

 -- Will encode the offset for lb

 -- into the minimum number

 -- of 2-bits (the number is determined

 -- by length - see later, with zero

 -- encoding into zero bits. -- }

 Int2Encoding.length ::= ENCODING

 {SPACE {variable-self-delim},

 VALUE {bit-count-exponential-1}

 -- Represents values 1, 2, 4, 8, etc

 -- Using 1, 2, 3, etc bits respectively

 -- 0 => 1, 10 => 2, 110 => 4,

 -- 1111110 => 64 -- }

 Int2Encoding.value :: ENCODING

 {SPACE {variable-min-allowed UNITS bits},

 -- Will encode into the minimum number

 -- of bits to the granularity allowed

 -- by the length determinant.

 VALUE {offset}

 -- Will encode the offset from lb with

 -- zero encoded as one zero bit. -- }

 Int2Encoding.length ::= LENGTH-DETERMINANT-FOR

 Int2Encoding.value

 EnumEncoding.length ::= ENCODING

 {SPACE {variable-self-delim},

 VALUE {bit-count-simple-0} }

 EnumEncoding.value ::= ENCODING

 {SPACE {variable-min UNITS bits(2)},

 VALUE {offset-suppress-zero}}

 EnumEncoding.length ::= LENGTH-DETERMINANT-FOR

 EnumEncoding.value

 F6Encoding.length ::= LENGTH-DETERMINANT-FOR F6Encoding.value

 F7Encoding.length ::= LENGTH-DETERMINANT-FOR F7Encoding.value

END

We have now established our auxiliary types and their encodings. Int1Encoding represents values of the PRIMARY integer as follows:

 Value Int1 bits

 0 1

 1-3 4

 4-63 9

 64-511 12

Int2Encoding represents values of the PRIMARY integer as follows:

 Value Int2 bits

 0-1 2

 2-3 4

 4-15 7

 16-65535 20

A.3
The ECN-main module

All (!) we now have to do is to apply our auxiliary definitions to our main module.

ECN-main {1 2 6} ENCODING-DEFINITIONS ::=

BEGIN

 IMPORTS SpecialInt1, SpecialIint2, PDU FROM ASN-main

 Int1Encoding, Int2Encoding, EnumEncoding

 FROM ASN-aux {1 2 4};

 SpecialInt1 ::= ENCODING Int1Encoding

 SpecialInt2 ::= ENCODING Int2Encoding

 PDU.f3 ::= ENCODING EnumEncoding

 PDU.f4 ::= ENCODING EnumEncoding

 PDU.f6 ::= ENCODING F6Encoding

 PDU.f7 ::= ENCODING F7Encoding

END

A.4
The ECN linkage module

And now we tie it all together.

ELM-module {1 2 7} LINKAGE-DEFINITIONS ::=

BEGIN

 ASN-main {1 2 3} ENCODED BY ECN-main {1 2 6}

 ASN-aux {1 2 4} ENCODED BY ECN-aux {1 2 5}

END

This ends the example!

Annex B

Component model for ECN encoding

B.1
Purpose of the model

This annex provides a model which determines the order and grouping of abstract syntax components in an ASN.1 top-level type definition after expansion of all type reference names.

The model is used for two purposes:

· It provides the basis for rules on the relative positions of determinants and the associated determined component.

· It assists in the clear definition of terms related to the order of bit and byte transmission in the encoding.

B.2
The model

Given any top-level ASN.1 (using only the construction mechanisms supported by ECN - CHOICE, SEQUENCE, and SEQUENCE OF), the components of that type (following resolution of all type references) can be placed into a tree structure as follows.

The tree consists of a root node, with arcs from this to second-level nodes, and with arcs from nodes at level n to nodes at level n+1. At each node, there is an ordered list (first to last) of abstract syntax components. The following rules for the treatment of SEQUENCE, SEQUENCE OF, and CHOICE are recursively applied to generate the complete tree for any top-level type.

For the root node, the components of the top-level type are added to the node in the order of their appearance in the ASN.1 type definition.

If a component being added to a node is a SEQUENCE, then the components of that SEQUENCE are placed in the that node at the point of occurrence of that SEQUENCE in the ASN.1 specification, with an indication that they are grouped into a SEQUENCE (so that encoding controls related to the SEQUENCE type can be applied).

NOTE — Tutorial: Thus if the only constructor used in the specification is SEQUENCE, there is only a root node containing the complete list of components for the entire top-level type.

If a component being added to a node is a SET-OF component, it generates a single arc from that node to a new node at the next level, and the components of the type in the "SEQUENCE OF type" are added (in order) to that new node.

If a componentl being added to a node is a CHOICE component, it generates a new arc for each alternative of the CHOICE to new nodes at the next level, and the components of the alternative type are added (in order) to the new node corresponding to that alternative.

B.3
Example of a component tree

NOTE — This will eventually be drawn as a graphic. For the present a text format is used to draw the tree.

Consider the following ASN.1 type:

 My-PDU ::= SEQUENCE

 {f1 INTEGER,

 f2 BOOLEAN,

 f3 SEQUENCE OF

 SEQUENCE

 {f31 INTEGER,

 f32 INTEGER},

 f4 SEQUENCE

 {f41 INTEGER,

 f42 INTEGER}

 f5 CHOICE

 {f41 SEQUENCE

 {f411 INTEGER,

 f412 INTEGER},

 f42 INTEGER } }

The component tree appears as follows (with the earliest component at each node shown on the left):

 Root (level 1) node: f1 f2 f3 (f4: f41 f42) f5

 | /\

 | / \

 | / \

 | / \

 ---------------- -------- |

 | | |

 | | |

 Level 2 nodes: | | |

 (f31 f32) (f41: f411 f412) f42

B.4
Order of bits and bytes

Each component of a node is encoded in order into a string of bits for transfer in accordance with space definition and value definition for that component. The encoding of each component produces a leading bit through to a trailing bit, and these are appended to previous encodings to produce a bit string with a leading bit and a trailing bit for transfer. The resulting bits are transmitted with the leading bit first with a bit-oriented carrier. If the carrier requires a multiple of eight bits, it is the responsibility of the ECN specifier to ensure that post-alignment with defined padding is applied if necessary.

In mapping the bits of the encoding into octets for transfer by an octet-oriented carrier, the leading bit of the encoding is placed in the most significant bit of the first transmitted octet, down to the trailing bit of the encoding which appears in the least significant bit of the last octet of the encoding.

For octet oriented carriers, the carrier or lower layer specifications determine the order in which the bits of an octet of the encoding are transferred, using the terms "most significant bit" and "least significant bit".

NOTE — The use of the words "first" and "last" in literals used in this specification is based on a conceptual transmission in which each octet of the encoding is transmitted in order with the most significant bit of the encoding transmitted first. This conceptual transmission is used purely to enable a human-being to understand the use of these terms in literals, and does not necessarily imply any particular order of bits on a real serial communications line.

When an integer or enumerated component is being encoded, the ECN enables the user to specify (should this be desired) that the least significant byte of the integer value is placed in the first transmitted octet of this part of the encoding and the most signicant byte in the last transmitted octet (low-byte-first or high-byte-last - see clause 13.2 of the tutorial Note: this reference will need changing in due course), and vice versa (low-byte-last or high-byte-first). The ECN also enables the user to specify (should this be desired) that for each octet of the integer encoding, the most significant bit of that octet is placed in the least significant bit of an octet of the encoding (lsb-first or msb-last) or vice-versa (lsb-last or msb-first).

NOTE — "lsb" stands for "least significant bit" and "msb" stands for "most significant bit".

B.5
Order of encoding of components

The rules specified here are recursively applied for each component being encoded.

The encoding of components begins with the first component of the root node, and proceeds in order through the components of that node. Where these nodes are components of a SEQUENCE, the combination definition for that SEQUENCE is applied.

When a component is being encoded that is a SEQUENCE OF, then the components at the node beneath the SEQUENCE OF are encoded. The encoding of these components may be repeated subject any restrictions on the iteration count of the SEQUENCE OF, and the resulting encodings are combined according to the combination definition of the SEQUENCE OF.

When a component is being encoded that is a CHOICE, then the components at any one (precisely one) of the nodes beneath the CHOICE are encoded.

B.6
Rules governing determinants and determined components

There are three cases that are considered here:

· Simple presence, length, and choice determinants.

· Embedded length and choice determinants.

A component may not be referenced by more than one determinant.

The simple presence, length and choice determinants are defined in clause 15 of the tutorial, and embedded length and choice determinants are defined in clauses 16 and 17 of the tutorial.

NOTE — These references will need changing.

If a component has been assigned a simple presence, length or choice determinant property, then the corresponding determined component is required to be a later component of the same node as the determinant.

If a (SEQUENCE OF) component has been assigned an embedded length determinant, then there is a requirement that the embedded length determinant appear as (any) one of the components of the node immediately beneath the determined (SEQUENCE OF) component.

If a (CHOICE) component has been assigned an embedded choice determinant, then the determinant shall either be the first component of each of the nodes beneath the determined (CHOICE) component, or shall be preceded in each such node by components with identical types and identical space and value definitions. These preceding components shall not be CHOICE or SEQUENCE OF.

32

33

