TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3)
TSGR2#6(99)947

Sophia-Antipolis, France 16th to 20th August 1999
Agenda Item:
13

Source:
Siemens AG

Title:
Changes on RLC SDL diagrams

Document for:
Decision

1 Introduction

Some modifications and refinements can enhance the clarity of the SDL model [2] that is to be included to the RLC specification.

2 Proposed modifications

The following modifications can improve the representation of the acknowledged mode of the RLC protocol.

· It is proposed to avoid the use of a queue that stores STATUS PDUs and rather create STATUS PDUs just before they are send. This will avoid sending STATUS PDUs that are not up to date any more.

· It is proposed to use separate timers for triggering DATA PDUs and STATUS PDUs. This will simplify the usage of timer_am. In this case that timer could run continously rather than being set by special events. Therefore an additional timer Timer_Sc has to be introduced that triggers the transmission of STATUS PDUs. This change would simplify to model that STATUS PDUs and DATA PDUs might be transmitted on different physical channels.

The attached SDL diagrams show how these changes could be incorporated into the SDL model proposed in [2].

The modified pages are indicated by bars on the right.

3 Conclusion

The proposed modifications should be incorporated in section 12 of [1].

4 References

[1] 3GPP TSGR2#6(99)713: 3GPP TS 25.322: RLC protocol specification

[2] 3GPP TSGR2#6(99)725: Report on RLC SDL e-mail discussion, source NTTDoCoMo

[image: image1.wmf]Virtual Process Type

Acknowledged_connection

1_Declarations(45)

DCL

am_pdu,

tmp,

pdu

Am_Pdu,

/*A representation of data contained within a

AmPdu.*/

stat_pdu,

rx_stat_pdu

StatPdu,

/*A representation of data contained within a

StatPdu.*/

pdus,

rem_pdus

AmPduArrayType,

/*The initially segmented

sdu.*/

receiver_queue Queue,

/*A queue used for storing

PDUs as they

arrive.*/

retransmission_queue Queue,

/*A queue used for

PDUs that are to be

retransmitted.*/

assembly_queue Queue,

/*A queue used for

reassembly of received

PDUs into an SDU.*/

Transmitted_queue Queue,

/*A queue used for

PDUs that have been

transmitted.*/

am_queue Queue,

/*A queue used for

PDUs to be

transmitted.*/

stat_queue Queue,

/*Queues used for

PDUs associated with STATUS

PDUs to be

transmitted*/

prohibit,

rx_prohibit,

epc_active

IndicatorType,

/*An indicator used to determine whether the

timer_PROHIBIT is running or

not.*/

empty,

no_tx,

no_retx

IndicatorType,

/*An indicator used to determine whether a queue is empty or

not.*/

exists

IndicatorType,

/*An indicator used to determine whether a particular

pdu exists within a queue or

not*/

poll_triggers

PollTriggArrType,

/*A configuration parameter dealing with when to issue poll

requests.*/

status_triggers

StatusTriggArrType,

/*A configuration parameter dealing with when to issue Status reports */

rx_period DURATION,

/*The duration of a periodic Status report generation

timer.*/

rx_prohibdur,

epc_dur DURATION,

/*The duration of a prohibit

retranmission of status report

timer.*/

discard

DiscardArrayType,

/*A configuration parameter identifying discard

conditions.*/

complete,

cnf

IndicatorType;

/*An indicator used to determine whether an SDU has been completely reassembled or

whether an SDU requires

confirmation*/

[image: image2.wmf]Virtual Process Type

Acknowledged_connection

2_Declarations(45)

DCL

period DURATION,

/*The duration of a periodic Polling generation

timer.*/

retransmission

IndicatorType,

/*An indicator used to determine whether the received PDU is a

retransmission.*/

logical_channel

LogicalChannelType,

/*The logical channel associated with

transmissions.*/

i INTEGER,

/*A local

counter.*/

mui

MuiType,

/*The message

uit identifier associated with a message to be

transmitted.*/

muis

MuiArrayType,

/*An array used to store message unit

identifiers.*/

no_sdu,

no_pu,

xpu,

xsdu,

tx_win,

rx_win,

no_of_pu_per_tti,

rx_pu,

rx_sdu,

muis_tot, tot, k,

no_of_sq,

tot_rem, l,

no_s

PduIndexType,

/*Counters used to manage the amount of

PUs and

SDUs

received.*/

percent,

rx_percent REAL,

/*Percentages of the transmit and receive

window.*/

sdu

OctetType,

/*The

sdu data from the higher protocol

layer.*/

sdus

OctetArrayType,

/*A set of

Octet.*/

seq, n,

np,

sn_ack,

sq,

sn

SequenceNumberType,

/*A local sequence

number.*/

vt_s

SequenceNumberType,

/*Send state variable: The sequence number of the next

pdu to be transmitted for the first time.

It is incremented after transmission of a PU for the first time (i.e. excluding retransmissions).*/

vt_a

SequenceNumberType,

/*Acknowledge state variable: The sequence number of the next in-sequence

pdu expected to

be acknowledged, thus forming the lower edge of the window of acceptable acknowledgements.

The variable

vt_a is updated upon acknowledgement of in sequence

PUs.*/

vt_dat

SequenceNumberType,

/*This variable is used to count retransmission number of each PU. It is incremented by a

pdu

transmission.*/

vt_ms

SequenceNumberType;

/*Maximum send state variable: This is the sequence number of the first PU not allowed by the

receiver. It thus represents the upper edge of the transmit window. If

vt_s is equal to

vt_ms, now

new

pdu should be transmitted. The variable is updated based on receipt of STATUS PDU.*/

[image: image3.wmf]Virtual Process Type

Acknowledged_connection

3_Declarations(45)

DCL

vr_r

SequenceNumberType,

/*Receive state variable: The sequence number of the next in sequence

pdu expected to be received.

It is incremented upon receipt of the next in-sequence PU.*/

vr_h

SequenceNumberType,

/*Highest expected state variable: The sequence number of the next highest expected

pdu. The variable

is updated whenever a new PU is

received.*/

vr_mr

SequenceNumberType,

/*Maximum acceptable receive state variable: The sequence number of the first

pdu not allowed by the

receiver, thus the receiver shall discard PUs with an

n_s=vr_mr. Updating of

vr_mr is implementation

dependent but should not be set to a value less than

vr_h.*/

rx_sufi_tot

PduIndexType,

/*Local variable for maintaining knowledge of the number of super

fields.*/

tx_sufi

SufiStructType,

/*The contents of one

superfield*/

rx_sufis,

sufis,

tx_sufis

SufiArrayStructType,

/*The set of

superfields associated with a status

report.*/

flip,

possible_status,

rx_flip,

polling_answer

IndicatorType,

/*An indicator used to determine whether the highest sequence number value has been passed or not.

The second is used to indicate whether status piggyback is possible or

not.*/

retransmission_requested

IndicatorType,

/*An indicator used to keep track of whether a generated status report contains retransmission requests or

not.*/

status_timer_active,

start_am

IndicatorType,

/*This indicator keeps track of whether the

timer_STATUS timer is running or

not.*/

per REAL,

/*Local storage of a percentage

value.*/

rx_ongoing,

tx_ongoing

IndicatorType,

/*These indicators are used to maintain information about whether something is in the process of being

transmitted or

received.*/

bitmap

IndicatorArrayType,

/*This array of

boolean values indicates losses experienced by the

receiver.*/

vr_ep

SequenceNumberType;

/*Estimated PDU counter state variable: The number of

PUs that should have been received after the latest

STATUS PDU was sent. In acknowledged mode, this state variable is updated at the end of each transmission

timer interval. If

vr_ep is equal to the number of requested

PUs in the latest STATUS PDU it should be checked

if all

PUs requested for retransmission have been

received.*/

[image: image4.wmf]Virtual Process Type Acknowledged_connection

4_Declarations(45)

TIMER

timer_AM,

/*This timer is used to sequence transmissions.*/

timer_EPC,

/*This timer accounts for the round trip delay, i.e. the time when the first retransmitted PU should have been

received after a status report has been sent. The value of timer is heavily based on the transmission time

interval (layer 1 interleaving depth). When changing the transmission timer interval, the value of the EPC

timer also needs to be changed.*/

timer_STATUS,

/* This timer is used to detect the loss of response from the receiver side. The timer is set when a transmitted Am Pdu

requests a status report and it will be stopped when the transmitter receives acknowledgement of the pdu within the

StatPdu (positive) or UstatPdu (negative). When the timer expires, the pdus of the oldest unconfirmed pdus should be

retransmitted together with a status report request and the timer is set again. If polling takes place when this timer

is active, it should be reset and then send again*/

timer_DISCARD(MuiType),

/*This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of an SDU

from a higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and

a move receiving window request is sent to the receiver. If the SDU discard function does not use the move

receiving window request the timer is also used in the receiver, where it is activated once a PDU is detected as

outstanding, i.e. there is a gap between sequence numbers of received PDUs.*/

timer_PERIOD,

/*A timer used for the periodic creation of polls.*/

timer_RXPERIOD,

/*A timer used for the periodic creation of status reports.*/

timer_RXPROHIBIT,

/*A timer used on the receive side to limit STATUS transmission.*/

timer_PROHIBIT;

/*It is used to prohibit transmission of polling messages within a certain period. If polling takes place while the timer is

active, it will be reset and then sent again. No action other than indicating that the timer is not active is needed

when it expires.*/

[image: image5.wmf]Virtual Process Type

Acknowledged_connection

1_Procedures(45)

Sdu_am_segmentation

This procedure manages the segmentation and concatenation of

sdus. It applies polling in accordance with the

toolset functions

applied by the higher layer protocols

Virtual

Transmit_am_pdu

This procedure manages transmission of RLC

PDUs across the proper

SAP.

Check_if_queue_empty

This procedure checks if there are any

PDUs remaining in the

queue given as parameter to the procedure

Remove_from_queue

This procedure removes the first PDU in the queue given as

parameter to the procedure

Place_in_queue

This procedure places the indicated

pdu within the queue

given as parameter to the procedure

Upate_sequence_number

This procedure increments the sequence number

properly based on the maximum allowed.

Read_pdu

This procedure retrieves a copy of the first entry in

the queue indicated as parameter to the procedure

Remove_identified_from_queue

This procedure removes a

pdu with a given sequence number

from the queue identified.

Remove_acks_get_muis

This procedure removes all

pdus that have been acknowledged

from the indicated queue and stores the

muis that are removed

from the queue in a special array

Complete_muis

This procedure checks if any of the

muis identified still exists

within the retransmission queue and updates the list of

muis

that should be confirmed accordingly.

Remove_list_from_transmitted_queue

This procedure removes

alist of

pdus indicated by sequence numbers

from the transmitted queue

Remove_bitmap_from_transmitted_queue

This procedure removes a list of

pdus in accordance

with a bitmap from the transmitted queue.

[image: image6.wmf]Virtual Process Type Acknowledged_connection

2_Procedures(45)

Place_several_in_queue

This procedure places several pdus in the indicated queue.

Update_state_variables

This procedure updates the state variables vt_a and vt_ms

after a STATUS PDU has been received and processed

Place_first_in_queue

This procedure places an AM_PDU with polling=YES first in

the retransmission queue after its associated STATUS timer

has expired

Reassemble_am_pdu

This procedure reassembles Rlc pdu contents into Sdu:s as

they arrive

Virtual

Transmit_ack

This procedure transmits a reset acknowledgement on the

correct logical channel

Virtual

Transmit_reset

This procedure transmits a reset on the correct logical channel.

Virtual

Transmit_stat

This procedure transmits status signal on the correct logical

channel.

Place_piggyback_in_queue

This procedure places a sufi containing a move receive window

piggybacked onto a pdu within a queue

Exists_in_receiver_queue

This procedure checks if an identified pdu exists within the

receiver queue

Create_status

This procedure creates a status report based on available information

Create_status_creation

This procedure checks if a status report should be generated

Place_in_stat_queue

This procedure places a STAT_PDU in a queue waiting for transmission.

Remove_from_stat_queue

This procedure removes a STAT-PDU from the transmission queue.

[image: image7.wmf]Virtual Process Type Acknowledged_connection

3_Procedures(45)

Remove_mui_from_queues

This procedure removes all pdus associated with a given mui

from the transmission queue

Remove_all_below_from_queues

This procedure removes all pdus below an identified sequence

number from all receiver queues.

Set_polling_flag

This procedure causes the polling flag to be set in the first PDU

within a defined queue

Count_epc

This procedure counts the received PDUs

Exists_in_stat_await_queue

This procedure checks whether the STATUS PDU includes ACK

or NACK for the AMD PDU which triggered timer_STATUS

Replace_am_pdu

This procedure places the AMD PDU which triggered timer_STATUS

in the STAT_await queue. If other AMD PDU has already been existing

in the queue, the old one will be replaced with the new one

[image: image8.wmf]Virtual Process Type Acknowledged_connection

1_ProcessTypeStart(45)

vt_s:=0,vr_r:=0,no_sdu:=0,

no_pu:=0,vt_a:=0,vr_h:=0,

status_timer_active:=NO

Queue_initialisation(receiver_queue)

Queue_initialisation(retransmission_queue)

Queue_initialisation(assembly_queue)

Queue_initialisation(am_queue)

Queue_initialisation(transmission_queue)

Queue_initialisation(stat_queue)

Queue_initialisation(stat_await_queue)

seq:=0,

prohibit:=NO,

rx_prohibit:=NO,

epc_active:=NO,

retransmissions_requested:=NO,

start_am:=NO,

stat_triggered:=NO

Nul

[image: image9.wmf]Virtual Process Type Acknowledged_connection

1_Nul(45)

Nul

Crlc_amconfig.req(logical_channel, poll_triggers,

xpu, xsdu, percent,tx_win,period,discard,

no_of_pu_per_tti, status_triggers,rx_pu,rx_sdu,

rx_percent,rx_period,rx_prohibdur,epc_dur)

vt_ms:=vt_s+tx_win,

vr_mr:=vr_r+rx_win/*?*/

no_pu:=0,

no_sdu:=0

poll_triggers(TIMERBASED)

Set(NOW+period,timer_PERIOD)

status_triggers(TIMERBASED)

Set(NOW+rx_period, timer_RXPERIOD)

Acknowledged_data_transfer_ready

YES

YES

NO

NO

[image: image10.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady(45)

Acknowledged_data_transfer_ready

Crlc_amconfig.req()

vt_s:=0,vr_r:=0,no_sdu:=0,

no_pu:=0,vt_a:=0,vr_h:=0,

vt_ms:=vt_s+tx_win,

vr_mr:=vr_r+tx_win,

no_pu:=0,no_sdu:=0,

status_timer_active:=NO

Queue_initialisation

(receiver_queue)

Queue_initialisation

(retransmission_queue)

Queue_initialisation

(assembly_queue)

Queue_initialisation

(am_queue)

Queue_initialisation

(transmission_queue)

Queue_initialisation

(stat_queue)

Queue_initialisation

(stat_await_queue)

seq:=0

prohibt:=NO,start_am:=NO,

rx_prohibit:=NO,

epc_active:=NO,

retransmissions_requested:=NO,

stat_triggered:=NO

Nul

Reset_am

vt_s:=0,vr_r:=0,no_sdu:=0,

no_pu:=0,vt_a:=0,vr_h:=0,

vt_ms:=vt_s+tx_win,

vr_mr:=vr_r+tx_win,

no_pu:=0,no_sdu:=0,

status_timer_active:=NO

Queue_initialisation

(receiver_queue)

Queue_initialisation

(retransmission_queue)

Queue_initialisation

(assembly_queue)

Queue_initialisation

(am_queue)

Queue_initialisation

(transmission_queue)

Queue_initialisation

(stat_queue)

Queue_initialisation

(stat_await_queue)

seq:=0,start_am:=NO,

prohibit:=NO,

rx_prohibit:=NO,

epc_active:=NO,

retransmission_requested:=NO,

stat_triggered:=NO

Transmit_ack

()

Crlc_Status.ind(EVC)

-

[image: image11.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_RlcAmDataReq(45)

Acknowledged_data_transfer_ready

Rlc_AmData.req(sdu,cnf,mui)

Sdu_am_segmentation(sdu,np,pdus,

am_queue,poll_triggers,no_sdu,no_pu,

xpu,xsdu,cnf,mui)

np=0

n:=1

-

am_pdu:=pdus(n)

Update_sequence_number(flip,vt_s)

am_pdu!n_s:=vt_s

Place_in_queue

(am_queue,am_pdu)

n<np

n:=n+1

status_triggers(DISCARD)

Set(NOW+DISCARDDUR,timer_DISCARD(mui))

-

NO

YES

YES

NO

YES

[image: image12.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_Timer_Sc(45)

Acknowledged_data_transfer_ready

Timer_SC

SET(NOW+timer_scdur, timer_SC)

Status_Transmission_required

-

status_triggers(STATUSPROHIBIT)

rx_prohibit = YES

-

Set(NOW+rx_prohibdur,timer_RXPROHIBIT)

rx_prohibit:=YES

Create_status(vr_r,vr_h,receiver_queue,

rx_sufi_tot,rx_sufis,

vr_ep,retransmissions_requested, status_complete)

Transmit_stat(stat_pdu,logical_channel)

status_cleared

status_transmission_required

:= YES

status_transmission_required

:= NO

2_TimerSC

NO

YES

YES

YES

NO

YES

NO

[image: image13.wmf]Virtual Process Type Acknowledged_connection

2_AcknowledgedDataTransferReady_Timer_SC(45)

2_timerSC

status_triggers(EPC)

Set(NOW+epc_dur,timer_EPC)

epc_active:=YES

-

YES

NO

[image: image14.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_timerAm(45)

Acknowledged_data_transfer_ready

timer_AM

SET(NOW+AMDUR, timer_AM)

Active(Timer_SC)

status_transmission_required

3_timerAm

Check_PiggyBack_Possible

(statussize, possible)

possible

Create_Status

(vr_r, vr_h, receiver_queue,

rx_sufi_tot, rx_sufis,

vr_ep, retransmissions_requested,

status_cleared)

status_triggers(STATUSPROHIBIT)

rx_prohibit=YES

Remoive_from_queue

(am_queue, am_pdu)

Set(NOW+rx_prohibdur,timer_RXPROHIBIT)

Place_piggyback

(statpdu, am_pdu)

rx_prohibit:=YES

4_timerAm

-

Create_Status

Transmit_stat(stat_pdu,logical_channel)

status_clear

NO

YES

NO

YES

YES

NO

YES

NO

NO

YES

[image: image15.wmf]Virtual Process Type Acknowledged_connection

1_status_clear(45)

status_clear

status_cleared

status_transmission_required :=

YES

status_transmission_required :=

NO

2_timerAM

NO

YES

[image: image16.wmf]Virtual Process Type Acknowledged_connection

2_AcknowledgedDataTransferReady_timerAm(45)

2_timerAm

status_triggers(EPC)

Set(NOW+epc_dur,timer_EPC)

epc_active:=YES

-

YES

NO

[image: image17.wmf]Virtual Process Type Acknowledged_connection

3_AcknowledgedDataTransferReady_timerAm(45)

3_timerAm

Check_if_queue_empty(retransmission_queue,

empty)

empty

6_timerAm

Check_if_queue_empty(am_queue,empty)

empty

-

Read_pdu(am_queue,pdu)

pdu!n_s<=vt_ms

per:=

Float((tx_win-(vt_ms-pdu!n_s))/tx_win)

-

Remove_from_queue(am_queue,am_pdu)

4_timerAm

NO

YES

YES

NO

YES

NO

[image: image18.wmf]Virtual Process Type Acknowledged_connection

4_AcknowledgedDataTransferReady_timerAm(45)

4_timerAm

poll_triggers

(LASTINTRANSQUEUE)

poll_triggers

(PERCENTOFTXWINDOW)

Check_if_queue_empty

(am_queue,empty)

per>=percent

empty

poll_triggers

(EVERYPOLLPU)

no_pu=poll_pu

poll_triggers

(EVERYPOLLSDU)

no_pu:=0

no_sdu=poll_sdu

poll_triggers

(POLLPROHIBIT)

no_sdu:=0

4_timerAmA

poll_triggers

(POLLPROHIBIT)

am_pdu!polling:=

YES

prohibit

am_pdu!polling:=

YES

Set(NOW+

PROHIBITDUR,

timer_PROHIBIT)

3_timerAmA

am_pdu!polling:=

NO

prohibit:=

YES

5_timerAm

NO

YES

YES

NO

NO

YES

YES

NO

NO

YES

YES

NO

YES

NO

YES

NO

YES

NO

NO

YES

[image: image19.wmf]Virtual Process Type Acknowledged_connection

5_AcknowledgedDataTransferReady_timerAm(45)

5_timerAm

Transmit_am_pdu(am_pdu)

am_pdu!vt_dat:=0

am_pdu!polling

status_timer_active

Reset(timer_STATUS)

Set(NOW+STATUSDUR,

timer_STATUS)

Replace_am_pdu(stat_await_queue,am_pdu)

am_pdu!polling:=NO

Place_in_queue(transmission_queue,

am_pdu)

-

Set(NOW+STATUSDUR,

timer_STATUS)

status_timer_active:=YES

YES

YES

NO

NO

[image: image20.wmf]Virtual Process Type Acknowledged_connection

6_AcknowledgedDataTransferReady_timerAm(45)

6_timerAm

Remove_from_queue(

retransmission_queue,am_pdu)

am_pdu!vt_dat:=am_pdu!vt_dat+1

am_pdu!vt_dat>MAXDAT

7_timerAm

Transmit_reset()

Crlc_Status.ind(EVC)

Reset_pending

NO

YES

[image: image21.wmf]Virtual Process Type Acknowledged_connection

7_AcknowledgedDataTransferReady_timerAm(45)

7_timerAm

poll_triggers(LASTINRETRANSQUEUE)

check_if_queue_empty(retransmission_queue,empty)

empty

am_pdu!polling:=YES

poll_triggers(POLLPROHIBIT)

Set(NOW+PROHIBITDUR,

timer_PROHIBIT)

status_timer_active

Reset(timer_STATUS)

Set(NOW+STATUSDUR,

timer_STATUS)

Replace_am_pdu(stat_await_queue,am_pdu)

8_timerAm

Set(NOW+STATUSDUR,

timer_STATUS)

status_timer_active:=YES

YES

YES

YES

YES

NO

NO

NO

NO

[image: image22.wmf]Virtual Process Type Acknowledged_connection

8_AcknowledgedDataTransferReady_timerAm(45)

8_timerAm

Transmit_am_pdu(am_pdu,

logical_channel)

am_pdu!polling:=NO

Place_in_queue

(transmission_queue,

am_pdu)

-

[image: image23.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_StatPdu(45)

Acknowledged_data_transfer_ready

StatPdu(Stat_pdu)

stat_pdu!pa

4_StatPdu

Exists_in_stat_await_queue

(sufis,stat_await_queue.exists)

exists

Reset(timer_STATUS)

status_timer_active:=NO

Check_if_queue_empty(am_queue,no_tx)

Check_if_queue_empty(retransmission_queue,no_retx)

i:=1,

sn_ack:=0

1_StatPdu

stat_pdu!sufis(i)!tp

1_List

1_MRW

1_Bitmap

1_Ack

2_StatPdu

NO

YES

YES

NO

LIST

MORERECEIVINGWINDOW

BITMAP

ACK

Else

[image: image24.wmf]Virtual Process Type Acknowledged_connection

2_AcknowledgedDataTransferReady_StatPdu(45)

2_StatPdu

Remove_acks_get_muis(transmission_queue,

sn_ack,muis_tot,muis)

muis_tot=0

Complete_muis(retransmission_queue,

muis_tot,muis)

i:=1

muis(i)!m_i=0

Rlc_AmData.cnf(muis(i)!m_i)

Reset(tijmer_DISCARD(muis(i)!m_i))

i=muis_tot

i:=i+1

3_StatPdu

NO

NO

NO

YES

YES

YES

[image: image25.wmf]Virtual Process Type Acknowledged_connection

3_AcknowledgedDataTransferReady_StatPdu(45)

3_StatPdu

Update_state_variables(vt_a,vt_ms,tx_win,

transmission_queue,retransmission_queue,flip)

-

[image: image26.wmf]Virtual Process Type Acknowledged_connection

4_AcknowledgedDataTransferReady_StatPdu(45)

4_StatPdu

Check_if_queue_empty(am_queue,empty)

i:=1,

sn_ack:=0

stat_pdu!sufis(i)!tp

1_List

1_Mrw

1_Bitmap

1_Ack

2_StatPdu

LIST

MOVERECEIVINGWINDOW

BITMAP

ACK

Else

[image: image27.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_StatPduList(45)

1_List

tot:=stat_pdu!sufis(i)!list_tot,

k:=1

sq:=stat_pdu!sufis(i)!list_str(k)!sn_i,

no_of_sq:=stat_pdu!sufis(i)!list_str(k)!l_i

Remove_list_from_transmission_queue

(transmission_queue,sq,no_of_sq,

tot_rem,rem_pdus)

Place_several_in_queue(retransmission_queue,

tot_rem,rem_pdus)

k=tot

k:=k+1

i:=i+1

1_StatPdu

NO

YES

[image: image28.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_StatPduBitmap(45)

1_Bitmap

tot:=stat_pdu!sufis(i)!bit_tot

sq:=stat_pdu!sufis(i)!fsn,

bitmap:=stat_pdu!sufis(i)!bitmap

Remove_bitmap_from_transmission_queue

(transmission_queue,sq,tot,bitmap,

tot_rem,rem_pdus)

i:=i+1

Place_several_in_queue(retransmission_queue,

tot_rem,rem_pdus)

1_StatPdu

[image: image29.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_StatPduAck(45)

1_Ack

sn_ack<stat_pdu!sufis(i)!ack_sn

sn_ack:=stat_pdu!sufis(i)!ack_sn

i:=i+1

1_StatPdu

YES

NO

[image: image30.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_StatPduMrw(45)

1_Mrw

rx_win:=vr_mr-vr_r

vr_r:=stat_pdu!sufis(i)!ditch_sn

vr_h<vr_r

vr_mr:=vr_r+rx_win

sn:=stat_pdu!sufis(i)!ditch_sn

Remove_all_below_from_queues(receiver_queue,

assembly_queue,sn)

i:=i+1

1_StatPdu

vr_h:=vr_r,

vr_mr:=vr_r+rx_win

NO

YES

[image: image31.wmf]Virtual Process Type Acknowledged_connection

1_Acknowledged_DataTransferReady_TimerStatus(45)

Acknowledged_data_transfer_ready

timer_STATUS

status_timer_active:=NO

Remove_from_stat_await_queue

(stat_await_queue,am_pdu)

-

[image: image32.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_TimerProhibit(45)

Acknowledged_data_transfer_ready

timer_PROHIBIT

prohibit:=NO

-

timer_RXPROHIBIT

rx_prohibit

-

[image: image33.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_timerEpc(45)

Acknowledged_data_transfer_ready

timer_EPC

Count_epc(no_of_pu_per_tti,vr_ep)

vr_ep=0

stat_triggered

stat_triggered:=NO

epc_active:=NO

7_AmPduA

7_AmPdu

NO

YES

YES

NO

[image: image34.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_timerPeriod(45)

Acknowledged_data_transfer_ready

timer_PERIOD

Check_if_queue_empty(retransmission_queue,no_retx)

no_retx

Set_polling_flag(retransmission_queue)

Check_if_queue_empty(am_queue, no_tx)

no_tx

Set_polling_flag(am_queue)

no_retx

no_tx

np:=1,

pdus(1)!polling:=YES,

pdus(1)!dta!pdu_tot:=0

2_RlcAmDataReq

-

NO

NO

YES

YES

NO

NO

YES

YES

[image: image35.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_timerRxPeriod(45)

Acknowledged_data_transfer_ready

timer_RXPERIOD

status_transmission_required := YES

Set(NOW+rx_period,timer_PERIOD)

-

[image: image36.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_TimerDiscard(45)

Acknowledged_data_transfer_ready

timer_DISCARD(mui)

Remove_mui_from_queues(mui,transmission_queue,

retransmission_queue)

Update_state_variables(vt_a,vt_ms,tx_win,

transmission_queue, retransmission_queue,flip)

discard(EXPLICIT)

-

tx_sufi!tp:=MOVERECEIVINGWINDOW,

tx_sufi!ditch_sn:=vt_ms,

tx_sufis(1):=tx_sufi,

tot:=1

Update_MRW_Sufi(tx_sufi)

status_transmission_required := YES

-

NO

YES

[image: image37.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgedDataTransferReady_AmPdu(45)

Acknowledged_data_transfer_ready

AmPdu(am_pdu)

no_pu:=no_pu+1

am_pdu!length=PIGGYBACKED

stat_pdu!pa:=am_pdu!polling,

stat_pdu!sufi_tot:=am_pdu!sufi_tot

i:=1

stat_pdu!sufis(i):=am_pdu!sufis(i)

i=am_pdu!sufi_tot

i:=i+1

StatPdu(stat_pdu)

TO SELF

2_AmPdu

YES

NO

NO

NO

[image: image38.wmf]Virtual Process Type Acknowledged_connection

2_AcknowledgedDataTransferReady_AmPdu(45)

2_AmPdu

am_pdu!n_s<vr_mr

vr_h<vr_mr

vr_h:=vr_mr

4_AmPduA

am_pdu!n_s=vr_r

5_AmPdu

am_pdu!n_s=vr_h

Place_in_queue

(assembly_queue,am_pdu)

Reassemble_am_pdu

(assembly_queue,

complete,sdus,no_s)

complete

i:=1

sdu:=sdus(i)

Rlc_AmData.ind(sdu)

i=no_s

i:=i+1

4_AmPdu

3_AmPdu

NO

YES

YES

NO

YES

YES

YES

NO

YES

NO

NO

[image: image39.wmf]Virtual Process Type Acknowledged_connection

3_AcknowledgedDataTransferReady_AmPdu(45)

3_AmPdu

Place_in_queue

(assembly_queue,am_pdu)

Reassemble_am_pdu

(assembly_queue,

complete,sdus,no_s)

complete

i:=1

sdu:=sdus(i)

Rlc_AmData.ind(sdu)

i=no_s

i:=i+1

no_sdu:=no_sdu+no_s

Update_sequence_number(rx_flip,vr_r)

Exists_in_receiver_queue

(vr_r,receiver_queue,exists)

exists

4_AmPduA

Remove_identified_from_queue

(receiver_queue,vr_r,

am_pdu)

YES

NO

YES

NO

YES

NO

[image: image40.wmf]Virtual Process Type Acknowledged_connection

4_AcknowledgedDataTransferReady_AmPdu(45)

4_AmPdu

4_AmPduA

vr_r<MAXAMSEQ

vr_r:=1,

vr_h:=1

vr_r:=am_pdu!n_s+1,

vr_h:=am_pdu!n_s+1

epc_active

stat_triggered:=YES

am_pdu!polling

-

7_AmPdu

6_AmPdu

NO

YES

YES

NO

NO

YES

[image: image41.wmf]Virtual Process Type Acknowledged_connection

5_AcknowledgedDataTransferReady_AmPdu(45)

5_AmPdu

am_pdu!n_s<vr_r

am_pdu!n_s<vr_h

Place_in_queue(

receiver_queue, am_pdu)

vr_h<am_pdu!n_s

Update_Sequence_number

(rx_flip, vr_h)

Place_in_queue(

receiver_queue, am_pdu)

4_AmPduA

am_pdu!n_s<MAXAMSEQ

vr_h := 1

vr_h := am_pdu!n_s+1

4_AmPduA

Exists_in_receiver_queue(am_pdu!n_s,

receiver_queue, exists)

exists

Place_in_queue(

receiver_queue, am_pdu)

4_AmPduA

NO

YES

YES

NO

YES

NO

NO

YES

NO

YES

[image: image42.wmf]Virtual Process Type Acknowledged_connection

6_AcknowledgedDataTransferReady_AmPdu(45)

6_AmPdu

epc_active

stat_triggered:=YES

status_transmission_required :=

YES

-

-

YES

NO

[image: image43.wmf]Virtual Process Type Acknowledged_connection

7_AcknowledgedDataTransferReady_AmPdu(45)

7_AmPdu

Check_status_creation(status_triggers,vr_r,vr_h,vr_mr,

rx_pu,no_pu,rx_sdu,no_sdu,rx_percent,rx_prohibit,

status)

status

7_AmPduA

status_transmission_required :=

YES

-

YES

NO

[image: image44.wmf]Virtual Process Type Acknowledged_connection

1_AcknowledgeddataTransferReady_MAC_Status_ind(45)

Acknowledged_data_transfer_ready

MAC_Status_ind(timer_name, timer_duration, enabled)

timer_name

RESET(timer_AM)

RESET(timer_SC)

enabled

enabled

AMDUR :=

timer_duration

AMDUR :=

timer_duration

SET(NOW+AMDUR,

 timer_AM)

SET(NOW+AMDUR,

 timer_AM)

MAC_Status_conf

-

timer_AM

timer_SC

YES

NO

YES

NO

_996459437.doc

Virtual Process Type Acknowledged_connection

3_Declarations(45)

DCL

vr_r SequenceNumberType,

/*Receive state variable: The sequence number of the next in sequence pdu expected to be received.

It is incremented upon receipt of the next in-sequence PU.*/

vr_h SequenceNumberType,

/*Highest expected state variable: The sequence number of the next highest expected pdu. The variable

is updated whenever a new PU is received.*/

vr_mr SequenceNumberType,

/*Maximum acceptable receive state variable: The sequence number of the first pdu not allowed by the

receiver, thus the receiver shall discard PUs with an n_s=vr_mr. Updating of vr_mr is implementation

dependent but should not be set to a value less than vr_h.*/

rx_sufi_tot PduIndexType,

/*Local variable for maintaining knowledge of the number of super fields.*/

tx_sufi SufiStructType,

/*The contents of one superfield*/

rx_sufis, sufis, tx_sufis SufiArrayStructType,

/*The set of superfields associated with a status report.*/

flip, possible_status, rx_flip, polling_answer IndicatorType,

/*An indicator used to determine whether the highest sequence number value has been passed or not.

The second is used to indicate whether status piggyback is possible or not.*/

retransmission_requested IndicatorType,

/*An indicator used to keep track of whether a generated status report contains retransmission requests or not.*/

status_timer_active, start_am IndicatorType,

/*This indicator keeps track of whether the timer_STATUS timer is running or not.*/

per REAL,

/*Local storage of a percentage value.*/

rx_ongoing, tx_ongoing IndicatorType,

/*These indicators are used to maintain information about whether something is in the process of being

transmitted or received.*/

bitmap IndicatorArrayType,

/*This array of boolean values indicates losses experienced by the receiver.*/

vr_ep SequenceNumberType;

/*Estimated PDU counter state variable: The number of PUs that should have been received after the latest

STATUS PDU was sent. In acknowledged mode, this state variable is updated at the end of each transmission

timer interval. If vr_ep is equal to the number of requested PUs in the latest STATUS PDU it should be checked

if all PUs requested for retransmission have been received.*/

_996459539.doc

Virtual Process Type Acknowledged_connection

1_Declarations(45)

DCL

am_pdu, tmp, pdu Am_Pdu,

/*A representation of data contained within a AmPdu.*/

stat_pdu, rx_stat_pdu StatPdu,

/*A representation of data contained within a StatPdu.*/

pdus, rem_pdus AmPduArrayType,

/*The initially segmented sdu.*/

receiver_queue Queue,

/*A queue used for storing PDUs as they arrive.*/

retransmission_queue Queue,

/*A queue used for PDUs that are to be retransmitted.*/

assembly_queue Queue,

/*A queue used for reassembly of received PDUs into an SDU.*/

Transmitted_queue Queue,

/*A queue used for PDUs that have been transmitted.*/

am_queue Queue,

/*A queue used for PDUs to be transmitted.*/

stat_queue Queue,

/*Queues used for PDUs associated with STATUS PDUs to be transmitted*/

prohibit, rx_prohibit, epc_active IndicatorType,

/*An indicator used to determine whether the timer_PROHIBIT is running or not.*/

empty, no_tx, no_retx IndicatorType,

/*An indicator used to determine whether a queue is empty or not.*/

exists IndicatorType,

/*An indicator used to determine whether a particular pdu exists within a queue or not*/

poll_triggers PollTriggArrType,

/*A configuration parameter dealing with when to issue poll requests.*/

status_triggers StatusTriggArrType,

/*A configuration parameter dealing with when to issue Status reports */

rx_period DURATION,

/*The duration of a periodic Status report generation timer.*/

rx_prohibdur, epc_dur DURATION,

/*The duration of a prohibit retranmission of status report timer.*/

discard DiscardArrayType,

/*A configuration parameter identifying discard conditions.*/

complete, cnf IndicatorType;

/*An indicator used to determine whether an SDU has been completely reassembled or

whether an SDU requires confirmation*/

_996459645.doc

Virtual Process Type Acknowledged_connection

1_Procedures(45)

Sdu_am_segmentation

This procedure manages the segmentation and concatenation of

sdus. It applies polling in accordance with the toolset functions

applied by the higher layer protocols

Virtual

Transmit_am_pdu

This procedure manages transmission of RLC PDUs across the proper

SAP.

Check_if_queue_empty

This procedure checks if there are any PDUs remaining in the

queue given as parameter to the procedure

Remove_from_queue

This procedure removes the first PDU in the queue given as

parameter to the procedure

Place_in_queue

This procedure places the indicated pdu within the queue

given as parameter to the procedure

Upate_sequence_number

This procedure increments the sequence number

properly based on the maximum allowed.

Read_pdu

This procedure retrieves a copy of the first entry in

the queue indicated as parameter to the procedure

Remove_identified_from_queue

This procedure removes a pdu with a given sequence number

from the queue identified.

Remove_acks_get_muis

This procedure removes all pdus that have been acknowledged

from the indicated queue and stores the muis that are removed

from the queue in a special array

Complete_muis

This procedure checks if any of the muis identified still exists

within the retransmission queue and updates the list of muis

that should be confirmed accordingly.

Remove_list_from_transmitted_queue

This procedure removes alist of pdus indicated by sequence numbers

from the transmitted queue

Remove_bitmap_from_transmitted_queue

This procedure removes a list of pdus in accordance

with a bitmap from the transmitted queue.

_996459349.doc

Virtual Process Type Acknowledged_connection

2_Declarations(45)

DCL

period DURATION,

/*The duration of a periodic Polling generation timer.*/

retransmission IndicatorType,

/*An indicator used to determine whether the received PDU is a retransmission.*/

logical_channel LogicalChannelType,

/*The logical channel associated with transmissions.*/

i INTEGER,

/*A local counter.*/

mui MuiType,

/*The message uit identifier associated with a message to be transmitted.*/

muis MuiArrayType,

/*An array used to store message unit identifiers.*/

no_sdu, no_pu, xpu, xsdu, tx_win, rx_win, no_of_pu_per_tti,

rx_pu, rx_sdu, muis_tot, tot, k, no_of_sq, tot_rem, l, no_s PduIndexType,

/*Counters used to manage the amount of PUs and SDUs received.*/

percent, rx_percent REAL,

/*Percentages of the transmit and receive window.*/

sdu OctetType,

/*The sdu data from the higher protocol layer.*/

sdus OctetArrayType,

/*A set of Octet.*/

seq, n, np, sn_ack, sq, sn SequenceNumberType,

/*A local sequence number.*/

vt_s SequenceNumberType,

/*Send state variable: The sequence number of the next pdu to be transmitted for the first time.

It is incremented after transmission of a PU for the first time (i.e. excluding retransmissions).*/

vt_a SequenceNumberType,

/*Acknowledge state variable: The sequence number of the next in-sequence pdu expected to

be acknowledged, thus forming the lower edge of the window of acceptable acknowledgements.

The variable vt_a is updated upon acknowledgement of in sequence PUs.*/

vt_dat SequenceNumberType,

/*This variable is used to count retransmission number of each PU. It is incremented by a

pdu transmission.*/

vt_ms SequenceNumberType;

/*Maximum send state variable: This is the sequence number of the first PU not allowed by the

receiver. It thus represents the upper edge of the transmit window. If vt_s is equal to vt_ms, now

new pdu should be transmitted. The variable is updated based on receipt of STATUS PDU.*/

