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Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of this TS are subject to continuing work within 3GPP TSG-RAN and may change following formal TSG RAN approval.
1. 
Scope

The scope of this specification is to specify the RLC protocol. 

1. 
2. 
3. 
4. 
5. 
6. 

1. 
2. 
2. 
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3. 
Definitions and Abbreviations 

ARQ 



Automatic Repeat Request

BCCH



Broadcast Control Channel

BCH



Broadcast Channel

C- Control-

CC




Call Control

CCCH



Common Control Channel

CCH



Control Channel

CCTrCH


Coded Composite Transport Channel

CN



Core Network

CRC



Cyclic Redundancy Check

DC



Dedicated Control (SAP)

DCCH



Dedicated Control Channel

DCH



Dedicated Channel

DL




Downlink

DSCH



Downlink Shared Channel

DTCH



Dedicated Traffic Channel

FACH 


Forward Link Access Channel

FCS



Frame Check Sequence

FDD



Frequency Division Duplex

GC



General Control (SAP)

HO



Handover

ITU



International Telecommunication Union

kbps



kilo-bits per second

L1




Layer 1 (physical layer)

L2




Layer 2 (data link layer)

L3




Layer 3 (network layer)

MAC



Medium Access Control

MS



Mobile Station

MM



Mobility Management

Nt




Notification (SAP)

PCCH



Paging Control Channel

PCH 



Paging Channel

PDU



Protocol Data Unit

PU 



Payload Unit.

PHY



Physical layer

PhyCH


Physical Channels

RACH



Random Access Channel

RLC



Radio Link Control 

RNTI



Radio Network Temporary Identity

RRC



Radio Resource Control

SAP



Service Access Point

SCCH



Synchronization Control Channel

SCH



Synchronization Channel

SDU



Service Data Unit

TCH



Traffic Channel

TDD



Time Division Duplex

TFI



Transport Format Indicator

TFCI



Transport Format Combination Indicator

TPC



Transmit Power Control

U-                       User-

UE




User Equipment

UL




Uplink

UMTS



Universal Mobile Telecommunications System

URA



UTRAN Registration Area

UTRA



UMTS Terrestrial Radio Access

UTRAN


UMTS Terrestrial Radio Access Network

4. 
General 

4.1. 

Objective

4.2. 

Overview on sublayer architecture

[The RLC Sublayer supports, for the RLC PDU Mechanism, the following features:

· Fixed Size RLC PDU with the possibility to adjust the number of PU per transmission time interval.

· Multiple Fixed Size RLC PDU with a RLC PDU Header Compression.

One of the two options can be chosen during the RLC Configuration Phase.]

4.2.1.  Model of RLC

Figure 4‑1 gives an overview model of the RLC layer. The figure illustrates the different RLC peer entities. There is one transmitting and one receiving entity for the transparent mode service and the unacknowledged mode service and one combined transmitting and receiving entity for the acknowledged mode service. The dashed lines between the AM-Entities illustrate the possibility to send the RLC control data (e.g. resynchronisation PDUs and acknowledgements) and data PDUs on separate logical channels. More detailed descriptions of the different entities are given in subsections 4.2.1.1, 4.2.1.2,4.2.1.3.
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Figure 4‑1 Overview model of RLC.

4.2.1.1.  Transparent mode entities

Figure 4‑2 below shows the model of two transparent mode peer entities.


[image: image3.wmf]Transm

.

Tr-Entity

Transmission

buffer

Segmentation

Tr-SAP

BCCH/PCCH/

CCCH/DTCH

Receiving

Tr-Entity

Receiver

 

buffer

Reassembly

BCCH/PCCH/

CCCH/DTCH

Tr-SAP

Radio Interface


Figure 4‑2 Model of two transparent mode peer entities.

The transmitting Tr-entity receives SDUs from the higher layers through the Tr-SAP. RLC might segment the SDUs into appropriate RLC PDUs without adding any overhead. How to perform the segmentation is decided upon when the service is established. RLC delivers the RLC PDUs to MAC through either a BCCH, PCCH or a DTCH. The delivery of RLC PDUs to MAC through CCCH is FFS. Which type of logical channel depends on if the higher layer is located in the control plane (BCCH, PCCH, CCCH) or user plane (DTCH).

The Tr-entity receives PDUs through from one of the logical channels from the MAC sublayer. RLC reassembles (if segmentation has been performed) the PDUs into RLC SDUs. How to perform the reassembling is decided upon when the service is established. RLC delivers the RLC SDUs to the higher layer through the Tr-SAP.

4.2.1.2.  Unacknowledged mode entities

Figure 4‑3 below shows the model of two unacknowledged mode peer entities.
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Figure 4‑3 Model of two unacknowledged mode peer entities.

The transmitting UM-entity receives SDUs from the higher layers. If the SDU is very large it is segmented into RLC PDUs of appropriate size. The SDU might also be concatenated with other SDUs. RLC adds a header and the PDU is placed in the transmission buffer. RLC delivers the RLC PDUs to MAC through either a DCCH or a DTCH. The delivery of RLC PDU’s to MAC through BCCH, PCCH, CCCH, is for FFS. Which type of logical channel depends on if the higher layer is located in the control plane (BCCH, PCCH, CCCH, DCCH) or user plane (DTCH).

The receiving UM-entity receives PDUs through one of the logical channels from the MAC sublayer. RLC removes header from the PDUs  and reassembles the PDUs (if segmentation has been performed) into RLC SDUs. After that the SDUs are delivered to the higher layer.

4.2.1.3.  Acknowledged mode entity

Figure 4‑4 below shows the model of an acknowledged mode entity.
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Figure 4‑4 Model of a acknowledged mode entity.


The transmitting side of the AM-entity receives SDUs from the higher layers. The SDUs are segmented and/or concatenated to PUs of fixed length. PU length is a semi-static value that is decided in bearer setup and can only be changed through bearer reconfiguration by RRC. 

For purposes of RLC buffering and retransmission handling, the operation is the same as if there would be one PU per PDU. For concatenation or padding purposes, bits of information on the length and extension, are inserted into the beginning of the last PU where data from an SDU is included. If several SDU:s fit into one PU, they are concatenated and the appropriate length indicators are inserted into the beginning of the PU. After that the PU:s are placed in the retransmission buffer and the transmission buffer. RLC PDU is constructed from PU buffers. 

The MUX then decides which PDUs and when the PDUs are delivered to MAC, e.g. it could be useful to send RLC control PDUs on one logical channel and data PDUs on another logical channel. The PDUs are delivered via a function that completes the RLC-PDU header and potentially replaces padding with piggybacked status information. This includes setting the poll bit,[The setting of other bits in the Header is [F.F.S]. and will be specified when the AMD PDU Structure will be defined], compressing subsequent PUs into one RLC-PDU or setting up the extended RLC-PDU header (PUs not in sequence) where applicable. 
When Piggybacking mechanism is applied the padding is replaced by control information, in order to increase the transmission efficiency and making possible a faster message exchange between the peer to peer RLC entities. The piggybacked control information is not saved in any retransmission buffer. The piggybacked control information is contained in the piggybacked STATUS PDU which is in turn included into the AMD-PDU. The piggybacked STATUS PDUs will be of variable size in order to mach with the amount of free space in the AMD PDU.

The dashed lines illustrate the case where AMD PDUs and control PDUs are transmitted on separate logical channels. The retransmission buffer also receives acknowledgements from the receiving side, which are used to indicate retransmissions of PUs and when to delete a PU from the retransmission buffer. 

The Receiving Side of the AM-entity  receives PDUs through one of the logical channels from the MAC sublayer. The RLC-PDUs are expanded into separate PUs and potential piggybacked status information are extracted. The PUs are placed in the receiver buffer until a complete SDU has been received. The receiver buffer requests retransmissions of PUs by sending negative acknowledgements to the peer entity. After that the headers are removed from the PDUs and the PDUs are reassembled into a SDU. Finally the SDU is delivered to the higher layer.
The receiving side also receives acknowledgements from the peer entity. The acknowledgements are passed to the retransmission buffer on the transmitting side.

5. Functions

For a detailed description of the following functions see [3].

· Connection Control;

· Segmentation and reassembly;

· Header compression;

· Concatenation;

· Padding;

· Transfer of user data;

· Error correction;

· In-sequence delivery of  higher layer PDUs; 

· Duplicate Detection;

· Flow control;

· Sequence number check (Unacknowledged data transfer mode);
· Protocol error detection and recovery.

· Ciphering;
The following potential function(s) are regarded as further study items (FFS):

· Suspend/resume function;

· 
· Quick repeat.
6. 
Services provided to upper layers 

For a detailed description of the following functions see [3].

· RLC connection establishment/release;

· Transparent data transfer Service

Following functions are needed to support transparent data transfer:

· Segmentation and reassembly
· Transfer of user data;

· Unacknowledged data transfer Service

Following functions are needed to support unacknowledged data transfer:

· Segmentation and reassembly

· Concatenation
· Transfer of user data;

· Acknowledged  data transfer Service

Following functions are needed to support acknowledged data transfer:

· Segmentation and reassembly

· Concatenation

· Transfer of user data

· Error correction

· In-sequence delivery of higher layer PDUs

· Duplicate detection

· Flow Control
· Protocol error detection and recovery;

· QoS setting;

· Notification of unrecoverable errors.

· Multicast delivery of higher layer messages. (FFS)
6.1. Mapping of services/functions onto logical channels

The following tables show the applicability of services and functions to the logical channels in UL/DL and UE/UTRAN. A ‘+’ in a column denotes that the service/function is applicable for the logical channel in question whereas a ‘-‘ denotes that the service/function is not applicable.

Table 6‑1: RLC modes and functions in UE  uplink side

Service
Functions
CCCH
DCCH
DTCH

Transparent 

Service
Applicability
+
-
+


Segmentation
-
-
+

Unacknowledged 

Service
Applicability
FFS
+
+


Segmentation
-
+
+


Concatenation
-
+
+

Acknowledged

Service
Applicability
-
+
+


Segmentation
-
+
+


Concatenation
-
+
+


Flow Control
-
+
+


Error Correction
-
+
+


Protocol error correction & recovery
-
+
+


Table 6‑2: RLC modes and functions in UE downlink side

Service
Functions
SCCH
BCCH
PCCH
CCCH
DCCH
DTCH

Transparent 

Service
Applicability
+
+
+
+
-
+


Reassembly
+
+
+
-
-
+

Unacknowledged 

Service
Applicability
+
FFS
FFS
FFS
+
+


Reassembly
+
+
+
-
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+


Reassembly
-
-
-
-
+
+


Error correction
-
-
-
-
+
+


Flow Control
-
-
-
-
+
+


In sequence delivery
-
-
-
-
+
+


Duplicate detection
-
-
-
-
+
+


Protocol error correction & recovery
-
-
-
-
+
+


Table 6‑3: RLC modes and functions in UTRAN downlink side

Service
Functions
SCCH
BCCH
PCCH
CCCH
DCCH
DTCH

Transparent 

Service
Applicability
+
+
+
+
-
+


Segmentation
+
+
+
-
-
+

Unacknowledged 

Service
Applicability
+
FFS
FFS
FFS
+
+


Segmentation
+
+
+
-
+
+


Concatenation
+
+
+
-
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+


Segmentation
-
-
-
-
+
+


Concatenation
-
-
-
-
+
+


Flow Control
-
-
-
-
+
+


Error Correction
-
-
-
-
+
+


Protocol error correction & recovery
-
-
-
-
+
+

Table 6‑4: RLC modes and functions in UTRAN uplink sidef

Service
Functions
CCCH
DCCH
DTCH

Transparent 

Service
Applicability
+
-
+


Reassembly
-
-
+

Unacknowledged 

Service
Applicability
FFS
+
+


Reassembly
-
+
+

Acknowledged

Service
Applicability
-
+
+


Reassembly
-
+
+


Error correction
-
+
+


Flow Control
-
+
+


In sequence delivery
-
+
+


Duplicate detection
-
+
+


Protocol error correction & recovery
-
+
+

7. Services expected from MAC

For a detailed description of the following functions see [3].

· Data transfer;

· 
8. 
Elements for layer-to-layer communication

8.1. 
Primitives between RLC and higher layers

The primitives between RLC and upper layers are shown in Table 8‑1. 

Table 8‑1 : Primitives between RLC and upper layers

Generic Name
Parameter


Req.
Ind.
Resp.
Conf.

RLC-AM-DATA
Data, CFN, MUI
Data
Not Defined
MUI

RLC-UM-DATA
Data, QR (ffs)
Data
Not Defined
Not Defined

RLC-TR-DATA
Data
Data
Not Defined
Not Defined

CRLC-CONFIG
E/R






















Each Primitive is defined as follows:

a)  RLC-AM-DATA-Req./Ind/Conf.
It is used for acknowledged data transmission mode of point-to-point connection between the same level user entities.


b)  RLC-UM-DATA-Req./Ind.

It is used for unacknowledged data transmission mode of point-to-point connection between the same level user entities. 

c)  RLC-TR-DATA-Req./Ind

It is used for trasparent data transmission mode of point-to-point connection between the same level user entities. 

d)  CRLC-CONFIG-Req
It is used for establishment and release of point-to-point connection between the same level user entities.







The parameter  Data is mapped onto the Data field in a RLC PDU transparently in case of RLC-AM-DATA-Req. or RLC-UM-DATA-Req. Conversely the Data field of an RLC PDU received is mapped onto Data in case of RLC-AM-DATA-Ind. or RLC-UM-DATA_nd. transparently. The length of Data must be n octets (n is integer).

The Quick Repeat indicator (QR) indicates whether UMD PDU will be transmitted with Quick Repeat or not. It holds one of two values: “Yes” or “No”. (The need of this indicator is FFS)
The parameter Confirmation request (CNF) indicates whether RLC-AM-DATA conf. should be necessary or not.

The parameter Message Unit Identifier (MUI) makes a relationship between message unit and confirm primitive.
The parameter E/R indicates whether establishment or release of RLC connection should be performed.
9. Elements for peer-to-peer communication

In unacknowledged transmission, only one type of unacknowledged data PDU is exchanged between peer RLC entities  In acknowledged transmission, both (acknowledged) data PDUs and control PDUs are exchanged between peer RLC entities. 

9.1. Protocol data units
[All the section shall be reviewed when the protocol is defined]

9.1.1. Data PDUs

a) AMD PDU (Acknowledged Mode Data PDU)

The AMD PDU is used to convey sequentially numbered  PUs containing RLC SDU data. The AMD PDU is used by the RLC when it is in the acknowledged mode.
b) UMD PDU (Unacknowledged Mode Data PDU)

The UMD PDU is used to convey sequentially numbered PDUs containing RLC SDU data. It is used by the RLC when using the unacknowledged data transfer. 

9.1.2.  Control PDUs










a) STATUS PDU 

The STATUS PDU is used to inform the transmitting entity about missing PUs at the receving entity either upon detection of a missing PU (unsolicited) or as a response to a polling request from the transmitting entity.

b) RESET (Reset)
The RESET PDU is used in acknowledged mode to reset all protocol states, protocol variables and protocol timers of the peer RLC entity in order to synchronise the two peer entities.

c) RESET ACK (Reset Acknowledge)
The RESET ACK PDU is an acknowledgement to the RESET PDU.

Table 9‑1: RLC PDU names and descriptions

 Functionality
PDU name
Description






















RESET
Reset Command


RESET ACK
Reset Acknowledgement

Acknowledged Data Transfer
AMD
Sequenced acknowledged mode data


STATUS
Solicited or Unsolicited Status Report


Piggybacked STATUS
Piggybacked Solicited or Unsolicited Status Report

Unacknowledged Data Transfer
UMD
Sequenced unacknowledged mode data

9.2. Formats and parameters

[All the section shall be reviewed when the protocol is defined]
9.2.1. Formats
AMD PDU

Transfers user data and piggybacked status information and requests status report by setting Poll bit.
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Figure 9‑1 AMD PDU
UMD PDU
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Figure 9‑2. UMD PDU













STATUS PDU

Reports the status of receiver to transmitter when AMD PDU with status report request is received, or to inform the transmitting entity about missing PUs.

[The message format will be reconsidered when the protocol will be defined]
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Figure 9‑3. Status Information Control PDU (STATUS PDU)

The inclusion of a credit value/retransmission window size in the STATUS PDU is FFS.

The maximum size of a STATUS PDU is bounded by the maximum RLC PDU size.


Piggybacked STATUS PDU

The format of the piggybacked STATUS PDU is the same as the ordinary STATUS PDU except that the D/C field and the PDU type field is omitted. 
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Figure 9‑4 Piggybacked STATUS PDU
RESET, RESET ACK PDU
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Figure 9‑5 RESET, RESET ACK PDU
9.2.2. Parameters
The RLC PDU parameters are defined as follows:

· 










· D/C bit: 1bit

This field indicates the type of an acknowledged mode PDU. It can be either data or control PDU. 

Bit
Description

0
Control PDU

1
Acknowledged mode data PDU


· PDU Type: 3 bit length [FFS]

This field indicates the type of Control PDU. They are indicated by the special values of sequence number field.

Bit
PDU Type
Bit
PDU Type



001
STATUS



FFS
RESET



FFS
RESET ACK






















· Sequence Number (SN)

This field indicates the sequence number of the payload unit. In normal acknowledged-mode RLC-PDU header it is the sequence number of the first PU in the PDU. If the PU:s are not in sequence, a sequence number is indicated separately for each PU in the extended header.

PDU type
Length
Notes

AMD PDU
12 bits
Used for retransmission and reassembly



UMD PDU
7 bits
Used for reassembly



· Polling bit (P): 1bit

This field is used to request a status report (STATUS PDU) from the receiver RLC.

Bit
Description

0
-

1
Request a status report

· Extension bit (E): 1bit

This bit indicates whether the next octet will be header information (LI) or data.

Bit
Description

0
The next octet is data

1
The next octet is header information (LI)

· Reserved (R): 

One function of this field is to achieve octet alignment. Other functions are FFS. Where no functions are defined, this field shall be coded as zero. This field ignored by the receiver. 

· Length Indicator (LI): 7bit

This field is optional and is used if concatenation, padding or piggybacking takes place in RLC. It indicates the end of the last segment of a SDU. Some values are reserved for special purposes: 
“0000000” indicates that the previous RLC PDU is exactly filled with the last segment of a RLC SDU;

“1111110” indicates that the rest part of the RLC PDU includes a piggybacked STATUS PDU;

 “1111111” indicates that the rest part of the RLC PDU is padding.

· Poll Answer (PA): 1bit

This field indicates whether the status report is the answer to a poll or not

Bit
Description

0
The status report is not the answer to a polling request

1
The status report is the answer to a polling request

· SUFI (SUper-FIeld): variable number of bits
The SUFI includes three fields: type information (type of super-field, e.g. list, bitmap or acknowledgement), length information (providing the length of a variable length field within the following value field) and a value. Figure 9‑6shows the structure of the super-field. The size of the type field is non-zero but the size of the other fields may be zero.

Type

Length

Value

Figure 9‑6. The Structure of a Super-Field

· Type: 2 bits (FFS)

Bit
Description

00
List (LIST)

01
Bitmap (BITMAP)

10
Acknowledgement (ACK)

11
No More Data (NO_MORE) 



Move Receiving Window (MRW)

[Editor’s note: the length of the “Type“ field (2 bits) should be redefined in order to address all SUFI types defined by the RLC protocol]
· Length: depending on the super-field type
Gives the length of the variable size part of the following value field

· Value: variable number of bits given by the Type and the Length fields 
SUFI for a List

The List Super-Field consists of a type identifier field (LIST), a list length field (LENGTH) and a list of LENGTH number of pairs as shown in Figure 9‑7below:

Type = LIST

LENGTH

SN1

L1

SN2

L2

…

SNLENGTH

LLENGTH

Figure 9‑7. The List fields in a STATUS PDU for a list

LENGTH: 4 bits (FFS)

The number of (SNi , Li)-pairs in the super-field of type LIST.

SNi : 12 bits
Sequence number of PU which was not correctly received.

Li : 4 bits (FFS)
Number of consecutive PUs not correctly received following PU with sequence number SNi. 

SUFI for a Bitmap

The Bitmap Super-Field consists of a type identifier field (BITMAP), a bitmap length field (LENGTH), a first sequence number (FSN) and a bitmap as shown in Figure 9‑8below:

Type = BITMAP

LENGTH

FSN

Bitmap

Figure 9‑8. The Bitmap fields in a STATUS PDU.

LENGTH: 4 bits (FFS)

The size of the bitmap in octets (maximum bitmap size: 24*8=128 bits).

FSN: 12 bits
The sequence number for the first bit in the bitmap. 

Bitmap: variable number of octets given by LENGTH
Status of the SNs in the interval [FSN, FSN + LENGTH*8 - 1] indicated in the bitmap where each position can have two different values (0 and 1) with the following meaning (bit_position([0,LENGTH*8 - 1]):

1: SN = (FSN + bit_position) has been correctly received

0: SN = (FSN + bit_position) has not been correctly received

SUFI for an Acknowledgment
The Ack Super-Field consists of a type identifier field (ACK) and a sequence number (FSN) as shown in Figure 9‑9below:

Type = ACK

LSN

Figure 9‑9. The ACK fields in a STATUS PDU

LSN: 12 bits
Acknowledges the reception of all PUs with sequence numbers < LSN (Last Sequence Number) that are not indicated to be erroneous in earlier parts of the STATUS PDU.
SUFI for a Move Receiving Window
The ‘Move Receiving Window’ super-field is used to request the RLC receiver to move its receiving window, as a result of a SDU discard in the RLC transmitter. The format is given in the figure below.

Type = MRW

SN

Figure 9‑10 The MRW fields in a STATUS PDU

Type: 3 bits 
Bit combination 110 can be used for Move Receiving Window (MRW) command

SN: 12 bits
Requests the RLC receiver to discard all PUs with sequence number < SN, and to move the receiving window accordingly.
SUFI for No More Data (FFS)
The ‘No More Data’ Super-Field indicates the end of the data part of a STATUS PDU and is shown in Figure 9‑11below:

Type=NO_MORE

Figure 9‑11. NO_MORE field in a STATUS PDU
· 

· N(R): 12bit

 VR(R) is mapped to N(R) whenever a STAT or USTAT PDU is generated.
· N(MR): 12bit

VR(MR) is mapped to N(R) whenever a STAT, USTAT, BGN, or BGAK PDU is generated. This is the basis for credit granting by the receiver.
· 

· Header extension flag (H): 1bit

The header extension flag indicates that the following two octets contain an extended header (SN+H+E) in the AMD PDU. The use of this flag is [F.F.S.]

· Data:

In this field data from higher layer PDUs is mapped.

9.3. Protocol states

9.3.1. State model for transparent mode entities

Figure 9‑12 illustrates the state model for transparent mode RLC entities (both transmitting and receiving). A transparent mode entity can be in one of following states.

9.3.1.1.  Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and transparent data transfer ready state is entered.

9.3.1.2. Transparent Data Transfer Ready State

In the transparent data transfer ready, transparent mode data can be exchanged between the entities. Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.
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Figure 9‑12. The state model for transparent mode entities.

9.3.2. State model for unacknowledged mode entities

Figure 9‑13illustrates the state model for unacknowledged mode RLC entities. An unacknowledged mode entity can be in one of following states.

9.3.2.1.  Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and unacknowledged data transfer ready state is entered.

9.3.2.2.  Unacknowledged Data Transfer Ready State

In the unacknowledged data transfer ready, unacknowldged mode data can be exchanged between the entities. Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.
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Figure 9‑13. The state model for unacknoledged mode entities.

9.3.3. State model for acknowledged mode entities

Figure 9‑14illustrates the state model for the acknowledged mode RLC entity. An acknowledged mode entity can be in one of following states.

9.3.3.1. Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and acknowledged data transfer ready state is entered.

9.3.3.2. Acknowledged Data Transfer Ready State

In the acknowledged data transfer ready, acknowledged mode data can be exchanged between the entities. Upon reception of an CRLC-CONFI-Rreq from higher layer the RLC entity is terminated and the null state is entered.
Upon errors in the protocol, the RLC entity sends a RESET PDU to its peer and enters the reset pending state.

Upon reception of a RESET PDU, the RLC entity resets the protocol and responds to the peer entity with a RESET ACK PDU.
9.3.3.3. Reset Pending State

In the reset pending state the entity waits for a response from its peer entity and no data can be exchanged between the entities. Upon reception of CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.
Upon reception of a RESET ACK PDU, the RLC entity resets the protocol and enters the acknowledged data transfer ready state.
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Figure 9‑14. The state model for the acknoledged mode entities.

The messages that cause the transition between the "Ack. Data Transfer Ready" state and the "Recovery Pending" State, are [F.F.S.].

9.4. State variables

[All the section shall be reviewed when the protocol is defined]

This sub-clause describes the state variables used in the specification of the peer-to-peer protocol. PUs are sequentially and independently numbered and may have the value 0 through n minus 1 (where n is the modulus of the sequence numbers). The modulus equals 212 and the sequence numbers cycle through the entire range, 0 through 212 – 1. All arithmetic operations on the following state variables and sequence numbers contained in this Recommendation are affected by the modulus: VT(S), VT(A), VT(MS), VR(R), VR(H), and VR(MR). When performing arithmetic comparisons of transmitter variables, VT(A) is assumed to be the base. When performing arithmetic comparisons of receiver variables, VR(R) is assumed to be the base. In addition, the state variables VT(SQ) and VR(SQ) use modulo 2 arithmetic and VT(US) and VT(UR) use modulo 48. 
The RLC maintains the following state variables at the transmitter.

a) VT(S) - Send state variable

The sequence number of the next PU to be transmitted for the first time (i.e. excluding retransmission). Incremented after transmission of a PU for the first time (i.e. excluding retransmission).

b) VT(A) - Acknowledge state variable

The sequence number of the next in-sequence PU expected to be acknowledged, which forms the lower edge of the window of acceptable acknowledgments. VT(A) is updated upon acknowledgment of in-sequence PUs.

c) VT(DAT) 

This state variable is used to count the retransmission number of each PU. VT(DAT) is incremented by sending PU.
d) VT(MS) - Maximum Send state variable

The sequence number of the first PU not allowed by the peer receiver [i.e. the receiver will allow up to VT(MS) – 1]. This value represents the upper edge of the transmit window. The transmitter shall not transmit a new PU if VT(S) = VT(MS). VT(MS) is updated based on receipt of a STATUS PDU.




e)  VT(US) – UM data state variable

This state variable means new sequence number of UMD-PDU which will send next. After new UMD-PDU is sent, VT(US) will be incremented.

f)  VT(QR) - Quick repeat state variable (FFS)

This state variable is used to count the retransmission number when UMD-PDU is sent by quick repeat scheme. It is incremented after UMD-PDU is sent and quick repeat will be continued until VT(QR) becomes to equal MaxQR.

 The RLC maintains the following state variables at the receiver:
a)  VR(R) - Receive state variable

The sequence number of the next in-sequence PU expected to be received. Incremented upon receipt of the next in-sequence PU.  

b)  VR(H) - Highest expected state variable
The sequence number of the next highest expected PU. This state variable is updated whenever a new PU is received.

c) VR(MR) - Maximum acceptable Receive state variable

The sequence number of the first PU not allowed by the receiver [i.e. the receiver will allow up to VR(MR) – 1]. The receiver shall discard PUs with N(S) = VR(MR), (in one case, such a PU may cause the transmission of an unsolicited STATUS PDU). Updating VR(MR) is implementation dependent, but VR(MR) should not be set to a value < VR(H).  



d) VR(US) - Receiver Send Sequence state variable

The sequence number of the latest UMD PDU to be received. It is used to check the duplication receive. When new UMD PDU is received, VR(US) is compared with N(US). If VR(US) is equal to N(US), this PDU is quashed because duplication receive happens. And if not, N(US) is substituted for VR(US).

e) VR(EP) – Estimated PDU Counter state variable (FFS)

The number of PUs that should have been received after the latest STATUS PDU was sent. In acknowledged mode, this state variable is updated at the end of each transmission time interval. It is incremented by the number of PUs that should have been received during the transmission time interval. If VR(EP) is equal to the number of requested PUs in the latest STATUD PDU, then check if all PUs requested for retransmission have been received. 

9.5. Timers

[All the section shall be reviewed when the protocol is defined]

a) Timer_STATUS
It is used to detect the loss of the response from receiver side. This timer is set when transmitted AMD PDU requests status report (i.e. P bit is set to “1”). And it will be stopped when the transmitter receives an Acknowledgement of the PUs in that AMD PDU by STATUS PDU or Non Acknowledgment (Nack) by the STATUS PDU. When this timer is over, the PUs of the oldest unconfirmed AMD PDU should be retransmitted with requesting status report, and this timer is set again. If polling is taken place during this timer is active the timer will be stopped and set again.
b)  Timer_Prohibit
It is used to prohibit transmission of polling message within a certain period. If polling is taken place during this timer is active, it will be once stopped and set again. This timer will not be stopped by Ack or Nack. When this timer expires no action is performed.[the values recommended  for this timer are [FFS] 


c) Timer_QR (FFS)

Transmission interval of quick repeat for UMD PDU.
d)  Timer_EPC (FFS) 

This timer accounts for the roundtrip delay, i.e. the time when the first retransmitted PU should be received after a STATUS has been sent. The value of Timer_EPC is heavily based on the transmission time interval (corresponding to the Layer 1 interleaving depth). When changing the transmission time interval, then the value of the EPC timer also needs to be changed.
e) Timer_Discard

This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected as outstanding, i.e. there is a gap between sequence numbers of received PDUs.
9.6. Protocol Parameters

[All the section shall be reviewed when the protocol is defined]

The value of each RLC protocol parameter is application specific and may be defined in another Recommendation which references this Recommendation.



e)  MaxDAT

It is the maximum value for the number of retransmissions of a PU. This parameter is an upper limit of counter VT(DAT). When the value of VT(DAT) comes to MaxDAT, error recovery procedure will be performed.

f) MaxQR (FFS)
Maximum successive transmission number of UMD PDU. This parameter is an upper limit for counter VT(QR).




9.7. Specific functions 

[All the section shall be reviewed when the protocol is defined]

[The Hybrid ARQ (Type II/III) mechanism scheme is considered for the downlink only; in particular an incremental effort of protocol implementation will be followed. In this way it is possible to estimate the real performance of this scheme but also the impact that the introduction of such a scheme has on the protocol implementation. It is [FFS] if Hybrid ARQ mechanism for the downlink is mandatory for the UE (for both TDD and FDD)] 

9.7.1.  Retransmission Scheme

9.7.1.1. Basic Concept

1) Type of retransmission

· Selective retransmission
2) Acknowledgement Confirmation

· Receiver Status Report in response to the Transmitter Polling Request;

· Unsolicited status report from the receiver caused by detecting the latest loss of PUs.
3) The Retransmission takes place when:

· A Status Report (STATUS (PA=Yes)), transmitted by the Receiver, is received;

· An Unsolicited Status Report (STATUS (PA=No)) is received;

· Retransmission timer expires.

4) Timing of polling

Basically to confirm acknowledgement every RLC SDU can reduce extra overhead and improve the throughput. But if small RLC SDUs are given continuously, many status reports will be transmitted and it will cause overhead. To solve the problem, this retransmission scheme uses the timer which prohibits excessive polling. This timer only prohibits polling for every RLC SDU.
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Figure 9‑15 : Reduction of excessive polling
9.7.1.2. Outline of proposed retransmission scheme

[In this section it is described the outline of the retransmission scheme presented. The list of  the PDU and timers used in the retransmission scheme described are reported in this section, also if a complete description of them is presented in the proper sections of this specification. In chapter 12 are also reported the SDL diagrams of this scheme that actually are [FFS]]

9.7.1.3. PDUs used for retransmission

Following PDUs are necessary for this retransmission scheme.

· AMD PDU:

Transfers user data and requests status report by setting Poll bit.

· STATUS PDU:

A STATUS PDU (PA=Yes) reports the status of receiver to transmitter when AMD PDU with status report request is received.

The STATUS PDU (PA=No) is transmitted upon detection of an erroneous transmission of one or more data PUs. It is used to inform the transmitter side about missing PUs at the receiver RLC.

9.7.1.4. Timers used for retransmission

Following two timers are necessary for this retransmission scheme.

· Timer_STATUS:

This timer is set when AMD PDU with polling (i.e. P bit is set to “1”) is transmitted. And it will be stopped when the transmitter receives Ack or Nack for the AMD PDU with polling. If polling is taken place during this timer is active, it will be once stopped and set again.

· Timer_Prohibit:

This timer is set when AMD PDU with polling is transmitted. If polling is taken place during this timer is active, it will be once stopped and set again. This timer will not be stopped by Ack or Nack. When this timer expires no action is performed.

9.7.1.5. Trigger of Polling

Polling message is transmitted when;the last segment of AMD SDU is transmitted (every RLC SDU) and Timer_Prohibit is not active

the retransmission timer (Timer_STATUS) expires

the last PU in the transmission queue is transmitted

the transmitter window has to move

the last PU among those which are requested to be retransmitted by a STATUS (PA=Yes)  is transmitted.
9.7.1.6. Flow of retransmission

Case1) In case STATUS (PA=Yes)  is received:

· Polling is performed from the transmitter comply with the polling trigger.

· At this moment, the transmitter sets Timer_STATUS and Timer_Prohibit.

· The receiver transmits STATUS (PA=Yes)  which requests retransmission for SN = 2, 3, 4 of PU in response to the polling.

· The transmitter receives the STATUS and stops Timer_STATUS. Then the PUs (SN = 2, 3, 4) requested by the STATUS are retransmitted.

· When the PU whose SN =4 is transmitted, poll bit is set to 1 (polling is performed).

· At this moment, Timer_STATUS is set and Timer_Prohibit is reset.

· When the transmitter receives STATUS (PA=Yes)  from the receiver, Timer_STATUS is stopped. 
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Figure 9‑16 : Retransmission Scheme Behaviour when STAT is received

· Case2) In case STATUS (PA=No)  is received:

· If the receiver detects new loss of PUs, it transmits STATUS (PA=No)  which requests retransmission of SN = 2, 3 of PU to the transmitter.

· The transmitter receives the STATUS and retransmits the requested PUs (SN = 2,3).

· In this case polling is not performed when the PU whose SN =3 is retransmitted.
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Figure 9‑17 : Retransmission Scheme Behaviour USTAT is received

Case3) In case Timer_STATUS expires:

· If  Timer_STATUS expires due to loss of the AMD PDU with polling or STATUS, the transmitter retransmits the AMD PDU with polling.

· At this moment, Timer_STATUS is set and Timer_Prohibit is reset.

· When the transmitter receives STATUS from the receiver, Timer_STATUS is stopped.
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Figure 9‑18 : Retransmission Scheme Behaviour when Timer_STAT expires

[The Timer T-Prohibit is related only to the UE; there's  no need for "T_Prohibit Timer"  in the network as it is an implementation aspect. The values for T_Prohibit_Timer are [F.F.S]]

9.7.2.  SDU discard function
The SDU discard function allows to discharge RLC PDU from the buffer on the transmitter side, when the transmission of the RLC PDU does not success for a long time.The SDU discard function allows to avoid buffer overflow, in the case of non-transparent transmission mode. There will be several alternative operation modes of the RLC SDU discard function, and which discard function to use will be given by the QoS requirements of the Radio Access Bearer. 

The following is a preliminary list of operation modes for the RLC SDU discard function.

Table 9‑2. List of criteria’s that control when to perform SDU discard.

Operation mode
Presence

Timer based discard, with explicit signalling
Network controlled

Timer based discard, without explicit signalling
Network controlled

SDU discard after X number of retransmissions
Network controlled

9.7.2.1. Timer based discard, with explicit signalling

This alternative uses a timer based triggering of SDU discard. This makes the SDU discard function insensitive to variations in the channel rate and provides means for exact definition of maximum delay. However, the SDU loss rate of the connection is increased as SDUs are discarded.

For every SDU received from a higher layer, timer monitoring of the transmission time of the SDU is started. If the transmission time exceeds a predefined value for a SDU in acknowledged mode RLC, this SDU is discarded in the transmitter and a Move Receiving Window (MRW) command is sent to the receiver so that AMD PDUs carrying that SDU are discarded in the receiver and the receiver window is updated accordingly. Note that when the concatenation function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded. 

The MRW command is defined as a super-field in the RLC STATUS PDU (see section 9.2), and piggy backed to status information of transmissions in the opposite direction. Therefore, SDU discard variants requiring peer-to-peer signalling are only possible for full duplex connections.

9.7.2.2. Timer based discard, without explicit signalling

This alternative uses the same timer based trigger for SDU discard as the one described in the section 9.7.2.1. The difference is that this discard method does not use any peer-to-peer signalling. For unacknowledged mode RLC, peer-to-peer signalling is never needed. The SDUs are simply discarded in the transmitter, once the transmission time is exceeded. For acknowledged mode RLC, peer-to-peer signalling can be avoided as long as SDU discard is always performed in the transmitter before it is performed in the receiver. As long as the corresponding SDU is eventually discarded in the receiver too, possible retransmission requests of PDU of discarded SDUs can be ignored by the transmitter. The bigger the time difference is between the triggering of the discard condition at the transmitter and the receiver, the bigger the unnecessary buffering need is at the receiver and the more bandwidth is lost on the reverse link due to unnecessary retransmission requests. On the other hand, forward link bandwidth is saved, as no explicit SDU discard signalling is needed.

9.7.2.3. SDU discard after X number of retransmissions

This alternative uses the number of retransmissions as a trigger for SDU discard, and is therefore only applicable for acknowledged mode RLC. This makes the SDU discard function dependent of the channel rate. Also, this variant of the SDU discard function strives to keep the SDU loss rate constant for the connection, on the cost of a variable delay. SDU discard is triggered at the transmitter, and a MRW command is necessary to convey the discard information to the receiver, like in the timer based discard with explicit signalling.

9.7.3. The Estimated PDU Counter
The Estimated PDU Counter is one of the possible mechanisms, which can be defined for scheduling the retransmissio of status reports in the receiver side. With this mechanism, the receiver will send a new Status PDU in which it requests for PDUs not yet received. The time between two subsequent status report retransmissions is not fixed, but it is controlled by the Estimated PDU Counter (EPC), which adapt this time to the current bit rate, indicated in the TFI, in order to minimise the delay of the status report retransmission.
The EPC is a counter, which is decremented every transmission time interval with the estimated number of PDUs that should have been transmitted during that transmission time interval.When the receiver detects that the PDUs are missing it generates and sends a Status PDU to the transmitter and sets the EPC equal to the number of requested PDUs.
A special timer, called EPC timer, controls the maximum time that the EPC needs to wait before it will start counting down. This timer starts immediately after a transmission of a retransmission request from the receiver (Status PDU). The EPC timer typically depends on the roundtrip delay, which consists of the propagation delay, processing time in the transmitter and receiver and the frame structure. This timer can also be implemented as a counter, which counts the number of 10 ms radio frames that could be expected to elapse before the first requested DATA PDU is received.

When the EPC exceeds the number of outstanding PDUs (i.e. the PDUs which were requested to be retransmitted) and not all of these requested PDUs have been received correctly, a new Status PDU will be transmitted and the EPC will be reset to zero. The EPC timer will be started once more.
The EPC is based on the estimation of the number of PDUs that should have been received during a transmission time interval. To estimate this number is easiest done by means of the TFI bits. However, if these bits are lost due to some reason or another, this estimation must be based on something else. A straightforward solution is to base the estimation on the number done in the previous transmission time interval. Only if the rate has changed this estimation is incorrect. Another method of estimating the number of PDUs is based on the maximum allowable rate. The consequence of this is that if the estimation is incorrect, the Status PDU is sent too early. Alternatively, the estimation can be based on the lowest possible transmission rate. In this case, if the estimation is incorrect, the Status PDU will most likely be transmitted too late.

9.7.4. Credit and peer-to-peer flow control

 
Credit is granted by the RLC receiver to allow the peer RLC transmitter to transmit new AMD  PDUs. The process by which a receiver entity determines credit is not subject to standardization, but is related to the buffer availability and the bandwidth/delay of the connection. 

 
Details of the usage of Crediting is FFS.

9.7.5.  Local flow control

 
RLC events, such as reception of PDUs and external and internal signals, are normally processed in the order in which they occurred. However, events pertaining to the exchange of RLC link status information have priority over data transfer.

 
An implementation may detect congestion (for example, a long queuing delay) in its lower protocol layers. If so, data transfer should be temporarily suspended in order to give priority to connection control messages. The means by which an RLC entity decides whether or not it is congested depends on the protocol environment, including protocol timer values, and is not subject to standardization.

 
If a RLC entity detects local congestion (“lower layer busy” in the SDL specification), it can elect to suspend the servicing of RLC-AM-DATA.request, RLC-UM-DATA.request It can also suspend the retransmission of requested AMD PDUs. The data transfer procedures allow this to occur without causing protocol errors.

 
Therefore, in terms of transmitting PDUs to the peer receiver, all types of PDUs except AMD PDU and UMD PDU are given highest priority. The AMD PDUs and UMD PDUs have equal priority. Among the AMD PDUs, retransmission have priority over new transmission if both types are pending. These priorities are only internal to RLC.

9.8. 
RLC Toolbox concept

The RLC toolbox concept specifies a number of basic functions. These functions can then be combined in different ways in order to get a complete and functional protocol. How to combine the different functions is signalled by RRC, before setting up a new RLC entity. The toobox concept may be applied to both transparent and non-transparent mode entities.

9.8.1.  Toolbox concept for acknowledged mode RLC entities.

This section describes the different functions included in the RLC toolbox for acknowledged mode. This section concentrates on functions for ARQ mechanism, but other function can be added to the toolbox. The functions have been divided into two groups, transmitting side functions and receiving side functions. It is for FFS if all functions have to be supported by the UE. The presence field rather indicates if the function is always supported by the acknowledged mode entity or wheter its implementation is network controlled. No explicit signalling is needed if the function is always supported.

9.8.1.1. Transmitting side functions

9.8.1.1.1. When to poll

It is optional to apply a polling mechanism on transmitter side. If a polling mechanism is applied, Table 9‑3below summerizes the functions that control when the transmitter should poll the peer entity for a status report.

Table 9‑3List of functions that control when to poll the receiver for a status report.

Trigger
Presence

Last PU in buffer.
Always

Poll timer.
Always

Every X PU.
Network controlled

Every X SDU.
Network controlled

Last PU in retransmission buffer.
Network controlled

X% of transmission window.
Network controlled

Timer based.
Network controlled

Tprohibit
Network controlled

[The list of parameters shall be reviewed during the evolution of the prodocol definition]

· Last PU in buffer

The transmitting side polls the peer entity for a status report, when the last PDU in the transmission buffer is transmitted. This function is mandatory for the transmitting side, if polling should be applied. 

· Poll timer

The poll timer is started when a poll is transmitted to the peer entity and if no status report has been received before the poll timer expires a new poll is transmitted to the receiver. The value of the timer is signalled by RRC. This function is mandatory for the transmitting side, if polling should be applied.

· Every X PU

The transmitting side polls the peer entity for a status report every X PU. The value of X is signalled by RRC. This function is optional for the transmitting side.

· Every X SDU

The transmitting side polls the peer entity for a status report every X SDU. The value of X is signalled by RRC. This function is optional for the transmitting side.

· Last PU in retransmission buffer

The transmitting side polls the peer entity for a status report at transmission of the last PDU in the retransmission buffer.

· X% of transmission window

The transmitting side polls the peer entity for a status report when it has reached X % of the transmission window. The value of X is signalled by RRC. This function is optional for the transmitting side.

· Timer based

The transmitting side polls the peer entity for a status report periodically. The value of the time period is signalled by RRC. The function is optional for the transmitting side.

· Tprohibit
This function controls how often the transmitting side is allowed to poll the peer entity. The Tprohibit is started when a poll is transmitted to the peer entity. As long as the timer is running the transmitting side is not allowed to poll the peer entity. The value of the timer is signalled by RRC. This function is optional for the transmitting side.

9.8.1.1.2. How to react upon a status report

Table 9‑4below summerizes the functions that control how to react upon a status report. 

Table 9‑4List of functions that control how to react upon a status report.

Trigger
Presence

Adjust transmission window.
Always

Retransmit PUs.
Always

Plausibility check.
Network controlled

· Adjust transmission window

The transmission window should be updated according to the received status report. It is mandatory for the transmitting side to support this function.

· Retransmit AM PUs

This function retransmits the AM PUs that are requested by the status report. If no plausibility check is applied, the PUs shall be retransmitted immediately and have higher priority than new AM PUs. This function is mandatory for the transmitting side.

· Plausibility check

This function checks whether the contents of a status report  is reasonable or not. It can prohibit or delay retransmissions requested by a status report. For example, the status report could contain negative acknowledgements of  PUs which may not had arrived at the receiver before the status report was transmitted. The transmitter should not retransmit these PUs. This function is optional for the transmitting side.

9.8.1.2. Receiving side functions

9.8.1.2.1. How to react upon a poll

The receiving side should send a status report if it receives a poll. It should send the status report immediately. This function is mandatory for the receiving side.

9.8.1.2.2. When to send a status report

Table 9‑5below summerizes the functions that control when to send a status report. 

Table 9‑5List of functions that control when to send a status report.

Trigger
Presence

Reception of poll.
Always

EPC
Network controlled

Detection of missing PU(s).
Network controlled

Every X SDU.
Network controlled

Every X PU.
Network controlled

X% of receiving window.
Network controlled

Timer based.
Network controlled

Tprohibit
Network controlled

· Reception of poll

The receiving side sends a status report to the peer entity upon reception of a poll, see section 9.8.1.2.1. The status report should be transmitted immediately. This function is mandatory for the receiving side.
· EPC

The EPC is started when a status report is transmitted to the peer entity. If not all AM PDUs requested for retransmission have been received before the EPC has expired a new status report is transmitted to the peer entity. A more detailed description of the EPC mechanism is given in section 9.7.3.
· Detection of missing PU(s)

The receiving side sends a status report to the peer entity upon detection of missing AM PU(s). The status report should be transmitted immediately. This function is optional for the receiving side.

· Every X SDU

The receiving side sends a status report to its peer entity every X SDU. The value of X is signalled by RRC. This function is optional for the receiving side.

· Every X PU

The receiving side sends a status report to its peer entity every X PU. The value of X is signalled by RRC. This function is optional for the receiving side.

· X% of receiving window

The receiving side sends a status report when X % of the transmission window has been reached. The value of X is signalled by RRC. This function is optional for the receiving side.

· Timer based

The receiving side sends a status report periodically to the peer entity. The value of the time period is signalled by RRC. The function is optional for the receiving side.

· Tprohibit
This function controls how often the receiving side is allowed to send status reports the peer entity. The Tprohibit is started when a status report is transmitted to the peer entity. As long as the timer is running the receiving side is not allowed to send a status reports to the peer entity. The value of the timer is signalled by RRC. This function is optional for the receiving side.

10. Handling of unknown, unforeseen and erroneous protocol data

11. 
Elementary procedures


11.1. Transparent mode data transfer procedure

The transparent mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in transparent mode. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑1 below illustrates the elementary procedure for transparent mode data transfer.
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Figure 11‑1. Transparent mode data transfer procedure.

The UTRAN/UE sends one or several Tr PDUs in one transmission time interval on one of the logical channels DTCH, CCCH, BCCH, PCCH or SCCH to the UE/UTRAN. The number of Tr PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (CCCH/BCCH/PCCH,SCCH). The Tr PDU includes a complete or a segment of a higher layer PDU.

[Note: There is no PDU specified for transparent mode data transfer in section 9]

11.2. Unacknowledged mode data transfer procedure

The unacknowledged mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in unacknowledged mode. The procedure may be initiated either by the UE or by the UTRAN. 2 below illustrates the elementary procedure for unacknowledged mode data transfer.
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Figure 11‑2. Unacknowledged mode data transfer procedure.

The UTRAN/UE sends one or several UMD PDUs in one transmission time interval on one of the logical channels DTCH, DCCH, CCCH, BCCH or PCCH to the UTRAN/UE. The number of UMD PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH/CCCH/BCCH/PCCH). The UMD PDU includes a segment of one or several higher layer PDUs. It also includes a sequence number and one or several length indicator fields.

11.3. Acknowledged mode data transfer procedure

The acknowledged mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in acknowledged mode. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑3 below illustrates the elementary procedure for acknowledged mode data transfer.
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Figure 11‑3. Acknowledged mode data transfer procedure.

The UTRAN/UE sends one or several AMD PDUs in one transmission time interval on either the DTCH or the DCCH logical channel to the receiver UE/UTRAN. The number of AMD PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). The AMD PDU includes a segment of one or several higher layer PDUs. It also includes a D/C field (which indicates that it is data PDU), a sequence number, polling bit, header extension bit and one or several length indicator fields.

11.4. RLC reset procedure

The RLC reset procedure is used to reset two RLC peer entities, which are operating in acknowledged mode. It is triggered when a protocol error occurs in RLC and it may be initiated either by the UE or by the UTRAN. Figure 11‑4 below illustrates the elementary procedure for a RLC reset.
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Figure 11‑4. RLC reset procedure.

The UTRAN/UE sends a RESET PDU on a DTCH or a DCCH logical channel to the receiver UE/UTRAN. The type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). The RESET PDU includes the RLC parameters needed to perform the reset.

Upon reception of the RESET PDU, the receiver responds with a RESET ACK PDU.

11.5. STATUS PDU transfer procedure

The STATUS PDU transfer procedure is used for transferring of status information between two RLC peer entities, which are operating in acknowledged mode. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑5 below illustrates the elementary procedure for acknowledged mode data transfer.


[image: image28.wmf]DTCH/DCCH: STATUS PDU

UTRAN/UE

UE/UTRAN


Figure 11‑5. STATUS PDU transfer procedure.

The procedure is triggered when e.g. a missing AMD PDU is detected or a poll has been received. The originator UTRAN/UE sends STATUS PDUs on either the DTCH or the DCCH logical channel to the receiver UE/UTRAN. The type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH).  The STATUS PDU includes D/C field, PDU type field and information about received data PDUs. This procedure may trigger retransmission of lost PU.

11.6. Poll procedure

The poll procedure is used by an acknowledged mode RLC entity for requesting status information from its peer entity. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑6 below illustrates the elementary procedure for polling.
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Figure 11‑6. Poll procedure.

The procedure is triggered when e.g. the last PU in the transmission buffer is transmitted. The UTRAN/UE sends one or several AMD PDUs in one transmission time interval on either the DTCH or the DCCH logical channel to the receiver UE/UTRAN. The number of PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). It is FFS if the poll bit is set in all PDUs transmitted in the same transmission time interval.

Upon reception of the polls, the receiver triggers a STATUS PDU transfer procedure.

12. SDL diagrams

[All the section shall be reviewed when the protocol is defined;

all the SDL diagrams presented are [FFS]]

The resultant SDL diagrams (Timer_Prohibit scheme) are  shown below:

Estimated PDU Counter (EPC) scheme (receiving side) (FFS)

1. Send a status report (STATUS (PA=Yes)), requesting for the retransmission of K number of missing PDUs.

2. Start Timer_EPC. This timer accounts for the roundtrip delay, i.e. the time when the first retransmitted PDU should be received. 

3. When the timer expires, start counting the received PDUs, or rather the PDUs that should have been received using the state variable VT(EP)

4. If VT(EP) = K, then check if all PDUs (requested in the status report in step 1) have been received. 

a) If some of the previously missing PDUs are still missing, then repeat the procedure from step 1 for the PDUs that are still missing.

b)If none of the previously missing PDUs are still missing, then no status report needs to be sent, unless a poll had been transmitted or a new missing PDU has been detected. In case of a poll or a new missing PDU, then repeat the procedure from step 1.

Every poll received during the time when the Timer_EPC is active and VT(EP) < K will be discarded by the receiving side, i.e. STATUS PDU will not be sent from the receiving side during this time.
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Figure 12‑1
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Figure 12‑2
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Figure 12‑3
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Appendix
1. Recommended values
1.1 PDU length


The length of the data field in AMD / UMD PDUs is k ( >=0 ) octets.


4
1.3 MaxDAT

  
[FFS]
1.4 MaxQR

  
[FFS]
1.5 MaxSTATUS
 
This parameter should be an odd integer greater than or equal to 3.
1.6 Timer_STATUS
 
[FFS]
1.7 Timer_Prohibit

 
[FFS]


1.9 Timer_QR

  
[FFS]

13. Annex A Pseudo code describing AMD PDU header Compression

The following Pseudo-Code is an example of algorithm to describe the exact Header Compression Operation that takes place when several PUs are packed into one RLC PDU.

/* Prior to calling this procedure it must be checked that <pus_in_pdu> consecutive PU:s

   are to be transmitted (or there is padding in the end)*/

Compress_PDU (pus_in_pdu, pu_size) {

  li_addition = 0;                  // reset the variable that counts data in full pu:s

  Loop through pus_in_pdu {

    d_e_flag = E-flag for this PU;

    If (d_e_flag == FALSE) {

      Append PU data to PDU data;   // complete PU is SDU-data

      li_addition += pu_size;       // to be added to the next LI

    } else {                        // E-flag is TRUE, so LI-field(s) exist

      Previous E-flag in PDU = TRUE;   // Either in PDU header or pdu_li_vector;

      j = 0;                        // reset LI-counter for this PU

      pu_data_size = 0;             // reset data size counter for this PU

      Loop until (d_e_flag == FALSE) {

        d_li = next LI;             // in octet j of PU;

        d_e_flag = next E_FLAG;     // in octet j of PU;

        if (d_li is not PADDING) {

          pu_data_size += d_li;     // to keep track of data segment size in this PU);

          d_li += li_addition;      // to add data from previous PU:s to LI-value);

          li_addition = 0;          // reset li_addition;

        }

        Append (d_li + d_e_flag) to pdu_li_vector;

        j++;                        // go to next li_octet, if d_e_flag is TRUE);

      } /* end-of-loop (exit when d_e_flag is TRUE) */

      Append pu_data_size segments starting from j to RLC-PDU data;

    } /* end-of e-flag == TRUE */

  } /* end-of loop through PU:s in PDU */

} /* end-of Compress_PDU */
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