TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3)
TSGR2#5(99) 645

Sophia Antipolis 5th to 9th July 1999

Agenda Item:
4.2

Source:
Editor
Title:
3GPP 25.322 V1.1.0: RLC Protocol Specification

Document for:
Approval

This document contains the version 1.1.0 noted by TSG/RAN in Miami:

3G TS RAN 25.322 V1.1.0 (1999-05)
Technical Specification

3rd Generation Partnership Project (3GPP);

Technical Specification Group (TSG) RAN;

Working Group 2 (WG2);

RLC Protocol Specification
 (3G TS 25.322 version 1.1.0)
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

[image: image1.png]
Reference

<Workitem> (<Shortfilename>.PDF)

Keywords

Digital cellular telecommunications system, Universal Mobile Telecommunication System (UMTS), UTRA, IMT-2000

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Contents

71.
Scope

2.
References
7
3.
Definitions and Abbreviations
8
4.
General
9
4.1. Objective
9
4.2. Overview on sublayer architecture
9
4.2.1.
Model of RLC
9
4.2.1.1.
Transparent mode entities
11
4.2.1.2.
Unacknowledged mode entities
11
4.2.1.3.
Acknowledged mode entity
13
5.
Functions
15
6.
Services provided to upper layers
15
6.1. Mapping of services/functions onto logical channels
17
7.
Services expected from MAC
18
8.
Elements for layer-to-layer communication
19
8.1. Primitives between RLC and higher layers
19
9.
Elements for peer-to-peer communication
20
9.1. Protocol data units
20
9.1.1.
Data PDUs
20
9.1.2.
Control PDUs
20
9.2. Formats and parameters
21
9.2.1.
Formats
21
9.2.2.
Parameters
24
9.3. Protocol states
28
9.3.1.
State model for transparent mode entities
28
9.3.1.1.
Null State
28
9.3.1.2.
Transparent Data Transfer Ready State
28
9.3.2.
State model for unacknowledged mode entities
28
9.3.2.1.
Null State
28
9.3.2.2.
Unacknowledged Data Transfer Ready State
29
9.3.3.
State model for acknowledged mode entities
29
9.3.3.1.
Null State
29
9.3.3.2.
Acknowledged Data Transfer Ready State
29
9.3.3.3.
Reset Pending State
29
9.4. State variables
30
9.5. Timers
31
9.6. Protocol Parameters
32
9.7. Specific functions
33
9.7.1.
Retransmission Scheme
33
9.7.1.1.
Basic Concept
33
9.7.1.2.
Outline of proposed retransmission scheme
33
9.7.1.3.
PDUs used for retransmission
34
9.7.1.4.
Timers used for retransmission
34
9.7.1.5.
Trigger of Polling
34
9.7.1.6.
Flow of retransmission
34
9.7.2.
SDU discard function
36
9.7.2.1.
Timer based discard, with explicit signalling
36
9.7.2.2.
Timer based discard, without explicit signalling
36
9.7.2.3.
SDU discard after X number of retransmissions
37
9.7.3.
The Estimated PDU Counter
37
9.7.4.
Credit and peer-to-peer flow control
37
 Local flow control
37
9.8. RLC Toolbox concept
38
9.8.1.
Toolbox concept for acknowledged mode RLC entities.
38
9.8.1.1.
Transmitting side functions
38
9.8.1.1.1.
When to poll
38
9.8.1.1.2.
How to react upon a status report
39
9.8.1.2.
Receiving side functions
39
9.8.1.2.1.
How to react upon a poll
39
9.8.1.2.2.
When to send a status report
39
10.
Handling of unknown, unforeseen and erroneous protocol data
40
11.
Elementary procedures
40
11.1. Transparent mode data transfer procedure
40
11.2. Unacknowledged mode data transfer procedure
41
11.3. Acknowledged mode data transfer procedure
41
11.4. RLC reset procedure
42
11.5. STATUS PDU transfer procedure
42
11.6. Poll procedure
43
12.
SDL diagrams
43
13.
Annex A Pseudo code describing AMD PDU header Compression
64
14.
History
66

Intellectual Property Rights

IPRs essential or potentially essential to the present deliverable may have been declared to ETSI/3GPP. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, free of charge. This can be found in the latest version of the ETSI Technical Report: ETR 314: "Intellectual Property Rights (IPRs); Essential or potentially Essential, IPRs notified to ETSI in respect of ETSI standards". The most recent update of ETR 314, is available on the ETSI web server or on request from the Secretariat.

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in the ETR 314, which are, or may be, or may become, essential to the present document.
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of this TS are subject to continuing work within 3GPP TSG-RAN and may change following formal TSG RAN approval.
1.
Scope

The scope of this specification is to specify the RLC protocol.

1.
2.
3.
4.
5.
6.

1.
2.
2.
References

[1] 3GPP TS 25.401: “RAN Overall Description “
[2] 3GPP TR 25.945: “Vocabulary for the UTRAN”
[3]
3GPP TS 25.301: “Radio Interface Protocol Architecture”
[4]
3GPP TS 25.302: “Services Provided by the Physical Layer”
[5]
3GPP TS 25.303: “UE Functions and Inter-Layer Procedures in Connected Mode”
[6]

3GPP TS 25.304: “UE Procedures in Idle Mode”
[7]

3GPP TS 25.321: “MAC Protocol Specification”
[8]
3GPP TS.25.331: “RRC Protocol Specification”
3.
Definitions and Abbreviations

ARQ

Automatic Repeat Request

BCCH

Broadcast Control Channel

BCH

Broadcast Channel

C- Control-

CC

Call Control

CCCH

Common Control Channel

CCH

Control Channel

CCTrCH

Coded Composite Transport Channel

CN

Core Network

CRC

Cyclic Redundancy Check

DC

Dedicated Control (SAP)

DCCH

Dedicated Control Channel

DCH

Dedicated Channel

DL

Downlink

DSCH

Downlink Shared Channel

DTCH

Dedicated Traffic Channel

FACH

Forward Link Access Channel

FCS

Frame Check Sequence

FDD

Frequency Division Duplex

GC

General Control (SAP)

HO

Handover

ITU

International Telecommunication Union

kbps

kilo-bits per second

L1

Layer 1 (physical layer)

L2

Layer 2 (data link layer)

L3

Layer 3 (network layer)

MAC

Medium Access Control

MS

Mobile Station

MM

Mobility Management

Nt

Notification (SAP)

PCCH

Paging Control Channel

PCH

Paging Channel

PDU

Protocol Data Unit

PU

Payload Unit.

PHY

Physical layer

PhyCH

Physical Channels

RACH

Random Access Channel

RLC

Radio Link Control

RNTI

Radio Network Temporary Identity

RRC

Radio Resource Control

SAP

Service Access Point

SCCH

Synchronization Control Channel

SCH

Synchronization Channel

SDU

Service Data Unit

TCH

Traffic Channel

TDD

Time Division Duplex

TFI

Transport Format Indicator

TFCI

Transport Format Combination Indicator

TPC

Transmit Power Control

U- User-

UE

User Equipment

UL

Uplink

UMTS

Universal Mobile Telecommunications System

URA

UTRAN Registration Area

UTRA

UMTS Terrestrial Radio Access

UTRAN

UMTS Terrestrial Radio Access Network

4.
General

4.1.

Objective

4.2.

Overview on sublayer architecture

[The RLC Sublayer supports, for the RLC PDU Mechanism, the following features:

· Fixed Size RLC PDU with the possibility to adjust the number of PU per transmission time interval.

· Multiple Fixed Size RLC PDU with a RLC PDU Header Compression.

One of the two options can be chosen during the RLC Configuration Phase.]

4.2.1. Model of RLC

Figure 4‑1 gives an overview model of the RLC layer. The figure illustrates the different RLC peer entities. There is one transmitting and one receiving entity for the transparent mode service and the unacknowledged mode service and one combined transmitting and receiving entity for the acknowledged mode service. The dashed lines between the AM-Entities illustrate the possibility to send the RLC control data (e.g. resynchronisation PDUs and acknowledgements) and data PDUs on separate logical channels. More detailed descriptions of the different entities are given in subsections 4.2.1.1, 4.2.1.2,4.2.1.3.

[image: image2.wmf]Transm.

UM-Entity

Transm.

Tr-Entity

UTRAN

Transmitting

side

Receiving

side

MS

Radio Interface

RLC

MAC

Higher

layer

Receiv.

UM-Entity

Receiv.

Tr-Entity

Transm.

UM-Entity

Transm.

Tr-Entity

Receiv.

UM-Entity

Receiv.

Tr-Entity

Transmitting

side

Receiving

side

AM-Entity

AM-Entity

Figure 4‑1 Overview model of RLC.

4.2.1.1. Transparent mode entities

Figure 4‑2 below shows the model of two transparent mode peer entities.

[image: image3.wmf]Transm

.

Tr-Entity

Transmission

buffer

Segmentation

Tr-SAP

BCCH/PCCH/

CCCH/DTCH

Receiving

Tr-Entity

Receiver

buffer

Reassembly

BCCH/PCCH/

CCCH/DTCH

Tr-SAP

Radio Interface

Figure 4‑2 Model of two transparent mode peer entities.

The transmitting Tr-entity receives SDUs from the higher layers through the Tr-SAP. RLC might segment the SDUs into appropriate RLC PDUs without adding any overhead. How to perform the segmentation is decided upon when the service is established. RLC delivers the RLC PDUs to MAC through either a BCCH, PCCH or a DTCH. The delivery of RLC PDUs to MAC through CCCH is FFS. Which type of logical channel depends on if the higher layer is located in the control plane (BCCH, PCCH, CCCH) or user plane (DTCH).

The Tr-entity receives PDUs through from one of the logical channels from the MAC sublayer. RLC reassembles (if segmentation has been performed) the PDUs into RLC SDUs. How to perform the reassembling is decided upon when the service is established. RLC delivers the RLC SDUs to the higher layer through the Tr-SAP.

4.2.1.2. Unacknowledged mode entities

Figure 4‑3 below shows the model of two unacknowledged mode peer entities.

[image: image5.wmf]Transm

.

UM-Entity

Transmission

buffer

UM-SAP

Receiver

UM-Entity

Receiver

buffer

UM-SAP

Radio Interface

Segmentation &

Concatenation

Ciphering

Add RLC header

Reassembly

Deciphering

Remove RLC

header

BCCH/PCCH/

CCCH/DCCH/

DTCH

BCCH/PCCH/

CCCH/DCCH/

DTCH

Figure 4‑3 Model of two unacknowledged mode peer entities.

The transmitting UM-entity receives SDUs from the higher layers. If the SDU is very large it is segmented into RLC PDUs of appropriate size. The SDU might also be concatenated with other SDUs. RLC adds a header and the PDU is placed in the transmission buffer. RLC delivers the RLC PDUs to MAC through either a DCCH or a DTCH. The delivery of RLC PDU’s to MAC through BCCH, PCCH, CCCH, is for FFS. Which type of logical channel depends on if the higher layer is located in the control plane (BCCH, PCCH, CCCH, DCCH) or user plane (DTCH).

The receiving UM-entity receives PDUs through one of the logical channels from the MAC sublayer. RLC removes header from the PDUs and reassembles the PDUs (if segmentation has been performed) into RLC SDUs. After that the SDUs are delivered to the higher layer.

4.2.1.3. Acknowledged mode entity

Figure 4‑4 below shows the model of an acknowledged mode entity.

[image: image7.wmf]Transmission

buffer

Retransmission

buffer &

mangement

MUX

Set fields in RLC Header (e.g. set

poll bits). Optionally replace PAD

with piggybacked information.

RLC Control Unit

Received acknowledgements

Acknowledgements

DCCH/

DTCH

AM-SAP

DCCH/

DTCH

DCCH/

DTCH

AM-Entity

Demux/Routing[F.F.S]

DCCH/

DTCH

DCCH/

DTCH

DCCH/

DTCH

Receiver buffer &

Retransmission

management

Transmitting Side

Receiving Side

Segmentation/Concatenation

Ciphering

Add RLC header

Reassembly

Deciphering

Remove RLC header & Extract

Piggybacked information

Piggybacked status

Figure 4‑4 Model of a acknowledged mode entity.

The transmitting side of the AM-entity receives SDUs from the higher layers. The SDUs are segmented and/or concatenated to PUs of fixed length. PU length is a semi-static value that is decided in bearer setup and can only be changed through bearer reconfiguration by RRC.

For purposes of RLC buffering and retransmission handling, the operation is the same as if there would be one PU per PDU. For concatenation or padding purposes, bits of information on the length and extension, are inserted into the beginning of the last PU where data from an SDU is included. If several SDU:s fit into one PU, they are concatenated and the appropriate length indicators are inserted into the beginning of the PU. After that the PU:s are placed in the retransmission buffer and the transmission buffer. RLC PDU is constructed from PU buffers.

The MUX then decides which PDUs and when the PDUs are delivered to MAC, e.g. it could be useful to send RLC control PDUs on one logical channel and data PDUs on another logical channel. The PDUs are delivered via a function that completes the RLC-PDU header and potentially replaces padding with piggybacked status information. This includes setting the poll bit,[The setting of other bits in the Header is [F.F.S]. and will be specified when the AMD PDU Structure will be defined], compressing subsequent PUs into one RLC-PDU or setting up the extended RLC-PDU header (PUs not in sequence) where applicable.
When Piggybacking mechanism is applied the padding is replaced by control information, in order to increase the transmission efficiency and making possible a faster message exchange between the peer to peer RLC entities. The piggybacked control information is not saved in any retransmission buffer. The piggybacked control information is contained in the piggybacked STATUS PDU which is in turn included into the AMD-PDU. The piggybacked STATUS PDUs will be of variable size in order to mach with the amount of free space in the AMD PDU.

The dashed lines illustrate the case where AMD PDUs and control PDUs are transmitted on separate logical channels. The retransmission buffer also receives acknowledgements from the receiving side, which are used to indicate retransmissions of PUs and when to delete a PU from the retransmission buffer.

The Receiving Side of the AM-entity receives PDUs through one of the logical channels from the MAC sublayer. The RLC-PDUs are expanded into separate PUs and potential piggybacked status information are extracted. The PUs are placed in the receiver buffer until a complete SDU has been received. The receiver buffer requests retransmissions of PUs by sending negative acknowledgements to the peer entity. After that the headers are removed from the PDUs and the PDUs are reassembled into a SDU. Finally the SDU is delivered to the higher layer.
The receiving side also receives acknowledgements from the peer entity. The acknowledgements are passed to the retransmission buffer on the transmitting side.

5. Functions

For a detailed description of the following functions see [3].

· Connection Control;

· Segmentation and reassembly;

· Header compression;

· Concatenation;

· Padding;

· Transfer of user data;

· Error correction;

· In-sequence delivery of higher layer PDUs;

· Duplicate Detection;

· Flow control;

· Sequence number check (Unacknowledged data transfer mode);
· Protocol error detection and recovery.

· Ciphering;
The following potential function(s) are regarded as further study items (FFS):

· Suspend/resume function;

·
· Quick repeat.
6.
Services provided to upper layers

For a detailed description of the following functions see [3].

· RLC connection establishment/release;

· Transparent data transfer Service

Following functions are needed to support transparent data transfer:

· Segmentation and reassembly
· Transfer of user data;

· Unacknowledged data transfer Service

Following functions are needed to support unacknowledged data transfer:

· Segmentation and reassembly

· Concatenation
· Transfer of user data;

· Acknowledged data transfer Service

Following functions are needed to support acknowledged data transfer:

· Segmentation and reassembly

· Concatenation

· Transfer of user data

· Error correction

· In-sequence delivery of higher layer PDUs

· Duplicate detection

· Flow Control
· Protocol error detection and recovery;

· QoS setting;

· Notification of unrecoverable errors.

· Multicast delivery of higher layer messages. (FFS)
6.1. Mapping of services/functions onto logical channels

The following tables show the applicability of services and functions to the logical channels in UL/DL and UE/UTRAN. A ‘+’ in a column denotes that the service/function is applicable for the logical channel in question whereas a ‘-‘ denotes that the service/function is not applicable.

Table 6‑1: RLC modes and functions in UE uplink side

Service
Functions
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
-
+

Segmentation
-
-
+

Unacknowledged

Service
Applicability
FFS
+
+

Segmentation
-
+
+

Concatenation
-
+
+

Acknowledged

Service
Applicability
-
+
+

Segmentation
-
+
+

Concatenation
-
+
+

Flow Control
-
+
+

Error Correction
-
+
+

Protocol error correction & recovery
-
+
+

Table 6‑2: RLC modes and functions in UE downlink side

Service
Functions
SCCH
BCCH
PCCH
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
+
+
+
-
+

Reassembly
+
+
+
-
-
+

Unacknowledged

Service
Applicability
+
FFS
FFS
FFS
+
+

Reassembly
+
+
+
-
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+

Reassembly
-
-
-
-
+
+

Error correction
-
-
-
-
+
+

Flow Control
-
-
-
-
+
+

In sequence delivery
-
-
-
-
+
+

Duplicate detection
-
-
-
-
+
+

Protocol error correction & recovery
-
-
-
-
+
+

Table 6‑3: RLC modes and functions in UTRAN downlink side

Service
Functions
SCCH
BCCH
PCCH
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
+
+
+
-
+

Segmentation
+
+
+
-
-
+

Unacknowledged

Service
Applicability
+
FFS
FFS
FFS
+
+

Segmentation
+
+
+
-
+
+

Concatenation
+
+
+
-
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+

Segmentation
-
-
-
-
+
+

Concatenation
-
-
-
-
+
+

Flow Control
-
-
-
-
+
+

Error Correction
-
-
-
-
+
+

Protocol error correction & recovery
-
-
-
-
+
+

Table 6‑4: RLC modes and functions in UTRAN uplink sidef

Service
Functions
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
-
+

Reassembly
-
-
+

Unacknowledged

Service
Applicability
FFS
+
+

Reassembly
-
+
+

Acknowledged

Service
Applicability
-
+
+

Reassembly
-
+
+

Error correction
-
+
+

Flow Control
-
+
+

In sequence delivery
-
+
+

Duplicate detection
-
+
+

Protocol error correction & recovery
-
+
+

7. Services expected from MAC

For a detailed description of the following functions see [3].

· Data transfer;

·
8.
Elements for layer-to-layer communication

8.1.
Primitives between RLC and higher layers

The primitives between RLC and upper layers are shown in Table 8‑1.

Table 8‑1 : Primitives between RLC and upper layers

Generic Name
Parameter

Req.
Ind.
Resp.
Conf.

RLC-AM-DATA
Data, CFN, MUI
Data
Not Defined
MUI

RLC-UM-DATA
Data, QR (ffs)
Data
Not Defined
Not Defined

RLC-TR-DATA
Data
Data
Not Defined
Not Defined

CRLC-CONFIG
E/R

Each Primitive is defined as follows:

a) RLC-AM-DATA-Req./Ind/Conf.
It is used for acknowledged data transmission mode of point-to-point connection between the same level user entities.

b) RLC-UM-DATA-Req./Ind.

It is used for unacknowledged data transmission mode of point-to-point connection between the same level user entities.

c) RLC-TR-DATA-Req./Ind

It is used for trasparent data transmission mode of point-to-point connection between the same level user entities.

d) CRLC-CONFIG-Req
It is used for establishment and release of point-to-point connection between the same level user entities.

The parameter Data is mapped onto the Data field in a RLC PDU transparently in case of RLC-AM-DATA-Req. or RLC-UM-DATA-Req. Conversely the Data field of an RLC PDU received is mapped onto Data in case of RLC-AM-DATA-Ind. or RLC-UM-DATA_nd. transparently. The length of Data must be n octets (n is integer).

The Quick Repeat indicator (QR) indicates whether UMD PDU will be transmitted with Quick Repeat or not. It holds one of two values: “Yes” or “No”. (The need of this indicator is FFS)
The parameter Confirmation request (CNF) indicates whether RLC-AM-DATA conf. should be necessary or not.

The parameter Message Unit Identifier (MUI) makes a relationship between message unit and confirm primitive.
The parameter E/R indicates whether establishment or release of RLC connection should be performed.
9. Elements for peer-to-peer communication

In unacknowledged transmission, only one type of unacknowledged data PDU is exchanged between peer RLC entities In acknowledged transmission, both (acknowledged) data PDUs and control PDUs are exchanged between peer RLC entities.

9.1. Protocol data units
[All the section shall be reviewed when the protocol is defined]

9.1.1. Data PDUs

a) AMD PDU (Acknowledged Mode Data PDU)

The AMD PDU is used to convey sequentially numbered PUs containing RLC SDU data. The AMD PDU is used by the RLC when it is in the acknowledged mode.
b) UMD PDU (Unacknowledged Mode Data PDU)

The UMD PDU is used to convey sequentially numbered PDUs containing RLC SDU data. It is used by the RLC when using the unacknowledged data transfer.

9.1.2. Control PDUs

a) STATUS PDU

The STATUS PDU is used to inform the transmitting entity about missing PUs at the receving entity either upon detection of a missing PU (unsolicited) or as a response to a polling request from the transmitting entity.

b) RESET (Reset)
The RESET PDU is used in acknowledged mode to reset all protocol states, protocol variables and protocol timers of the peer RLC entity in order to synchronise the two peer entities.

c) RESET ACK (Reset Acknowledge)
The RESET ACK PDU is an acknowledgement to the RESET PDU.

Table 9‑1: RLC PDU names and descriptions

 Functionality
PDU name
Description

RESET
Reset Command

RESET ACK
Reset Acknowledgement

Acknowledged Data Transfer
AMD
Sequenced acknowledged mode data

STATUS
Solicited or Unsolicited Status Report

Piggybacked STATUS
Piggybacked Solicited or Unsolicited Status Report

Unacknowledged Data Transfer
UMD
Sequenced unacknowledged mode data

9.2. Formats and parameters

[All the section shall be reviewed when the protocol is defined]
9.2.1. Formats
AMD PDU

Transfers user data and piggybacked status information and requests status report by setting Poll bit.

[image: image8.wmf]Sequence Number

Sequence Number

D/C

A/U

E

E

Length Indicator

Data

PAD

 or a piggybacked STATUS PDU

Oct

1

?

Oct

2

?

Oct

3

?

OctN

P

(Optional)

H

R

Figure 9‑1 AMD PDU
UMD PDU

[image: image10.wmf]Oct

1

Oct

2

OctN

Sequence Number

E

E

Length Indicator

Data

PAD

(Optional)

Figure 9‑2. UMD PDU

STATUS PDU

Reports the status of receiver to transmitter when AMD PDU with status report request is received, or to inform the transmitting entity about missing PUs.

[The message format will be reconsidered when the protocol will be defined]

[image: image14.wmf] S

U

F

I

1

Octet 1

Octet 2

Octet 3

Octet N

D/C

PDU type

PA

…

S

U

F

I

K

S

U

F

I

1

S

U

F

I

1

Figure 9‑3. Status Information Control PDU (STATUS PDU)

The inclusion of a credit value/retransmission window size in the STATUS PDU is FFS.

The maximum size of a STATUS PDU is bounded by the maximum RLC PDU size.

Piggybacked STATUS PDU

The format of the piggybacked STATUS PDU is the same as the ordinary STATUS PDU except that the D/C field and the PDU type field is omitted.

[image: image15.wmf] S

U

F

I

1

Octet 1

Octet 2

Octet 3

Octet N

D/C

PDU type

PA

…

S

U

F

I

K

S

U

F

I

1

S

U

F

I

1

 SUFI

1

Octet 1

Octet 2

Octet 3

Octet J

PA

…

 SUFI

1

 SUFI

1

 SUFI

K

Figure 9‑4 Piggybacked STATUS PDU
RESET, RESET ACK PDU

[image: image16.wmf]Oct

１

OctN

D/C

R

PDU Type

PAD

Figure 9‑5 RESET, RESET ACK PDU
9.2.2. Parameters
The RLC PDU parameters are defined as follows:

·

· D/C bit: 1bit

This field indicates the type of an acknowledged mode PDU. It can be either data or control PDU.

Bit
Description

0
Control PDU

1
Acknowledged mode data PDU

· PDU Type: 3 bit length [FFS]

This field indicates the type of Control PDU. They are indicated by the special values of sequence number field.

Bit
PDU Type
Bit
PDU Type

001
STATUS

FFS
RESET

FFS
RESET ACK

· Sequence Number (SN)

This field indicates the sequence number of the payload unit. In normal acknowledged-mode RLC-PDU header it is the sequence number of the first PU in the PDU. If the PU:s are not in sequence, a sequence number is indicated separately for each PU in the extended header.

PDU type
Length
Notes

AMD PDU
12 bits
Used for retransmission and reassembly

UMD PDU
7 bits
Used for reassembly

· Polling bit (P): 1bit

This field is used to request a status report (STATUS PDU) from the receiver RLC.

Bit
Description

0
-

1
Request a status report

· Extension bit (E): 1bit

This bit indicates whether the next octet will be header information (LI) or data.

Bit
Description

0
The next octet is data

1
The next octet is header information (LI)

· Reserved (R):

One function of this field is to achieve octet alignment. Other functions are FFS. Where no functions are defined, this field shall be coded as zero. This field ignored by the receiver.

· Length Indicator (LI): 7bit

This field is optional and is used if concatenation, padding or piggybacking takes place in RLC. It indicates the end of the last segment of a SDU. Some values are reserved for special purposes:
“0000000” indicates that the previous RLC PDU is exactly filled with the last segment of a RLC SDU;

“1111110” indicates that the rest part of the RLC PDU includes a piggybacked STATUS PDU;

 “1111111” indicates that the rest part of the RLC PDU is padding.

· Poll Answer (PA): 1bit

This field indicates whether the status report is the answer to a poll or not

Bit
Description

0
The status report is not the answer to a polling request

1
The status report is the answer to a polling request

· SUFI (SUper-FIeld): variable number of bits
The SUFI includes three fields: type information (type of super-field, e.g. list, bitmap or acknowledgement), length information (providing the length of a variable length field within the following value field) and a value. Figure 9‑6shows the structure of the super-field. The size of the type field is non-zero but the size of the other fields may be zero.

Type

Length

Value

Figure 9‑6. The Structure of a Super-Field

· Type: 2 bits (FFS)

Bit
Description

00
List (LIST)

01
Bitmap (BITMAP)

10
Acknowledgement (ACK)

11
No More Data (NO_MORE)

Move Receiving Window (MRW)

[Editor’s note: the length of the “Type“ field (2 bits) should be redefined in order to address all SUFI types defined by the RLC protocol]
· Length: depending on the super-field type
Gives the length of the variable size part of the following value field

· Value: variable number of bits given by the Type and the Length fields
SUFI for a List

The List Super-Field consists of a type identifier field (LIST), a list length field (LENGTH) and a list of LENGTH number of pairs as shown in Figure 9‑7below:

Type = LIST

LENGTH

SN1

L1

SN2

L2

…

SNLENGTH

LLENGTH

Figure 9‑7. The List fields in a STATUS PDU for a list

LENGTH: 4 bits (FFS)

The number of (SNi , Li)-pairs in the super-field of type LIST.

SNi : 12 bits
Sequence number of PU which was not correctly received.

Li : 4 bits (FFS)
Number of consecutive PUs not correctly received following PU with sequence number SNi.

SUFI for a Bitmap

The Bitmap Super-Field consists of a type identifier field (BITMAP), a bitmap length field (LENGTH), a first sequence number (FSN) and a bitmap as shown in Figure 9‑8below:

Type = BITMAP

LENGTH

FSN

Bitmap

Figure 9‑8. The Bitmap fields in a STATUS PDU.

LENGTH: 4 bits (FFS)

The size of the bitmap in octets (maximum bitmap size: 24*8=128 bits).

FSN: 12 bits
The sequence number for the first bit in the bitmap.

Bitmap: variable number of octets given by LENGTH
Status of the SNs in the interval [FSN, FSN + LENGTH*8 - 1] indicated in the bitmap where each position can have two different values (0 and 1) with the following meaning (bit_position([0,LENGTH*8 - 1]):

1: SN = (FSN + bit_position) has been correctly received

0: SN = (FSN + bit_position) has not been correctly received

SUFI for an Acknowledgment
The Ack Super-Field consists of a type identifier field (ACK) and a sequence number (FSN) as shown in Figure 9‑9below:

Type = ACK

LSN

Figure 9‑9. The ACK fields in a STATUS PDU

LSN: 12 bits
Acknowledges the reception of all PUs with sequence numbers < LSN (Last Sequence Number) that are not indicated to be erroneous in earlier parts of the STATUS PDU.
SUFI for a Move Receiving Window
The ‘Move Receiving Window’ super-field is used to request the RLC receiver to move its receiving window, as a result of a SDU discard in the RLC transmitter. The format is given in the figure below.

Type = MRW

SN

Figure 9‑10 The MRW fields in a STATUS PDU

Type: 3 bits
Bit combination 110 can be used for Move Receiving Window (MRW) command

SN: 12 bits
Requests the RLC receiver to discard all PUs with sequence number < SN, and to move the receiving window accordingly.
SUFI for No More Data (FFS)
The ‘No More Data’ Super-Field indicates the end of the data part of a STATUS PDU and is shown in Figure 9‑11below:

Type=NO_MORE

Figure 9‑11. NO_MORE field in a STATUS PDU
·

· N(R): 12bit

 VR(R) is mapped to N(R) whenever a STAT or USTAT PDU is generated.
· N(MR): 12bit

VR(MR) is mapped to N(R) whenever a STAT, USTAT, BGN, or BGAK PDU is generated. This is the basis for credit granting by the receiver.
·

· Header extension flag (H): 1bit

The header extension flag indicates that the following two octets contain an extended header (SN+H+E) in the AMD PDU. The use of this flag is [F.F.S.]

· Data:

In this field data from higher layer PDUs is mapped.

9.3. Protocol states

9.3.1. State model for transparent mode entities

Figure 9‑12 illustrates the state model for transparent mode RLC entities (both transmitting and receiving). A transparent mode entity can be in one of following states.

9.3.1.1. Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and transparent data transfer ready state is entered.

9.3.1.2. Transparent Data Transfer Ready State

In the transparent data transfer ready, transparent mode data can be exchanged between the entities. Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

[image: image17.wmf]2.

Transparent

Data Transfer

Ready

1.

Nul

l

C

RLC-CONFIG

-

R

.r

eq

Received signal

Sent signal

C

RLC-CONFIG

-

R

.r

eq

Figure 9‑12. The state model for transparent mode entities.

9.3.2. State model for unacknowledged mode entities

Figure 9‑13illustrates the state model for unacknowledged mode RLC entities. An unacknowledged mode entity can be in one of following states.

9.3.2.1. Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and unacknowledged data transfer ready state is entered.

9.3.2.2. Unacknowledged Data Transfer Ready State

In the unacknowledged data transfer ready, unacknowldged mode data can be exchanged between the entities. Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

[image: image18.wmf]2.

Unack

.

Data Transfer

Ready

1.

Nul

l

C

RLC-CONFIG

-

R

.r

eq

C

RLC-CONFIG

-

R

.r

eq

Received signal

Sent signal

Figure 9‑13. The state model for unacknoledged mode entities.

9.3.3. State model for acknowledged mode entities

Figure 9‑14illustrates the state model for the acknowledged mode RLC entity. An acknowledged mode entity can be in one of following states.

9.3.3.1. Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and acknowledged data transfer ready state is entered.

9.3.3.2. Acknowledged Data Transfer Ready State

In the acknowledged data transfer ready, acknowledged mode data can be exchanged between the entities. Upon reception of an CRLC-CONFI-Rreq from higher layer the RLC entity is terminated and the null state is entered.
Upon errors in the protocol, the RLC entity sends a RESET PDU to its peer and enters the reset pending state.

Upon reception of a RESET PDU, the RLC entity resets the protocol and responds to the peer entity with a RESET ACK PDU.
9.3.3.3. Reset Pending State

In the reset pending state the entity waits for a response from its peer entity and no data can be exchanged between the entities. Upon reception of CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.
Upon reception of a RESET ACK PDU, the RLC entity resets the protocol and enters the acknowledged data transfer ready state.

[image: image19.wmf]2.

Ack

.

Data Transfer

Ready

1.

Nul

l

C

RLC-CONFIG

-

R

.r

eq

C

RLC-CONFIG

-

R

.r

eq

3.

Reset

Recov

.

Pending

[F.F.S]

RESET

[F.F.S]

RESET ACK

[F.F.S

]

RESET

RESET ACK

C

RLC-CONFIG

-

R

.r

eq

Received signal

Sent signal

Figure 9‑14. The state model for the acknoledged mode entities.

The messages that cause the transition between the "Ack. Data Transfer Ready" state and the "Recovery Pending" State, are [F.F.S.].

9.4. State variables

[All the section shall be reviewed when the protocol is defined]

This sub-clause describes the state variables used in the specification of the peer-to-peer protocol. PUs are sequentially and independently numbered and may have the value 0 through n minus 1 (where n is the modulus of the sequence numbers). The modulus equals 212 and the sequence numbers cycle through the entire range, 0 through 212 – 1. All arithmetic operations on the following state variables and sequence numbers contained in this Recommendation are affected by the modulus: VT(S), VT(A), VT(MS), VR(R), VR(H), and VR(MR). When performing arithmetic comparisons of transmitter variables, VT(A) is assumed to be the base. When performing arithmetic comparisons of receiver variables, VR(R) is assumed to be the base. In addition, the state variables VT(SQ) and VR(SQ) use modulo 2 arithmetic and VT(US) and VT(UR) use modulo 48.
The RLC maintains the following state variables at the transmitter.

a) VT(S) - Send state variable

The sequence number of the next PU to be transmitted for the first time (i.e. excluding retransmission). Incremented after transmission of a PU for the first time (i.e. excluding retransmission).

b) VT(A) - Acknowledge state variable

The sequence number of the next in-sequence PU expected to be acknowledged, which forms the lower edge of the window of acceptable acknowledgments. VT(A) is updated upon acknowledgment of in-sequence PUs.

c) VT(DAT)

This state variable is used to count the retransmission number of each PU. VT(DAT) is incremented by sending PU.
d) VT(MS) - Maximum Send state variable

The sequence number of the first PU not allowed by the peer receiver [i.e. the receiver will allow up to VT(MS) – 1]. This value represents the upper edge of the transmit window. The transmitter shall not transmit a new PU if VT(S) = VT(MS). VT(MS) is updated based on receipt of a STATUS PDU.

e) VT(US) – UM data state variable

This state variable means new sequence number of UMD-PDU which will send next. After new UMD-PDU is sent, VT(US) will be incremented.

f) VT(QR) - Quick repeat state variable (FFS)

This state variable is used to count the retransmission number when UMD-PDU is sent by quick repeat scheme. It is incremented after UMD-PDU is sent and quick repeat will be continued until VT(QR) becomes to equal MaxQR.

 The RLC maintains the following state variables at the receiver:
a) VR(R) - Receive state variable

The sequence number of the next in-sequence PU expected to be received. Incremented upon receipt of the next in-sequence PU.

b) VR(H) - Highest expected state variable
The sequence number of the next highest expected PU. This state variable is updated whenever a new PU is received.

c) VR(MR) - Maximum acceptable Receive state variable

The sequence number of the first PU not allowed by the receiver [i.e. the receiver will allow up to VR(MR) – 1]. The receiver shall discard PUs with N(S) = VR(MR), (in one case, such a PU may cause the transmission of an unsolicited STATUS PDU). Updating VR(MR) is implementation dependent, but VR(MR) should not be set to a value < VR(H).

d) VR(US) - Receiver Send Sequence state variable

The sequence number of the latest UMD PDU to be received. It is used to check the duplication receive. When new UMD PDU is received, VR(US) is compared with N(US). If VR(US) is equal to N(US), this PDU is quashed because duplication receive happens. And if not, N(US) is substituted for VR(US).

e) VR(EP) – Estimated PDU Counter state variable (FFS)

The number of PUs that should have been received after the latest STATUS PDU was sent. In acknowledged mode, this state variable is updated at the end of each transmission time interval. It is incremented by the number of PUs that should have been received during the transmission time interval. If VR(EP) is equal to the number of requested PUs in the latest STATUD PDU, then check if all PUs requested for retransmission have been received.

9.5. Timers

[All the section shall be reviewed when the protocol is defined]

a) Timer_STATUS
It is used to detect the loss of the response from receiver side. This timer is set when transmitted AMD PDU requests status report (i.e. P bit is set to “1”). And it will be stopped when the transmitter receives an Acknowledgement of the PUs in that AMD PDU by STATUS PDU or Non Acknowledgment (Nack) by the STATUS PDU. When this timer is over, the PUs of the oldest unconfirmed AMD PDU should be retransmitted with requesting status report, and this timer is set again. If polling is taken place during this timer is active the timer will be stopped and set again.
b) Timer_Prohibit
It is used to prohibit transmission of polling message within a certain period. If polling is taken place during this timer is active, it will be once stopped and set again. This timer will not be stopped by Ack or Nack. When this timer expires no action is performed.[the values recommended for this timer are [FFS]

c) Timer_QR (FFS)

Transmission interval of quick repeat for UMD PDU.
d) Timer_EPC (FFS)

This timer accounts for the roundtrip delay, i.e. the time when the first retransmitted PU should be received after a STATUS has been sent. The value of Timer_EPC is heavily based on the transmission time interval (corresponding to the Layer 1 interleaving depth). When changing the transmission time interval, then the value of the EPC timer also needs to be changed.
e) Timer_Discard

This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected as outstanding, i.e. there is a gap between sequence numbers of received PDUs.
9.6. Protocol Parameters

[All the section shall be reviewed when the protocol is defined]

The value of each RLC protocol parameter is application specific and may be defined in another Recommendation which references this Recommendation.

e) MaxDAT

It is the maximum value for the number of retransmissions of a PU. This parameter is an upper limit of counter VT(DAT). When the value of VT(DAT) comes to MaxDAT, error recovery procedure will be performed.

f) MaxQR (FFS)
Maximum successive transmission number of UMD PDU. This parameter is an upper limit for counter VT(QR).

9.7. Specific functions

[All the section shall be reviewed when the protocol is defined]

[The Hybrid ARQ (Type II/III) mechanism scheme is considered for the downlink only; in particular an incremental effort of protocol implementation will be followed. In this way it is possible to estimate the real performance of this scheme but also the impact that the introduction of such a scheme has on the protocol implementation. It is [FFS] if Hybrid ARQ mechanism for the downlink is mandatory for the UE (for both TDD and FDD)]

9.7.1. Retransmission Scheme

9.7.1.1. Basic Concept

1) Type of retransmission

· Selective retransmission
2) Acknowledgement Confirmation

· Receiver Status Report in response to the Transmitter Polling Request;

· Unsolicited status report from the receiver caused by detecting the latest loss of PUs.
3) The Retransmission takes place when:

· A Status Report (STATUS (PA=Yes)), transmitted by the Receiver, is received;

· An Unsolicited Status Report (STATUS (PA=No)) is received;

· Retransmission timer expires.

4) Timing of polling

Basically to confirm acknowledgement every RLC SDU can reduce extra overhead and improve the throughput. But if small RLC SDUs are given continuously, many status reports will be transmitted and it will cause overhead. To solve the problem, this retransmission scheme uses the timer which prohibits excessive polling. This timer only prohibits polling for every RLC SDU.

[image: image20.wmf]RLC SDU1

RLC SDU2

P = 0: polling is not performed

P = 1: polling is performed

SN=1, P=0

SN=2, P=0

SN=3,

P=1

SN=4, P=0

SN=5, P=0

SN=6,

P=0

SN=7, P=0

Status report

T_Prohibit

As T-Prohibit is active,

polling is not allowed.

SN=8,

P=1

RLC SDU3

As T-Prohibit is not active,

polling is performed

Status report

Figure 9‑15 : Reduction of excessive polling
9.7.1.2. Outline of proposed retransmission scheme

[In this section it is described the outline of the retransmission scheme presented. The list of the PDU and timers used in the retransmission scheme described are reported in this section, also if a complete description of them is presented in the proper sections of this specification. In chapter 12 are also reported the SDL diagrams of this scheme that actually are [FFS]]

9.7.1.3. PDUs used for retransmission

Following PDUs are necessary for this retransmission scheme.

· AMD PDU:

Transfers user data and requests status report by setting Poll bit.

· STATUS PDU:

A STATUS PDU (PA=Yes) reports the status of receiver to transmitter when AMD PDU with status report request is received.

The STATUS PDU (PA=No) is transmitted upon detection of an erroneous transmission of one or more data PUs. It is used to inform the transmitter side about missing PUs at the receiver RLC.

9.7.1.4. Timers used for retransmission

Following two timers are necessary for this retransmission scheme.

· Timer_STATUS:

This timer is set when AMD PDU with polling (i.e. P bit is set to “1”) is transmitted. And it will be stopped when the transmitter receives Ack or Nack for the AMD PDU with polling. If polling is taken place during this timer is active, it will be once stopped and set again.

· Timer_Prohibit:

This timer is set when AMD PDU with polling is transmitted. If polling is taken place during this timer is active, it will be once stopped and set again. This timer will not be stopped by Ack or Nack. When this timer expires no action is performed.

9.7.1.5. Trigger of Polling

Polling message is transmitted when;the last segment of AMD SDU is transmitted (every RLC SDU) and Timer_Prohibit is not active

the retransmission timer (Timer_STATUS) expires

the last PU in the transmission queue is transmitted

the transmitter window has to move

the last PU among those which are requested to be retransmitted by a STATUS (PA=Yes) is transmitted.
9.7.1.6. Flow of retransmission

Case1) In case STATUS (PA=Yes) is received:

· Polling is performed from the transmitter comply with the polling trigger.

· At this moment, the transmitter sets Timer_STATUS and Timer_Prohibit.

· The receiver transmits STATUS (PA=Yes) which requests retransmission for SN = 2, 3, 4 of PU in response to the polling.

· The transmitter receives the STATUS and stops Timer_STATUS. Then the PUs (SN = 2, 3, 4) requested by the STATUS are retransmitted.

· When the PU whose SN =4 is transmitted, poll bit is set to 1 (polling is performed).

· At this moment, Timer_STATUS is set and Timer_Prohibit is reset.

· When the transmitter receives STATUS (PA=Yes) from the receiver, Timer_STATUS is stopped.

[image: image21.wmf]SN=1, P=0

SN=2, P=0

SN=3, P=0

SN=4, P=0

SN=5,

P=1

SN=2, P=0 R

STAT (2,3,4)

STAT

SN=3, P=0 R

SN=4,

P=1

 R

T_STAT

STOP

STOP

If polling message is sent

during

T_Prohibit is active,

T_Prohibit is stopped and it

is set again.

T_STAT

T_Prohibit

T_Prohibit

SN=6, P=0

Figure 9‑16 : Retransmission Scheme Behaviour when STAT is received

· Case2) In case STATUS (PA=No) is received:

· If the receiver detects new loss of PUs, it transmits STATUS (PA=No) which requests retransmission of SN = 2, 3 of PU to the transmitter.

· The transmitter receives the STATUS and retransmits the requested PUs (SN = 2,3).

· In this case polling is not performed when the PU whose SN =3 is retransmitted.

[image: image22.wmf]SN=1, P=0

SN=2, P=0

SN=3, P=0

SN=4, P=0

SN=5, P=0

SN=2, P=0 R

USTAT (2,3)

SN=3, P=0 R

SN=6, P=0

Detects loss of

AMD PDUs

Figure 9‑17 : Retransmission Scheme Behaviour USTAT is received

Case3) In case Timer_STATUS expires:

· If Timer_STATUS expires due to loss of the AMD PDU with polling or STATUS, the transmitter retransmits the AMD PDU with polling.

· At this moment, Timer_STATUS is set and Timer_Prohibit is reset.

· When the transmitter receives STATUS from the receiver, Timer_STATUS is stopped.

[image: image23.wmf]SN=1, P=0

SN=2, P=0

SN=3,

P=1

SN=4, P=0

SN=5, P=0

SN=6, P=0

SN=8, P=0

STOP

STAT

T_STAT

T_STAT

SN=7, P=0

T.O

SN=3,

P=1, R

T_Prohibit

T_Prohibit

Reset

Figure 9‑18 : Retransmission Scheme Behaviour when Timer_STAT expires

[The Timer T-Prohibit is related only to the UE; there's no need for "T_Prohibit Timer" in the network as it is an implementation aspect. The values for T_Prohibit_Timer are [F.F.S]]

9.7.2. SDU discard function
The SDU discard function allows to discharge RLC PDU from the buffer on the transmitter side, when the transmission of the RLC PDU does not success for a long time.The SDU discard function allows to avoid buffer overflow, in the case of non-transparent transmission mode. There will be several alternative operation modes of the RLC SDU discard function, and which discard function to use will be given by the QoS requirements of the Radio Access Bearer.

The following is a preliminary list of operation modes for the RLC SDU discard function.

Table 9‑2. List of criteria’s that control when to perform SDU discard.

Operation mode
Presence

Timer based discard, with explicit signalling
Network controlled

Timer based discard, without explicit signalling
Network controlled

SDU discard after X number of retransmissions
Network controlled

9.7.2.1. Timer based discard, with explicit signalling

This alternative uses a timer based triggering of SDU discard. This makes the SDU discard function insensitive to variations in the channel rate and provides means for exact definition of maximum delay. However, the SDU loss rate of the connection is increased as SDUs are discarded.

For every SDU received from a higher layer, timer monitoring of the transmission time of the SDU is started. If the transmission time exceeds a predefined value for a SDU in acknowledged mode RLC, this SDU is discarded in the transmitter and a Move Receiving Window (MRW) command is sent to the receiver so that AMD PDUs carrying that SDU are discarded in the receiver and the receiver window is updated accordingly. Note that when the concatenation function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded.

The MRW command is defined as a super-field in the RLC STATUS PDU (see section 9.2), and piggy backed to status information of transmissions in the opposite direction. Therefore, SDU discard variants requiring peer-to-peer signalling are only possible for full duplex connections.

9.7.2.2. Timer based discard, without explicit signalling

This alternative uses the same timer based trigger for SDU discard as the one described in the section 9.7.2.1. The difference is that this discard method does not use any peer-to-peer signalling. For unacknowledged mode RLC, peer-to-peer signalling is never needed. The SDUs are simply discarded in the transmitter, once the transmission time is exceeded. For acknowledged mode RLC, peer-to-peer signalling can be avoided as long as SDU discard is always performed in the transmitter before it is performed in the receiver. As long as the corresponding SDU is eventually discarded in the receiver too, possible retransmission requests of PDU of discarded SDUs can be ignored by the transmitter. The bigger the time difference is between the triggering of the discard condition at the transmitter and the receiver, the bigger the unnecessary buffering need is at the receiver and the more bandwidth is lost on the reverse link due to unnecessary retransmission requests. On the other hand, forward link bandwidth is saved, as no explicit SDU discard signalling is needed.

9.7.2.3. SDU discard after X number of retransmissions

This alternative uses the number of retransmissions as a trigger for SDU discard, and is therefore only applicable for acknowledged mode RLC. This makes the SDU discard function dependent of the channel rate. Also, this variant of the SDU discard function strives to keep the SDU loss rate constant for the connection, on the cost of a variable delay. SDU discard is triggered at the transmitter, and a MRW command is necessary to convey the discard information to the receiver, like in the timer based discard with explicit signalling.

9.7.3. The Estimated PDU Counter
The Estimated PDU Counter is one of the possible mechanisms, which can be defined for scheduling the retransmissio of status reports in the receiver side. With this mechanism, the receiver will send a new Status PDU in which it requests for PDUs not yet received. The time between two subsequent status report retransmissions is not fixed, but it is controlled by the Estimated PDU Counter (EPC), which adapt this time to the current bit rate, indicated in the TFI, in order to minimise the delay of the status report retransmission.
The EPC is a counter, which is decremented every transmission time interval with the estimated number of PDUs that should have been transmitted during that transmission time interval.When the receiver detects that the PDUs are missing it generates and sends a Status PDU to the transmitter and sets the EPC equal to the number of requested PDUs.
A special timer, called EPC timer, controls the maximum time that the EPC needs to wait before it will start counting down. This timer starts immediately after a transmission of a retransmission request from the receiver (Status PDU). The EPC timer typically depends on the roundtrip delay, which consists of the propagation delay, processing time in the transmitter and receiver and the frame structure. This timer can also be implemented as a counter, which counts the number of 10 ms radio frames that could be expected to elapse before the first requested DATA PDU is received.

When the EPC exceeds the number of outstanding PDUs (i.e. the PDUs which were requested to be retransmitted) and not all of these requested PDUs have been received correctly, a new Status PDU will be transmitted and the EPC will be reset to zero. The EPC timer will be started once more.
The EPC is based on the estimation of the number of PDUs that should have been received during a transmission time interval. To estimate this number is easiest done by means of the TFI bits. However, if these bits are lost due to some reason or another, this estimation must be based on something else. A straightforward solution is to base the estimation on the number done in the previous transmission time interval. Only if the rate has changed this estimation is incorrect. Another method of estimating the number of PDUs is based on the maximum allowable rate. The consequence of this is that if the estimation is incorrect, the Status PDU is sent too early. Alternatively, the estimation can be based on the lowest possible transmission rate. In this case, if the estimation is incorrect, the Status PDU will most likely be transmitted too late.

9.7.4. Credit and peer-to-peer flow control

Credit is granted by the RLC receiver to allow the peer RLC transmitter to transmit new AMD PDUs. The process by which a receiver entity determines credit is not subject to standardization, but is related to the buffer availability and the bandwidth/delay of the connection.

Details of the usage of Crediting is FFS.

9.7.5. Local flow control

RLC events, such as reception of PDUs and external and internal signals, are normally processed in the order in which they occurred. However, events pertaining to the exchange of RLC link status information have priority over data transfer.

An implementation may detect congestion (for example, a long queuing delay) in its lower protocol layers. If so, data transfer should be temporarily suspended in order to give priority to connection control messages. The means by which an RLC entity decides whether or not it is congested depends on the protocol environment, including protocol timer values, and is not subject to standardization.

If a RLC entity detects local congestion (“lower layer busy” in the SDL specification), it can elect to suspend the servicing of RLC-AM-DATA.request, RLC-UM-DATA.request It can also suspend the retransmission of requested AMD PDUs. The data transfer procedures allow this to occur without causing protocol errors.

Therefore, in terms of transmitting PDUs to the peer receiver, all types of PDUs except AMD PDU and UMD PDU are given highest priority. The AMD PDUs and UMD PDUs have equal priority. Among the AMD PDUs, retransmission have priority over new transmission if both types are pending. These priorities are only internal to RLC.

9.8.
RLC Toolbox concept

The RLC toolbox concept specifies a number of basic functions. These functions can then be combined in different ways in order to get a complete and functional protocol. How to combine the different functions is signalled by RRC, before setting up a new RLC entity. The toobox concept may be applied to both transparent and non-transparent mode entities.

9.8.1. Toolbox concept for acknowledged mode RLC entities.

This section describes the different functions included in the RLC toolbox for acknowledged mode. This section concentrates on functions for ARQ mechanism, but other function can be added to the toolbox. The functions have been divided into two groups, transmitting side functions and receiving side functions. It is for FFS if all functions have to be supported by the UE. The presence field rather indicates if the function is always supported by the acknowledged mode entity or wheter its implementation is network controlled. No explicit signalling is needed if the function is always supported.

9.8.1.1. Transmitting side functions

9.8.1.1.1. When to poll

It is optional to apply a polling mechanism on transmitter side. If a polling mechanism is applied, Table 9‑3below summerizes the functions that control when the transmitter should poll the peer entity for a status report.

Table 9‑3List of functions that control when to poll the receiver for a status report.

Trigger
Presence

Last PU in buffer.
Always

Poll timer.
Always

Every X PU.
Network controlled

Every X SDU.
Network controlled

Last PU in retransmission buffer.
Network controlled

X% of transmission window.
Network controlled

Timer based.
Network controlled

Tprohibit
Network controlled

[The list of parameters shall be reviewed during the evolution of the prodocol definition]

· Last PU in buffer

The transmitting side polls the peer entity for a status report, when the last PDU in the transmission buffer is transmitted. This function is mandatory for the transmitting side, if polling should be applied.

· Poll timer

The poll timer is started when a poll is transmitted to the peer entity and if no status report has been received before the poll timer expires a new poll is transmitted to the receiver. The value of the timer is signalled by RRC. This function is mandatory for the transmitting side, if polling should be applied.

· Every X PU

The transmitting side polls the peer entity for a status report every X PU. The value of X is signalled by RRC. This function is optional for the transmitting side.

· Every X SDU

The transmitting side polls the peer entity for a status report every X SDU. The value of X is signalled by RRC. This function is optional for the transmitting side.

· Last PU in retransmission buffer

The transmitting side polls the peer entity for a status report at transmission of the last PDU in the retransmission buffer.

· X% of transmission window

The transmitting side polls the peer entity for a status report when it has reached X % of the transmission window. The value of X is signalled by RRC. This function is optional for the transmitting side.

· Timer based

The transmitting side polls the peer entity for a status report periodically. The value of the time period is signalled by RRC. The function is optional for the transmitting side.

· Tprohibit
This function controls how often the transmitting side is allowed to poll the peer entity. The Tprohibit is started when a poll is transmitted to the peer entity. As long as the timer is running the transmitting side is not allowed to poll the peer entity. The value of the timer is signalled by RRC. This function is optional for the transmitting side.

9.8.1.1.2. How to react upon a status report

Table 9‑4below summerizes the functions that control how to react upon a status report.

Table 9‑4List of functions that control how to react upon a status report.

Trigger
Presence

Adjust transmission window.
Always

Retransmit PUs.
Always

Plausibility check.
Network controlled

· Adjust transmission window

The transmission window should be updated according to the received status report. It is mandatory for the transmitting side to support this function.

· Retransmit AM PUs

This function retransmits the AM PUs that are requested by the status report. If no plausibility check is applied, the PUs shall be retransmitted immediately and have higher priority than new AM PUs. This function is mandatory for the transmitting side.

· Plausibility check

This function checks whether the contents of a status report is reasonable or not. It can prohibit or delay retransmissions requested by a status report. For example, the status report could contain negative acknowledgements of PUs which may not had arrived at the receiver before the status report was transmitted. The transmitter should not retransmit these PUs. This function is optional for the transmitting side.

9.8.1.2. Receiving side functions

9.8.1.2.1. How to react upon a poll

The receiving side should send a status report if it receives a poll. It should send the status report immediately. This function is mandatory for the receiving side.

9.8.1.2.2. When to send a status report

Table 9‑5below summerizes the functions that control when to send a status report.

Table 9‑5List of functions that control when to send a status report.

Trigger
Presence

Reception of poll.
Always

EPC
Network controlled

Detection of missing PU(s).
Network controlled

Every X SDU.
Network controlled

Every X PU.
Network controlled

X% of receiving window.
Network controlled

Timer based.
Network controlled

Tprohibit
Network controlled

· Reception of poll

The receiving side sends a status report to the peer entity upon reception of a poll, see section 9.8.1.2.1. The status report should be transmitted immediately. This function is mandatory for the receiving side.
· EPC

The EPC is started when a status report is transmitted to the peer entity. If not all AM PDUs requested for retransmission have been received before the EPC has expired a new status report is transmitted to the peer entity. A more detailed description of the EPC mechanism is given in section 9.7.3.
· Detection of missing PU(s)

The receiving side sends a status report to the peer entity upon detection of missing AM PU(s). The status report should be transmitted immediately. This function is optional for the receiving side.

· Every X SDU

The receiving side sends a status report to its peer entity every X SDU. The value of X is signalled by RRC. This function is optional for the receiving side.

· Every X PU

The receiving side sends a status report to its peer entity every X PU. The value of X is signalled by RRC. This function is optional for the receiving side.

· X% of receiving window

The receiving side sends a status report when X % of the transmission window has been reached. The value of X is signalled by RRC. This function is optional for the receiving side.

· Timer based

The receiving side sends a status report periodically to the peer entity. The value of the time period is signalled by RRC. The function is optional for the receiving side.

· Tprohibit
This function controls how often the receiving side is allowed to send status reports the peer entity. The Tprohibit is started when a status report is transmitted to the peer entity. As long as the timer is running the receiving side is not allowed to send a status reports to the peer entity. The value of the timer is signalled by RRC. This function is optional for the receiving side.

10. Handling of unknown, unforeseen and erroneous protocol data

11.
Elementary procedures

11.1. Transparent mode data transfer procedure

The transparent mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in transparent mode. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑1 below illustrates the elementary procedure for transparent mode data transfer.

[image: image24.wmf].

.

.

DTCH/CCCH/BCCH/PCCH/SCCH:

Tr PDU

UTRAN/UE

UE/UTRAN

DTCH/CCCH/BCCH/PCCH/SCCH:

Tr PDU

DTCH/CCCH/BCCH/PCCH/SCCH:

Tr PDU

Figure 11‑1. Transparent mode data transfer procedure.

The UTRAN/UE sends one or several Tr PDUs in one transmission time interval on one of the logical channels DTCH, CCCH, BCCH, PCCH or SCCH to the UE/UTRAN. The number of Tr PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (CCCH/BCCH/PCCH,SCCH). The Tr PDU includes a complete or a segment of a higher layer PDU.

[Note: There is no PDU specified for transparent mode data transfer in section 9]

11.2. Unacknowledged mode data transfer procedure

The unacknowledged mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in unacknowledged mode. The procedure may be initiated either by the UE or by the UTRAN. 2 below illustrates the elementary procedure for unacknowledged mode data transfer.

[image: image25.wmf].

.

.

DTCH/DCCH/CCCH/BCCH/PCCH: UMD PDU

UTRAN/UE

UE/UTRAN

DTCH/DCCH/CCCH/BCCH/PCCH: UMD PDU

DTCH/DCCH/CCCH/BCCH/PCCH: UMD PDU

Figure 11‑2. Unacknowledged mode data transfer procedure.

The UTRAN/UE sends one or several UMD PDUs in one transmission time interval on one of the logical channels DTCH, DCCH, CCCH, BCCH or PCCH to the UTRAN/UE. The number of UMD PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH/CCCH/BCCH/PCCH). The UMD PDU includes a segment of one or several higher layer PDUs. It also includes a sequence number and one or several length indicator fields.

11.3. Acknowledged mode data transfer procedure

The acknowledged mode data transfer procedure is used for transferring of data between two RLC peer entities, which are operating in acknowledged mode. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑3 below illustrates the elementary procedure for acknowledged mode data transfer.

[image: image26.wmf].

.

.

DTCH/DCCH: AMD PDU

UTRAN/UE

UE/UTRAN

DTCH/DCCH: AMD PDU

DTCH/DCCH: AMD PDU

Figure 11‑3. Acknowledged mode data transfer procedure.

The UTRAN/UE sends one or several AMD PDUs in one transmission time interval on either the DTCH or the DCCH logical channel to the receiver UE/UTRAN. The number of AMD PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). The AMD PDU includes a segment of one or several higher layer PDUs. It also includes a D/C field (which indicates that it is data PDU), a sequence number, polling bit, header extension bit and one or several length indicator fields.

11.4. RLC reset procedure

The RLC reset procedure is used to reset two RLC peer entities, which are operating in acknowledged mode. It is triggered when a protocol error occurs in RLC and it may be initiated either by the UE or by the UTRAN. Figure 11‑4 below illustrates the elementary procedure for a RLC reset.

[image: image27.wmf]DTCH/DCCH: RESET ACK

DTCH/DCCH: RESET

UTRAN/UE

UE/UTRAN

Figure 11‑4. RLC reset procedure.

The UTRAN/UE sends a RESET PDU on a DTCH or a DCCH logical channel to the receiver UE/UTRAN. The type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). The RESET PDU includes the RLC parameters needed to perform the reset.

Upon reception of the RESET PDU, the receiver responds with a RESET ACK PDU.

11.5. STATUS PDU transfer procedure

The STATUS PDU transfer procedure is used for transferring of status information between two RLC peer entities, which are operating in acknowledged mode. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑5 below illustrates the elementary procedure for acknowledged mode data transfer.

[image: image28.wmf]DTCH/DCCH: STATUS PDU

UTRAN/UE

UE/UTRAN

Figure 11‑5. STATUS PDU transfer procedure.

The procedure is triggered when e.g. a missing AMD PDU is detected or a poll has been received. The originator UTRAN/UE sends STATUS PDUs on either the DTCH or the DCCH logical channel to the receiver UE/UTRAN. The type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). The STATUS PDU includes D/C field, PDU type field and information about received data PDUs. This procedure may trigger retransmission of lost PU.

11.6. Poll procedure

The poll procedure is used by an acknowledged mode RLC entity for requesting status information from its peer entity. The procedure may be initiated either by the UE or by the UTRAN. Figure 11‑6 below illustrates the elementary procedure for polling.

[image: image29.wmf]DTCH/DCCH: AMD PDU, AMD PDU, …

Trigger STATUS

PDU transfer

UTRAN/UE

UE/UTRAN

Figure 11‑6. Poll procedure.

The procedure is triggered when e.g. the last PU in the transmission buffer is transmitted. The UTRAN/UE sends one or several AMD PDUs in one transmission time interval on either the DTCH or the DCCH logical channel to the receiver UE/UTRAN. The number of PDUs depends on the rate of the logical channel and the type of logical channel depends on if the RLC entity is located in the user plane (DTCH) or in the control plane (DCCH). It is FFS if the poll bit is set in all PDUs transmitted in the same transmission time interval.

Upon reception of the polls, the receiver triggers a STATUS PDU transfer procedure.

12. SDL diagrams

[All the section shall be reviewed when the protocol is defined;

all the SDL diagrams presented are [FFS]]

The resultant SDL diagrams (Timer_Prohibit scheme) are shown below:

Estimated PDU Counter (EPC) scheme (receiving side) (FFS)

1. Send a status report (STATUS (PA=Yes)), requesting for the retransmission of K number of missing PDUs.

2. Start Timer_EPC. This timer accounts for the roundtrip delay, i.e. the time when the first retransmitted PDU should be received.

3. When the timer expires, start counting the received PDUs, or rather the PDUs that should have been received using the state variable VT(EP)

4. If VT(EP) = K, then check if all PDUs (requested in the status report in step 1) have been received.

a) If some of the previously missing PDUs are still missing, then repeat the procedure from step 1 for the PDUs that are still missing.

b)If none of the previously missing PDUs are still missing, then no status report needs to be sent, unless a poll had been transmitted or a new missing PDU has been detected. In case of a poll or a new missing PDU, then repeat the procedure from step 1.

Every poll received during the time when the Timer_EPC is active and VT(EP) < K will be discarded by the receiving side, i.e. STATUS PDU will not be sent from the receiving side during this time.

[image: image30.wmf]Clear Transmitter

BGN PDU

VT(SQ) := 0

VT(US) := 1

Idle 1

VT(MS) := BGN.N(MR)

TRUE

FALSE

Set Timer_CC

Clear-

buffers := BR

Outgoing Connection

Pending 2

Idle 1

Idle 1

Idle 1

VR(SQ) := 0

VR(US) := 0

Clear-

buffers := Yes

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

Initialize

VR(MR)

LAC-ESTABLISH.

request

Incoming Connection

Pending 2

Detect Retransmission

BGN PDU

LAC-ESTABLISH.

Indication

Retransmission

BGREJ PDU

BGREJ PDU

END PDU

ENDAK PDU

Idle 1

ENDAK PDU

Figure 12‑1

[image: image31.wmf]Idle 1

Idle 1

BGAK PDU

STAT PDU

USTAT PDU

END PDU

Idle 1

AMD PDU

AMD PDU queued up

Figure 12‑2

[image: image32.wmf]Outgoing Connection

Pending 2

ENDAK PDU

STAT PDU

USTAT PDU

AMD PDU

END PDU

Outgoing Connection

Pending 2

AMD PDU queued up

Figure 12‑3

[image: image33.wmf]Reset Timer_CC

LAC-RELEASE.

indication

TRUE

Reset Timer_CC

Idle 1

Initialize State Variables

Outgoing Connection

Pending 2

BGAK PDU

BGREJ PDU

Outgoing Connection

Pending 2

VT(MS) := BGAK.N(MR)

LAC-ESTABLISH.

confirm

Set Data Transfer Timers

Data Transfer Ready 5

FALSE

Retransmission

BGN PDU

Reset Timer_CC

VT(MS) := BGN.N(MR)

Initialize

VR(MR)

BGAK PDU

LAC-ESTABLISH.

confirm

Initialize State Variables

Set Data Transfer Timers

Data Transfer Ready 5

Detect Retransmission

TRUE

Figure 12‑4

[image: image34.wmf]END PDU

TRUE

FALSE

Idle 1

Outgoing Connection

Pending 2

VT(CC) >= MaxCC

BGN PDU

Idle 1

Outgoing Connection

Pending 2

Timer_CC (expiry)

LAC-RELEASE.

indication

MLAC-RELEASE.

request

Reset Timer_CC

Set Timer_CC

VT(CC) := VT(CC) + 1

Reset Timer_CC

END PDU

Outgoing Disconnection

Pending 4

Set Timer_CC

VT(CC) := 1

LAC-RELEASE.

request

Figure 12‑5

[image: image35.wmf]Clear Transmitter

Initialize State Variables

Incoming Connection

Pending 3

Incoming Connection

Pending 3

Clear-

buffers := BR

Set Data Transfer Timers

Data Transfer Ready 5

FALSE

Retransmission

BGN PDU

VT(MS) := BGN.N(MR)

Initialize

VR(MR)

BGAK PDU

Detect Retransmission

TRUE

LAC-RELEASE.

indication

LAC-ESTABLISH.

indication

Incoming Connection

Pending 3

END PDU

LAC-ESTABLISH.

response

MLAC-RELEASE.

request

Idle 1

Idle 1

ENDAK PDU

LAC-RELEASE.

indication

Figure 12‑6

[image: image36.wmf]Incoming Connection

Pending 3

Incoming Connection

Pending 3

BGREJ PDU

LAC-RELEASE.

indication

TRUE

Idle 1

ENDAK PDU

BGAK PDU

LAC-RELEASE.

indication

TRUE

Idle 1

Idle 1

BGREJ PDU

LAC-RELEASE.

request

Figure 12‑7

[image: image37.wmf]Incoming Connection

Pending 3

Incoming Connection

Pending 3

AMD PDU

Idle 1

AMD PDU queued up

USTAT PDU

STAT PDU

LAC-RELEASE.

indication

END PDU

Figure 12‑8

[image: image38.wmf]Clear Transmitter

Clear-

buffers := BR

FALSE

Retransmission

BGN PDU

VT(MS) := BGN.N(MR)

Initialize

VR(MR)

BGN PDU

Detect Retransmission

TRUE

LAC-RELEASE.

confirm

LAC-ESTABLISH.

indication

Incoming Connection

Pending 3

LAC-ESTABLISH.

request

Set Timer_CC

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

Reset Timer_CC

Outgoing Connection

Pending 2

Reset Timer_CC

Outgoing Disconnection

Pending 4

Outgoing Disconnection

Pending 4

END PDU

BGAK PDU

Outgoing Disconnection

Pending 4

AMD PDU queued up

Figure 12‑9

[image: image39.wmf]BGAK PDU

Outgoing Disconnection

Pending 4

Outgoing Disconnection

Pending 4

AMD PDU

STAT PDU

USTAT PDU

Figure 12‑10

[image: image40.wmf]FALSE

Retransmission

Timer_CC (expiry)

ENDAK PDU

TRUE

LAC-RELEASE.

confirm

Reset Timer_CC

VT(CC) := VT(CC) + 1

Outgoing Disconnection

Pending 4

Outgoing Disconnection

Pending 4

END PDU

END PDU

Idle 1

LAC-RELEASE.

confirm

Reset Timer_CC

END PDU

Idle 1

BGREJ PDU

Idle 1

Set Timer_CC

LAC-RELEASE.

confirm

Figure 12‑11

[image: image41.wmf]Timer_STAT (expiry)

Data Transfer Ready 5

Put AMD PDU into

Retransmission queue with

AMD.P := 1

AMD PDU queued up

Data Transfer Ready 5

Save AMD PDU in

Transmission buffer

Remove

AMD.N(S) = VT(A)

from Transmission buffer

Idle 1

MLAC-RELEASE.

request

Reset Data Transfer

Timers

Release buffers

LAC-AMDATA.

request

AMD PDU queued up

Save AMD PDU in

AM queue

TRUE

FALSE

n := 0

n := n + 1

n >= NP

Segmentation for AMD PDU

Data Transfer Ready 5

Figure 12‑12

[image: image42.wmf]AMD PDU queued up

Retransmission

queue is empty

AM queue is empty

Remove AMD PDU from

AM queue

AM queue

is empty or VT(S) >=

VT(MS)

AMD.P := 1

AMD PDU

Set

Timer_STAT

Set

Timer_Prohibit

Timer_Prohibit is Active

AMD PDU

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

Save AMD PDU in Transmission

buffer VT(DAT) := 0

TRUE

FALSE

Remove AMD PDU from

Retransmission queue

FALSE

TRUE

AMD.P = 1

AMD PDU

Save AMD PDU in

Transmission buffer and

STAT_waiting buffer

P := 0

VT(DAT) := 0

AMD.

VT(DAT) >= MaxDAT

TRUE

Update stored AMD PDU.

VT(DAT) in Transmission buffer

VT(DAT) := VT(DAT) + 1

TRUE

FALSE

Save AMD PDU in

STAT_waiting buffer

P := 0

VT(DAT) := VT(DAT) + 1

AMD PDU

FALSE

A

AMD.P = 1

AMD.P := 0

Update stored AMD PDU.

VT(DAT) in Transmission buffer

P := 0

VT(DAT) := VT(DAT) + 1

If another AMD PDU is

already in

STAT_waiting

buffer, replace old AMD

PDU with new AMD PDU.

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Reset Data Transfer

Timers

VT(S) := VT(S) + 1

VT(S) := VT(S) + 1

Figure 12‑13

[image: image43.wmf]VT(CC) := 1

VT(SQ) := VT(SQ) + 1

A

BGN PDU

Set Timer_CC

Release buffers

Initialize

VR(MR)

Outgoing Connection

Pending 2

Figure 12‑14

[image: image44.wmf]Data Transfer Ready 5

FALSE

TRUE

AMD PDU

AMD PDU.P = 1

C

Receiver buffer

is available

AMD.N(S) < VR(R)

AMD.N(S) = VR(H)

Save AMD PDU in

Receiver buffer

VR(H) := VR(H) + 1

TRUE

TRUE

TRUE

FALSE

FALSE

C

C

TRUE

FALSE

FALSE

TRUE

Save AMD PDU in

Receiver buffer

Save AMD PDU in

Receiver buffer

VR(H) := AMD.N(S) + 1

VR(H) < AMD.N(S)

AMD.N(S)

is already in

Receiver buffer

AMD.N(S) < VR(MR)

AMD.N(S) = VR(R)

TRUE

TRUE

C

TRUE

FALSE

VR(H) := VR(MR)

VR(H) < VR(MR)

FALSE

FALSE

Data Transfer Ready 5

FALSE

Remove AMD PDU with

AMD.N(S) = VR(R) from

Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

AMD.N(S) =

VR(R) is in

Receiver buffer

TRUE

Save AMD PDU in

AM_Reassembly buffer

VR(R

) := VR(R) + 1

C

FALSE

FALSE

TRUE

VR(R

) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

B

Reassembly for AMD PDU

Reassembly for AMD PDU

Figure 12‑15

[image: image45.wmf]Receiver buffer

is available

VR(H) < AMD.N(S)

AMD.N(S) = VR(H)

Save AMD PDU in

Receiver buffer

VR(H) := VR(H) + 1

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

Save AMD PDU in

Receiver buffer

AMD.N(S) < VR(MR)

AMD.N(S) = VR(R)

TRUE

TRUE

A

TRUE

FALSE

VR(H) := VR(MR)

VR(H) < VR(MR)

FALSE

FALSE

Data Transfer Ready 5

FALSE

Remove AMD PDU with

AMD.N(S) = VR(R) from

Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

Reassembly for AMD PDU

AMD.N(S) =

VR(R) is in

Receiver buffer

TRUE

Save AMD PDU in

AM_Reassembly buffer

VR(R

) := VR(R) + 1

FALSE

FALSE

TRUE

VR(R

) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

B

USTAT PDU

AMD.N(S) is

in already in

Receiver buffer

USTAT PDU

Save AMD PDU in

Receiver buffer

VR(H) := AMD.N(S) + 1

Reassembly for AMD PDU

List

element1 := VR(H)

List

element2 := AMD.N(S)

List

element1 := VR(H)

List

element2 := VR(MR)

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Reset Data Transfer Timers

Figure 12‑16

[image: image46.wmf]FALSE

TRUE

FALSE

FALSE

TRUE

i

：＝

 VR(H)

TRUE

FALSE

Data Transfer Ready 5

AMD.N(S) = i

is in Receiver

buffer

TRUE

List_

Length

 := 0

i := VR(R)

FALSE

FALSE

C

STAT PDU

i

�„

 VR(H)

i

�F��

 i + 1

Append i to list

Data Transfer Ready 5

STAT PDU

STAT PDU

Append i to list

;

List_

Length

 := 1

TRUE

List_Length >= MaxSTAT

i

�F��

 i + 1

i < VR(H)

AMD.N(S) = i

is in Receiver

buffer

Append i to list

;

List_

Length

 :=

List_Length + 1

Append i to list

;

List_

Length

 :=

List_Length + 1

Start building a new STAT

TRUE

Figure 12‑17

[image: image47.wmf]Data Transfer Ready 5

FALSE

TRUE

TRUE

Remove AMD PDUs from

VT(A) to USTAT.N

(R)

 - 1 from

Transmission buffer

USTAT PDU

VT(A) <=

Seq1 < seq2 <

VT(S)

AMD

PDU.N(S)

<= USTAT.N

(R)

 - 1

is in

STAT_waiting

buffer

Remove AMD PDU from

STAT_waiting buffer

VT(A) := USTAT.N

(R)

VT(MS) := USTAT.N(MR)

Seq1 := List element 1

Seq2 := List element 2

VT(A) <=

USTAT.N(R) < VT(S)

FALSE

D

FALSE

D

E

Reset

Timer_STAT

Figure 12‑18

[image: image48.wmf]TRUE

Remove

AMD.N

(S)

 = seq1

from Transmission buffer

Put AMD PDU into

Retransmission queue

AMD.N(S) =

seq1 is in Transmission

buffer

FALSE

E

FALSE

TRUE

D

A

AMD PDU queued up

Save AMD PDU in

Transmission buffer

Seq1 := Seq1 + 1

Seq1 = Seq2

Reset Data Transfer

Timers

Data Transfer Ready 5

Figure 12‑19

[image: image49.wmf]F

A

Reset Data Transfer

Timers

Data Transfer Ready 5

FALSE

TRUE

TRUE

Remove AMD PDUs from

VT(A) to STAT.N

(R)

 - 1 from

Transmission buffer

STAT PDU

i > 1

AMD

PDU.N(S)

<= STAT.N

(R)

 - 1 is

in

STAT_waiting

buffer

Remove AMD PDU from

STAT_waiting buffer

VT(A) := STAT.N

(R)

VT(MS) := STAT.N(MR)

i := number of STAT list

elements Count := 0

VT(A) <=

STAT.N(R) <

VT(S)

FALSE

FALSE

F

G

Seq1 := First list element

i := i - 1

FALSE

F

Seq1 <

VT(S)

TRUE

TRUE

Reset

Timer_STAT

Data Transfer Ready 5

Figure 12‑20

[image: image50.wmf]FALSE

TRUE

Remove

AMD.N(S) = seq1

from Transmission buffer

Put AMD PDU into

Retransmission queue,

Count := Count + 1

Save AMD PDU in

Transmission buffer

AMD.N(S) = Seq1

is in Transmission

buffer

FALSE

F

FALSE

F

Seq1 < Seq2

<=

VT(S)

TRUE

H

Seq1 = Seq2

TRUE

TRUE

G

Seq

２

 := Next list element

I

 :=

I

 - 1

AMD PDU is

already in

Retransmission

queue

AMD PDU queued up

Seq

1 := Seq1 + 1

FALSE

F

TRUE

H

FALSE

FALSE

NO

YES

TRUE

TRUE

FALSE

TRUE

i > 0

FALSE

Seq

２

 := Next list element

I

 :=

I

 - 1

Clear-buffers

Remove

AMD.N(S) = seq1

from Transmission buffer

Seq1 < Seq2

<=

VT(S)

Seq

1 := Seq1 + 1

i > 0

Seq1 = Seq2

Data Transfer Ready 5

TRUE

FALSE

Remove

AMD.N(S) = seq1

from

STAT_waiting buffer

AMD.N(S) = seq1

is in

STAT_waiting

buffer

Update the P flag of

AMD.N(S) = Seq2

–

 1 in

Retransmission queue

P := 1

Figure 12‑21

[image: image51.wmf]LAC-UMDATA.

request

*

UMD PDU queued up

Save UMD PDU

in QR queue

TRUE

FALSE

n := 0

n := n + 1

n >= NP

UMD PDU

TRUE

FALSE

UMD.N(US) = VR(US)

Save UMD PDU in

UM_Reassembly buffer

VR(US) = UMD.N(US)

UMD PDU queued up

Save UMD PDU in

UM queue

TRUE

n := 0

n := n + 1

n >= NP

FALSE

Segmentation for UMD PDU

QR

YES

NO

Reassembly for UMD PDU

Invalid PDU

Figure 12‑22

[image: image52.wmf]*

TRUE

UMD PDU queued up

FALSE

TRUE

FALSE

QR queue is empty

Remove UMD PDU from

UM queue

UMD PDU

VT(US) := VT(US) + 1

UM queue is empty

Remove UMD PDU from

QR queue

UMD PDU

ｊ

 := 0

ｊ

 :=

ｊ

 + 1

ｊ

 >= MaxQR

TRUE

FALSE

VT(US) := VT(US) + 1

UMD PDU is transmitted

at Timer_QR intervals

Figure 12‑23

[image: image53.wmf]Segmentation and

Concatenation

Segmentation

for AMD PDU

Add LAC Header

NP := Number of AMD PDUs

AMD.P := 1 (If AMD includes the

last segment of LAC SDU)

AMD.P := 0 (For other cases)

Segmentation and

Concatenation

Add LAC Header

NP := Number of UMD PDUs

Segmentation

for UMD PDU

Figure 12‑24

[image: image54.wmf]Reassembly

for AMD PDU

TRUE

FALSE

Remove LAC SDU from

AM_Reassembly buffer

LAC SDU is completed

LAC-AMDATA.

indication

Reassembly

Remove LAC Header

TRUE

FALSE

Remove LAC SDU from

UM_Reassembly buffer

LAC SDU is completed

LAC-UMDATA.

indication

Reassembly

Remove LAC Header

Reassembly

for UMD PDU

Figure 12‑25

[image: image55.wmf]Release buffers

Clear

AM queue

Clear Transmission buffer

Clear

STAT_waiting buffer

Clear Retransmission queue

Clear Receiver buffer

NO

YES

Clear-buffers

Clear Transmitter

Clear

AM queue

Clear Transmission buffer

Clear

STAT_waiting buffer

Initialize State

Variables

VT(S) := 0

VT(A) := 0

VT(PD) := 0

VT(DAT) := 0

VR(R

) := 0

VR(H) := 0

Figure 12‑26

[image: image56.wmf]Reset Data

Transfer Timers

Reset

Timer_STAT

Reset

Timer_Prohibit

TRUE

FALSE

Detect Retransmission

VR(SQ) :

＝

 N(SQ)

retransmission := FALSE

N(SQ)

＝

 VR(SQ)

retransmission := TRUE

Initialize

VR(MR)

VR(MR) := value

This assignment of

VR(MR) is

the initial window size granted to

the peer transmitter, and is

implementation or connection

dependent.

VR(MR) is updated

as data transfer take place,

based on the static or dynamic

window selected by the receiver.

Figure 12‑27
Appendix
1. Recommended values
1.1 PDU length

The length of the data field in AMD / UMD PDUs is k (>=0) octets.

4
1.3 MaxDAT

[FFS]
1.4 MaxQR

[FFS]
1.5 MaxSTATUS

This parameter should be an odd integer greater than or equal to 3.
1.6 Timer_STATUS

[FFS]
1.7 Timer_Prohibit

[FFS]

1.9 Timer_QR

[FFS]

13. Annex A Pseudo code describing AMD PDU header Compression

The following Pseudo-Code is an example of algorithm to describe the exact Header Compression Operation that takes place when several PUs are packed into one RLC PDU.

/* Prior to calling this procedure it must be checked that <pus_in_pdu> consecutive PU:s

 are to be transmitted (or there is padding in the end)*/

Compress_PDU (pus_in_pdu, pu_size) {

 li_addition = 0; // reset the variable that counts data in full pu:s

 Loop through pus_in_pdu {

 d_e_flag = E-flag for this PU;

 If (d_e_flag == FALSE) {

 Append PU data to PDU data; // complete PU is SDU-data

 li_addition += pu_size; // to be added to the next LI

 } else { // E-flag is TRUE, so LI-field(s) exist

 Previous E-flag in PDU = TRUE; // Either in PDU header or pdu_li_vector;

 j = 0; // reset LI-counter for this PU

 pu_data_size = 0; // reset data size counter for this PU

 Loop until (d_e_flag == FALSE) {

 d_li = next LI; // in octet j of PU;

 d_e_flag = next E_FLAG; // in octet j of PU;

 if (d_li is not PADDING) {

 pu_data_size += d_li; // to keep track of data segment size in this PU);

 d_li += li_addition; // to add data from previous PU:s to LI-value);

 li_addition = 0; // reset li_addition;

 }

 Append (d_li + d_e_flag) to pdu_li_vector;

 j++; // go to next li_octet, if d_e_flag is TRUE);

 } /* end-of-loop (exit when d_e_flag is TRUE) */

 Append pu_data_size segments starting from j to RLC-PDU data;

 } /* end-of e-flag == TRUE */

 } /* end-of loop through PU:s in PDU */

} /* end-of Compress_PDU */

14. History

Document history

Date
Version
Comment

June 1999
1.1.0
This version has been noted by the RAN plenary in Miami.

May 1999
1.0.1
The Tdocs 382,383,384,385,402,403,404,405,407, 488 have been included. The main changes concern as followes:

- the removal of a number of control PDUs (BGN, BGACK,BGREJ, END, END ACK)

- the inclusion of new PDUs: RESET, RESET ACK

- the redefinition of RLC primitives and their parameters

- the inclusion of new principles: Piggybacking, EPC, SDU discard., chiphering
- the inclusion of RLC elementary procedures

May 1999
1.0.0
The old numbering S2.22 has been removed and replaced with new one 25.322. The document was noted by the TSG/RAN plenary (Yokohama 21‑24 April) and the old version 0.1.0 has been upgraded to 1.0.0.

April 1999
0.1.0
The content of Tdoc 99/253 concerning the new STAUS PDU format has been included in section 9.2. The content of Tsoc 99/255 on the RLC toolbox has been included in section 9.8. Approved by WG2.

March 1999
0.0.2
The content of Td155 was included on section 9.7; the principle for the Multiple fixed size RLC PDU with RLC PDU Header compression expressed in td115, td116 were included and part of the proposed changes in td117 applied. The RLC Repetition Scheme proposed in Td 155 was included in Section 9.7. The changes to the RLC Model presented in Td 147 were included in Section 4.2.1. The RLC Protocol States presented in Td 148 were included in Section 9.3.

January 1999
0.0.1
Document created. Based on TSG RAN WG2 Tdoc 016/99, 006/99 and 021/99..

Rapporteur for 3GPP TSG RAN WG2 S2.22 is:

CSELT

Marco Mastroforti Daniele Franceschini

Tel. : +39 011 228 7596 Tel: +39 011 228 5203
Fax : +39 011 228 7055 Fax: +39 011 228 7613

Email : marco.mastroforti@cselt.it E-mail: daniele.franceschini@cselt.it

This document is written in Microsoft Word version 6.0c/95.

�PAGE \# "'Page: '#'�'" �

T

_977683233.doc

A/U

R

PDU Type

PAD

Oct１

OctN

_983618799.doc
[image: image1.bmp]

AM-Entity

DCCH/

DTCH

DCCH/DTCH

AM-SAP

DCCH/

DTCH

Remove RLC Header & Reassembly

Acknowledgements

Received acknowledgements

RLC Control Unit

Set fields in RLC Header (e.g. set poll bits)

MUX

Retransmission buffer & mangement

Segmentation & Concatenation & Add RLC Header

Transmission buffer

Demux/Routing[F.F.S]

DCCH/

DTCH

DCCH/DTCH

DCCH/

DTCH

Receiver buffer & Retransmission management

Transmitting Side

Receiving Side

_989818599.doc

OctN

Oct3３

Oct2２

Oct1１

(Optional)

PAD or a piggybacked STATUS PDU

Data

Length Indicator

E

E

D/CA/U

Sequence Number

Sequence Number

P

HR

_990335639.doc

OctN

Oct2

Oct1

PAD

Data

Length Indicator

E

E

(Optional)

Sequence Number

D/C

_990335695.doc

OctN

Oct2

Oct1

PAD

Data

Length Indicator

E

E

(Optional)

Sequence Number

_989844771.doc
[image: image1.bmp]

AM-Entity

DCCH/

DTCH

DCCH/DTCH

Remove RLC header & Extract Piggybacked information

AM-SAP

DCCH/

DTCH

Deciphering

Acknowledgements

Received acknowledgements

RLC Control Unit

Add RLC header

Set fields in RLC Header (e.g. set poll bits). Optionally replace PAD with piggybacked information.

MUX

Retransmission buffer & mangement

Segmentation/Concatenation

Transmission buffer

Demux/Routing[F.F.S]

Ciphering

DCCH/

DTCH

DCCH/DTCH

DCCH/

DTCH

Receiver buffer & Retransmission management

Transmitting Side

Receiving Side

Reassembly

Piggybacked status

_989846716.doc

CRLC-CONFIG-R.req

[F.F.S]RESET

RESET ACK

[F.F.S]RESET ACK

[F.F.S]RESET

3.

ResetRecov.

Pending

CRLC-CONFIG-R.req

CRLC-CONFIG-R.req

1.

Null

2.

Ack.

Data Transfer

Ready

Received signal

Sent signal

_989669595.doc

D/C

R

PDU Type

PAD

Oct１

OctN

_989671601.doc

.

DTCH/DCCH/CCCH/BCCH/PCCH: UMD PDU

DTCH/DCCH/CCCH/BCCH/PCCH: UMD PDU

UTRAN/UE

.

UE/UTRAN

.

DTCH/DCCH/CCCH/BCCH/PCCH: UMD PDU

_989817991.doc
[image: image1.wmf] S

U

F

I

1

Octet 1

Octet 2

Octet 3

Octet N

D/C

PDU type

PA

…

S

U

F

I

K

S

U

F

I

1

S

U

F

I

1

 SUFI1

Octet 1

Octet 2

Octet 3

Octet J

PA

…

 SUFI1

 SUFIK

 SUFI1

_989671614.doc

DTCH/DCCH: AMD PDU

DTCH/DCCH: AMD PDU

UE/UTRAN

UTRAN/UE

DTCH/DCCH: AMD PDU

.

.

.

_989671536.doc

DTCH/CCCH/BCCH/PCCH/SCCH: Tr PDU

DTCH/CCCH/BCCH/PCCH/SCCH: Tr PDU

UE/UTRAN

UTRAN/UE

DTCH/CCCH/BCCH/PCCH/SCCH: Tr PDU

.

.

.

_989656807.doc

1.

Null

2.

Transparent

Data Transfer

Ready

Received signal

Sent signal

CRLC-CONFIG-R.req

CRLC-CONFIG-R.req

_989656930.doc

Received signal

Sent signal

CRLC-CONFIG-R.req

1.

Null

2.

Unack.

Data Transfer

Ready

CRLC-CONFIG-R.req

_988440612.doc

UE/UTRAN

UTRAN/UE

DTCH/DCCH: STATUS PDU

_989301302.doc
[image: image1.bmp]

UM-SAP

UM-SAP

BCCH/PCCH/ CCCH/DCCH/ DTCH

Transmission buffer

Segmentation & Concatenation

Transm.

UM-Entity

Ciphering

Receiver

buffer

Remove RLC header

Receiver

UM-Entity

Radio Interface

BCCH/PCCH/ CCCH/DCCH/ DTCH

Add RLC header

Deciphering

Reassembly

_988441004.doc

Trigger STATUS PDU transfer

UTRAN/UE

DTCH/DCCH: AMD PDU, AMD PDU, …

UE/UTRAN

_988440526.doc

UTRAN/UE

UE/UTRAN

DTCH/DCCH: RESET

DTCH/DCCH: RESET ACK

_981809995.doc

Transm. UM-Entity

Transm. Tr-Entity

AM-Entity

Radio Interface

Receiv. Tr-Entity

Receiv.

UM-Entity

Receiving side

Transmitting side

Receiv. Tr-Entity

Receiv.

UM-Entity

Transm. Tr-Entity

MS

RLC

AM-Entity

UTRAN

Transm. UM-Entity

Receiving side

Transmitting side

MAC

Higher layer

_982522161.doc

SN=1, P=0

SN=2, P=0

SN=3, P=0

SN=4, P=0

SN=5, P=1

SN=2, P=0 R

STAT (2,3,4)

T_STAT

If polling message is sent during T_Prohibit is active, T_Prohibit is stopped and it is set again.

T_Prohibit

STAT

SN=3, P=0 R

T_STAT

SN=4, P=1 R

T_Prohibit

STOP

SN=6, P=0

STOP

_982522162.doc

As T-Prohibit is active, polling is not allowed.

RLC SDU1

RLC SDU2

As T-Prohibit is not active, polling is performed

Status report

T_Prohibit

Status report

SN=7, P=0

P = 0: polling is not performed

P = 1: polling is performed

SN=8, P=1

SN=6, P=0

SN=5, P=0

SN=4, P=0

SN=3, P=1

SN=2, P=0

SN=1, P=0

RLC SDU3

_982522158.doc

T_STAT

T_STAT

STAT

STOP

Reset

SN=8, P=0

SN=6, P=0

SN=3, P=1, R

T.O

SN=7, P=0

SN=5, P=0

T_Prohibit

SN=4, P=0

SN=3, P=1

SN=2, P=0

SN=1, P=0

T_Prohibit

_982522159.doc

SN=1, P=0

SN=2, P=0

SN=3, P=0

SN=4, P=0

SN=5, P=0

SN=2, P=0 R

USTAT (2,3)

Detects loss of AMD PDUs

SN=3, P=0 R

SN=6, P=0

_982133980.doc
[image: image1.bmp]

UM-SAP

UM-SAP

BCCH/PCCH/CCCH/DCCH/

DTCH

Transmission buffer

Segmentation & Concatenation & Add RLC Header

Transm.

UM-Entity

Receiver

buffer

Remove RLC Header & Reassembly

Receiver

UM-Entity

Radio Interface

BCCH/PCCH/CCCH/DCCH/

DTCH

_977683235.doc

A/U

N(SQ)

PDU Type

PAD

Oct２

Oct１

Oct３

OctN

Reserved

N(MR)

N(MR)

_980754143.doc
[image: image1.bmp]

Tr-SAP

Segmentation

Transmission buffer

Transm.

Tr-Entity

BCCH/PCCH/

CCCH/DTCH

BCCH/PCCH/

CCCH/DTCH

Radio Interface

Tr-SAP

Reassembly

Receiver

 buffer

Receiving

Tr-Entity

_977683234.doc

A/U

R

PDU Type

PAD

Oct２

Oct１

Oct３

OctN

Reserved

N(MR)

N(MR)

_977683221.doc

STAT PDU

Incoming Connection Pending 3

END PDU

LAC-RELEASE. indication

AMD PDU

AMD PDU queued up

Incoming Connection Pending 3

USTAT PDU

Idle 1

_977683225.doc

VT(MS) := BGAK.N(MR)

Idle 1

TRUE

BGAK PDU

Initialize State Variables

Initialize State Variables

Detect Retransmission

LAC-ESTABLISH. confirm

Initialize VR(MR)

VT(MS) := BGN.N(MR)

Data Transfer Ready 5

BGREJ PDU

FALSE

TRUE

Data Transfer Ready 5

Reset Timer_CC

Set Data Transfer Timers

LAC-RELEASE. indication

BGAK PDU

Reset Timer_CC

Retransmission

Outgoing Connection Pending 2

BGN PDU

LAC-ESTABLISH. confirm

Set Data Transfer Timers

Outgoing Connection Pending 2

Reset Timer_CC

_977683228.doc

Idle 1

BGAK PDU

Idle 1

Idle 1

END PDU

STAT PDU

AMD PDU queued up

USTAT PDU

AMD PDU

_977683229.doc

VT(MS) := BGN.N(MR)

Idle 1

Retransmission

BGN PDU

Initialize VR(MR)

BGN PDU

ENDAK PDU

Idle 1

Idle 1

ENDAK PDU

VR(SQ) := 0

VR(US) := 0

Clear-buffers := Yes

Idle 1

BGREJ PDU

FALSE

TRUE

Outgoing Connection Pending 2

Clear Transmitter

BGREJ PDU

END PDU

LAC-ESTABLISH. request

Detect Retransmission

VT(SQ) := 0

VT(US) := 1

Idle 1

LAC-ESTABLISH. Indication

Set Timer_CC

Incoming Connection Pending 2

Clear-buffers := BR

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

_977683227.doc

ENDAK PDU

END PDU

Outgoing Connection Pending 2

AMD PDU queued up

STAT PDU

USTAT PDU

AMD PDU

Outgoing Connection Pending 2

_977683223.doc

Clear-buffers := BR

TRUE

Initialize State Variables

Detect Retransmission

Incoming Connection Pending 3

LAC-RELEASE. indication

Initialize VR(MR)

VT(MS) := BGN.N(MR)

Data Transfer Ready 5

END PDU

FALSE

Idle 1

Clear Transmitter

MLAC-RELEASE. request

BGAK PDU

ENDAK PDU

LAC-ESTABLISH. indication

Retransmission

Incoming Connection Pending 3

BGN PDU

LAC-ESTABLISH. response

Set Data Transfer Timers

Incoming Connection Pending 3

Idle 1

LAC-RELEASE. indication

_977683224.doc

Set Timer_CC

LAC-RELEASE. indication

END PDU

Idle 1

Reset Timer_CC

Timer_CC (expiry)

LAC-RELEASE. request

FALSE

TRUE

VT(CC) := 1

Set Timer_CC

BGN PDU

MLAC-RELEASE. request

VT(CC) >= MaxCC

Outgoing Connection Pending 2

Idle 1

Outgoing Disconnection Pending 4

END PDU

Outgoing Connection Pending 2

Reset Timer_CC

VT(CC) := VT(CC) + 1

_977683222.doc

Idle 1

TRUE

BGREJ PDU

Idle 1

LAC-RELEASE. indication

Idle 1

LAC-RELEASE. request

BGAK PDU

ENDAK PDU

TRUE

Incoming Connection Pending 3

BGREJ PDU

Incoming Connection Pending 3

LAC-RELEASE. indication

_977683211.doc

FALSE

FALSE

TRUE

VR(H) := VR(H) + 1

FALSE

VR(H) < VR(MR)

VR(H) := VR(MR)

FALSE

List element1 := VR(H)

List element2 := VR(MR)

TRUE

A

TRUE

TRUE

AMD.N(S) = VR(R)

AMD.N(S) < VR(MR)

Data Transfer Ready 5

Reset Data Transfer Timers

USTAT PDU

Save AMD PDU in Receiver buffer

B

FALSE

List element1 := VR(H)

List element2 := AMD.N(S)

TRUE

Data Transfer Ready 5

Receiver buffer is available

TRUE

Reassembly for AMD PDU

Save AMD PDU in Receiver buffer

TRUE

Data Transfer Ready 5

VR(H) := AMD.N(S) + 1

FALSE

Data Transfer Ready 5

Save AMD PDU in Receiver buffer

VR(H) < AMD.N(S)

AMD.N(S) = VR(H)

AMD.N(S) is

in already in Receiver buffer

Data Transfer Ready 5

FALSE

Remove AMD PDU with AMD.N(S) = VR(R) from Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

Reassembly for AMD PDU

AMD.N(S) = VR(R) is in Receiver buffer

TRUE

USTAT PDU

VR(R) := VR(R) + 1

Save AMD PDU in

AM_Reassembly buffer

Data Transfer Ready 5

FALSE

FALSE

TRUE

VR(R) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

_977683216.doc

LAC-AMDATA. request

MLAC-RELEASE. request

AMD PDU queued up

Put AMD PDU into Retransmission queue with AMD.P := 1

Data Transfer Ready 5

Data Transfer Ready 5

Remove AMD.N(S) = VT(A) from Transmission buffer

Save AMD PDU in AM queue

Idle 1

FALSE

TRUE

Data Transfer Ready 5

Timer_STAT (expiry)

Reset Data Transfer Timers

AMD PDU queued up

n >= NP

Release buffers

Save AMD PDU in Transmission buffer

n := n + 1

n := 0

Segmentation for AMD PDU

_977683218.doc

Outgoing Disconnection Pending 4

USTAT PDU

AMD PDU

Outgoing Disconnection Pending 4

BGAK PDU

STAT PDU

_977683219.doc

Clear-buffers := BR

TRUE

END PDU

Outgoing Disconnection Pending 4

Reset Timer_CC

Detect Retransmission

Incoming Connection Pending 3

Outgoing Disconnection Pending 4

Initialize VR(MR)

VT(MS) := BGN.N(MR)

Outgoing Connection Pending 2

FALSE

Reset Timer_CC

Clear Transmitter

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

BGAK PDU

BGN PDU

AMD PDU queued up

LAC-ESTABLISH. indication

Retransmission

Outgoing Disconnection Pending 4

BGN PDU

LAC-ESTABLISH. request

Set Timer_CC

LAC-RELEASE. confirm

_977683217.doc

TRUE

END PDU

Outgoing Disconnection Pending 4

VT(CC) := VT(CC) + 1

Outgoing Disconnection Pending 4

Idle 1

Idle 1

FALSE

Reset Timer_CC

LAC-RELEASE. confirm

Idle 1

ENDAK PDU

LAC-RELEASE. confirm

Retransmission

BGREJ PDU

Timer_CC (expiry)

END PDU

Set Timer_CC

Reset Timer_CC

END PDU

LAC-RELEASE. confirm

_977683213.doc

Outgoing Connection Pending 2

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

BGN PDU

Initialize VR(MR)

A

Set Timer_CC

Release buffers

_977683214.doc

Data Transfer Ready 5

AMD PDU queued up

Retransmission

queue is empty

AM queue is empty

Remove AMD PDU from AM queue

AM queue

is empty or VT(S) >= VT(MS)

AMD.P := 1

AMD PDU

Set Timer_STAT

Set Timer_Prohibit

Data Transfer Ready 5

Data Transfer Ready 5

AMD.P = 1

Timer_Prohibit is Active

AMD PDU

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

Save AMD PDU in Transmission

buffer VT(DAT) := 0

Update stored AMD PDU. VT(DAT) in Transmission buffer

VT(DAT) := VT(DAT) + 1

TRUE

FALSE

Save AMD PDU in

STAT_waiting buffer

P := 0

VT(DAT) := VT(DAT) + 1

FALSE

TRUE

Data Transfer Ready 5

TRUE

Data Transfer Ready 5

AMD. VT(DAT) >= MaxDAT

Save AMD PDU in

Transmission buffer and

STAT_waiting buffer

P := 0

VT(DAT) := 0

AMD PDU

AMD.P = 1

AMD PDU

TRUE

FALSE

Remove AMD PDU from Retransmission queue

Update stored AMD PDU. VT(DAT) in Transmission buffer

P := 0

VT(DAT) := VT(DAT) + 1

FALSE

A

Reset Data Transfer Timers

AMD.P := 0

If another AMD PDU is already in STAT_waiting buffer, replace old AMD PDU with new AMD PDU.

VT(S) := VT(S) + 1

VT(S) := VT(S) + 1

_977683212.doc

FALSE

FALSE

AMD PDU.P = 1

TRUE

VR(H) := VR(H) + 1

FALSE

VR(H) < VR(MR)

VR(H) := VR(MR)

FALSE

Data Transfer Ready 5

TRUE

C

TRUE

TRUE

AMD.N(S) = VR(R)

AMD.N(S) < VR(MR)

AMD.N(S)

is already in Receiver buffer

VR(H) < AMD.N(S)

VR(H) := AMD.N(S) + 1

Save AMD PDU in Receiver buffer

Save AMD PDU in Receiver buffer

B

FALSE

FALSE

TRUE

C

Receiver buffer is available

TRUE

TRUE

Save AMD PDU in Receiver buffer

TRUE

FALSE

AMD PDU

FALSE

TRUE

C

AMD.N(S) < VR(R)

AMD.N(S) = VR(H)

C

Data Transfer Ready 5

FALSE

Remove AMD PDU with AMD.N(S) = VR(R) from Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

Reassembly for AMD PDU

AMD.N(S) = VR(R) is in Receiver buffer

TRUE

Reassembly for AMD PDU

VR(R) := VR(R) + 1

Save AMD PDU in

AM_Reassembly buffer

C

FALSE

FALSE

TRUE

VR(R) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

_977683206.doc

i := number of STAT list elements Count := 0

Remove AMD PDUs from VT(A) to STAT.N(R) - 1 from Transmission buffer

i > 1

Data Transfer Ready 5

Data Transfer Ready 5

Reset Timer_STAT

TRUE

TRUE

Seq1 < VT(S)

VT(A) := STAT.N(R)

VT(MS) := STAT.N(MR)

FALSE

FALSE

F

F

TRUE

VT(A) <=

STAT.N(R) < VT(S)

TRUE

Reset Data Transfer Timers

A

FALSE

STAT PDU

Seq1 := First list element i := i - 1

G

F

Remove AMD PDU from STAT_waiting buffer

AMD PDU.N(S)

<= STAT.N(R) - 1 is in STAT_waiting buffer

FALSE

_977683208.doc

Seq1 := List element 1

Seq2 := List element 2

Remove AMD PDUs from VT(A) to USTAT.N(R) - 1 from Transmission buffer

VT(A) <=

Seq1 < seq2 < VT(S)

Data Transfer Ready 5

VT(A) := USTAT.N(R)

VT(MS) := USTAT.N(MR)

FALSE

FALSE

Reset Timer_STAT

TRUE

VT(A) <=

USTAT.N(R) < VT(S)

TRUE

USTAT PDU

E

D

Remove AMD PDU from STAT_waiting buffer

AMD PDU.N(S)

<= USTAT.N(R) - 1 is in STAT_waiting buffer

D

FALSE

_977683210.doc

FALSE

Start building a new STAT

i ＞ VR(H)

FALSE

Append i to list;

List_Length := List_Length + 1

Append i to list;

List_Length := List_Length + 1

TRUE

Append i to list

i ：＝ VR(H)

AMD.N(S) = i

is in Receiver buffer

i < VR(H)

C

FALSE

TRUE

Data Transfer Ready 5

i ：＝ i + 1

TRUE

FALSE

List_Length >= MaxSTAT

i ：＝ i + 1

TRUE

Data Transfer Ready 5

TRUE

Append i to list;

List_Length := 1

AMD.N(S) = i

is in Receiver buffer

TRUE

STAT PDU

List_Length := 0

i := VR(R)

STAT PDU

FALSE

FALSE

STAT PDU

_977683207.doc

Seq1 = Seq2

Remove AMD.N(S) = seq1 from Transmission buffer

Seq1 := Seq1 + 1

Data Transfer Ready 5

TRUE

FALSE

D

TRUE

AMD.N(S) =

seq1 is in Transmission buffer

Reset Data Transfer Timers

A

AMD PDU queued up

Put AMD PDU into Retransmission queue

Save AMD PDU in Transmission buffer

E

FALSE

_977683204.doc

LAC-UMDATA. request

Segmentation for UMD PDU

VR(US) = UMD.N(US)

UMD.N(US) = VR(US)

YES

*

TRUE

Save UMD PDU in UM queue

UMD PDU queued up

QR

UMD PDU

Save UMD PDU in QR queue

FALSE

FALSE

TRUE

NO

Invalid PDU

FALSE

Reassembly for UMD PDU

UMD PDU queued up

n >= NP

Save UMD PDU in

UM_Reassembly buffer

n := 0

n := n + 1

TRUE

n := n + 1

n := 0

n >= NP

_977683205.doc

TRUE

TRUE

Save AMD PDU in Transmission buffer

Remove AMD.N(S) = seq1 from Transmission buffer

Seq1 := Seq1 + 1

FALSE

TRUE

TRUE

YES

H

NO

FALSE

FALSE

F

FALSE

AMD PDU is already in Retransmission queue

Seq２ := Next list element I := I - 1

G

TRUE

TRUE

Seq1 = Seq2

FALSE

FALSE

H

Update the P flag of AMD.N(S) = Seq2 – 1 in Retransmission queue

P := 1

TRUE

AMD.N(S) = Seq1 is in Transmission buffer

Remove AMD.N(S) = seq1 from STAT_waiting buffer

TRUE

Seq1 < Seq2 <= VT(S)

FALSE

AMD PDU queued up

TRUE

F

Put AMD PDU into Retransmission queue, Count := Count + 1

Data Transfer Ready 5

F

FALSE

i > 0

FALSE

Seq２ := Next list element I := I - 1

Clear-buffers

Remove AMD.N(S) = seq1 from Transmission buffer

Seq1 < Seq2 <= VT(S)

Seq1 := Seq1 + 1

i > 0

Seq1 = Seq2

AMD.N(S) = seq1

is in STAT_waiting buffer

_977683201.doc

Add LAC Header

Segmentation and Concatenation

Segmentation and Concatenation

Segmentation

for UMD PDU

NP := Number of UMD PDUs

Add LAC Header

Segmentation

for AMD PDU

NP := Number of AMD PDUs

AMD.P := 1 (If AMD includes the last segment of LAC SDU)

AMD.P := 0 (For other cases)

_977683202.doc

Remove UMD PDU from QR queue

*

UMD PDU is transmitted at Timer_QR intervals

ｊ := ｊ + 1

ｊ := 0

UMD PDU

VT(US) := VT(US) + 1

TRUE

UM queue is empty

FALSE

TRUE

VT(US) := VT(US) + 1

UMD PDU queued up

FALSE

TRUE

QR queue is empty

ｊ >= MaxQR

UMD PDU

Remove UMD PDU from UM queue

FALSE

_977683199.doc

Clear-buffers

Clear Retransmission queue

VT(S) := 0

VT(A) := 0

Initialize State Variables

Clear Transmission buffer

YES

NO

Clear STAT_waiting buffer

Clear STAT_waiting buffer

Clear Transmission buffer

Clear Receiver buffer

Clear AM queue

Release buffers

VR(R) := 0

VR(H) := 0

Clear Transmitter

Clear AM queue

VT(PD) := 0

VT(DAT) := 0

_977683200.doc

Remove LAC Header

Remove LAC SDU from UM_Reassembly buffer

FALSE

TRUE

Reassembly

Reassembly

for UMD PDU

LAC-AMDATA. indication

LAC SDU is completed

Remove LAC Header

Reassembly

Remove LAC SDU from AM_Reassembly buffer

FALSE

LAC-UMDATA. indication

LAC SDU is completed

TRUE

Reassembly

for AMD PDU

_977683198.doc

retransmission := FALSE

Reset Timer_STAT

Reset Timer_Prohibit

Reset Data

Transfer Timers

This assignment of VR(MR) is the initial window size granted to the peer transmitter, and is implementation or connection dependent. VR(MR) is updated as data transfer take place, based on the static or dynamic window selected by the receiver.

VR(MR) := value

Initialize VR(MR)

retransmission := TRUE

FALSE

VR(SQ) :＝ N(SQ)

Detect Retransmission

TRUE

N(SQ) ＝ VR(SQ)

