TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3)
TSGR2#2(99)058

Stockholm 8th to 11th March 1999

Agenda Item:
4.2

Source:
Editor
Title:
3GPP S2.22 V0.0.1: Description of the RLC Protocol

Document for:

TD <>
 TS RAN S2.22 V0.0.1 (1999-01)
Technical Specification

3rd Generation Partnership Project (3GPP);

Technical Specification Group (TSG) RAN;

Working Group 2 (WG2);

Description of the RLC Protocol

Reference

<Workitem> (<Shortfilename>.PDF)

Keywords

Digital cellular telecommunications system, Universal Mobile Telecommunication System (UMTS), UTRA, IMT-2000

3GPP

Postal address

Office address

Internet

secretariat@3gpp.org

Individual copies of this deliverable
can be downloaded from

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

©

All rights reserved.

Contents

51.
Scope

2.
References
5
3.
Definitions and Abbreviations
6
4.
General
7
4.1. Objective
7
4.2. Overview on sublayer architecture
7
4.2.1.
Model of RLC
7
4.2.1.1.
Model of transmitting side
9
4.2.1.2.
Model of receiving side
10
5.
Functions
11
6.
Services provided to upper layers
12
7.
Services expected from MAC
15
8.
Elements for layer-to-layer communication
16
8.1. Primitives between RLC and higher layers
16
9.
Elements for peer-to-peer communication
16
9.1. Protocol data units
16
9.2. Formats and parameters
17
9.3. Protocol states
21
9.4. State variables
21
9.5. Timers
22
9.6. Protocol Parameters
23
9.7. Specific functions
23
9.7.1.
Credit and peer-to-peer flow control
23
10.
Handling of unknown, unforeseen and erroneous protocol data
24
11.
Elementary procedures
24
12.
SDL diagrams
24
13.
12. History
45
14.
45

Intellectual Property Rights

IPRs essential or potentially essential to the present deliverable may have been declared to ETSI/3GPP. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, free of charge. This can be found in the latest version of the ETSI Technical Report: ETR 314: "Intellectual Property Rights (IPRs); Essential or potentially Essential, IPRs notified to ETSI in respect of ETSI standards". The most recent update of ETR 314, is available on the ETSI web server or on request from the Secretariat.

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in the ETR 314, which are, or may be, or may become, essential to the present document.
Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of this TS are subject to continuing work within 3GPP TSG-RAN and may change following formal TSG RAN approval.
1.
Scope

The scope of this description is to describe the RLC protocol. A description document is intermediate between a stage 2 document and a protocol specification. Once completed, it should be sufficient for manufacturers to start some “ high level design ” activities. It should allow as well to assess the complexity of the associated protocol. After the completion of a description document, the drafting of the protocol specification should not have to face difficulties which would impact the other protocols i.e. the radio interface protocol architecture should be stable. This means that some procedures which are felt critical in terms of complexity will need to be studied in more details in the description document so that no problem is faced in the writing of the final protocol.

The following lists typical contents for a description document :

1. list of procedures

2. logical flow diagrams for normal procedures

3. logical description of message (where it should be possible to guess roughly the size of the various information elements)

4. principles for error handling

5. some exceptional procedures which are felt critica

6. It should, as far as possible, have the same format and outline as the final specification

The following is not covered

1. exact message format

2. all scenarios

2.
References

[1] UMTS XX.XX, UTRAN Architecture description;

[2] Vocabulary used in the UMTS L2&L3 Expert Group;

[3]
S2.01, Radio Interface Protocol Architecture Ver. 0.0.1

[3]
[4]
S2.02, Layer 1; General requirements, Ver. 0.0.1

[5]
S2.03, Description of UE States and Procedures in Connected Mode, Ver. 0.0.1
[6]

s2.04 , UE Procedures in Idle Mode
[4]
[5]
[6]
 [7]
 S2.21, Description of the MAC Protocol, Ver. 0.0.1

 [8]
S2.31b, Description of the RRC Protocol, Ver. 0.0.1

[7]
[8]
3.
Definitions and Abbreviations

ARQ

Automatic Repeat Request

BCCH

Broadcast Control Channel

BCH

Broadcast Channel

C- Control-

CC

Call Control

CCCH

Common Control Channel

CCH

Control Channel

CCTrCH

Coded Composite Transport Channel

CN

Core Network

CRC

Cyclic Redundancy Check

DC

Dedicated Control (SAP)

DCCH

Dedicated Control Channel

DCH

Dedicated Channel

DL

Downlink

DSCH

Downlink Shared Channel

DTCH

Dedicated Traffic Channel

FACH

Forward Link Access Channel

FCS

Frame Check Sequence

FDD

Frequency Division Duplex

GC

General Control (SAP)

HO

Handover

ITU

International Telecommunication Union

kbps

kilo-bits per second

L1

Layer 1 (physical layer)

L2

Layer 2 (data link layer)

L3

Layer 3 (network layer)

MAC

Medium Access Control

MS

Mobile Station

MM

Mobility Management

Nt

Notification (SAP)

PCCH

Paging Control Channel

PCH

Paging Channel

PDU

Protocol Data Unit

PHY

Physical layer

PhyCH

Physical Channels

RACH

Random Access Channel

RLC

Radio Link Control

RNTI

Radio Network Temporary Identity

RRC

Radio Resource Control

SAP

Service Access Point

SCCH

Synchronization Control Channel

SCH

Synchronization Channel

SDU

Service Data Unit

TCH

Traffic Channel

TDD

Time Division Duplex

TFI

Transport Format Indicator

TFCI

Transport Format Combination Indicator

TPC

Transmit Power Control

U- User-

UE

User Equipment

UL

Uplink

UMTS

Universal Mobile Telecommunications System

URA

UTRAN Registration Area

UTRA

UMTS Terrestrial Radio Access

UTRAN

UMTS Terrestrial Radio Access Network

4.
General

4.1.

Objective

4.2.

Overview on sublayer architecture

4.2.1. Model of RLC

Figure 1 gives an overview model of the RLC layer. The figure illustrates two peer entities, one in the UE and one in the UTRAN. Though it is not shown in the figure the RLC layer may consist of several entities. A RLC entity offers three kinds of data transfer services to the higher layers. The services are transparent mode, unacknowledged mode and acknowledged mode data transfer. The entities have one transmitting side and one receiving side. More detailed 7descriptions of the transmitting and receiving sides are given in subsections 4.2.1 and 4.2.2.

[image: image1.wmf]Unack.

functions

Ack.

functions

MUX

DEMUX

Ack.

functions

Unack.

functions

Transp.

functions

Transp.

functions

RLC

Ctrl

Unit

Unack.

functions

Ack.

functions

MUX

DEMUX

Ack.

functions

Unack.

functions

Transp.

functions

Transp.

functions

RLC

Ctrl

Unit

Transmitting

side

UTRAN

Receiving

side

Transmitting

side

Receiving

side

MS

Radio Interface

RLC

MAC

Higher

layer

Figure 4‑1. Overview model of RLC.

4.2.1.1. Model of transmitting side

A model of the transmitting side of a RLC entity is presented in REF _Ref433599169 \h
 below.

[image: image2.wmf]Transmission

buffer

Transmission

buffer

Segmentation &

Concatenation &

Set RLC Header

Segmentation

Transparent mode

Tr-SAP

Retransmission

buffer &

mangement

MUX

Complete RLC

Header (eg poll bits)

MUX/Logical channel Selection (FFS)

Transmission

buffer

RLC Control

Unit

Unacknowledged mode

Acknowledged mode

Received

acknowledgements

Acknowledgements

From receiving side

UM/AM-SAP

BCCH/PCCH/

CCCH/DTCH

DCCH

or

DTCH

DCCH

or

DTCH

DCCH

or

DTCH

Segmentation &

Concatenation &

Set RLC Header

Figure 4‑2
. The transmitting side of a RLC entity.

RLC offers three kinds of data transfer services to the higher layers through the RLC-SAP. The services are transparent mode, unacknowledged mode and acknowledged mode data transfer. The transparent mode is independent from both unacknowledged mode data transfer and acknowledged mode data transfer. The independence between unacknowledged mode and acknowledged mode is FFS. If the logical channel is a DCCH then there is only one DCCH. The dashed line illustrates the possibility to transfer higher layer data during the establishment of an RLC link [Note: This could be useful in the control plane but it is for further study]. A RLC entity can provide unacknowledged and acknowledged mode data transfer simultaneously, but not transparent mode data transfer. Therefore are these services provided through different SAPs, Tr-SAP and UM/AM-SAP. The data flow through the transmitting side of an RLC entity for these services are described below.

1. Transparent mode data transfer
RLC receives SDUs from the higher layers. RLC might segment the SDUs into appropriate RLC PDUs without adding any overhead. How to perform the segmentation is decided upon when the service is established. RLC delivers the RLC PDUs to MAC through either a BCCH, PCCH or a DTCH. The delivery of RLC PDUs to MAC through CCCH is FFS. Which type of logical channel depends on if the higher layer is located in the control plane (BCCH, PCCH, CCCH) or user plane (DTCH).
2. Unacknowledged mode data transfer
RLC receives SDUs from the higher layers. If the SDU is too large it is segmented into appropriate RLC PDUs. The SDU might also be concatenated with other SDUs. RLC adds a header and the PDU is placed in the transmission buffer. The MUX then decides which PDUs and when the PDUs are delivered to MAC. The MUX also decides which logical channel that should be used. The number of logical channels that is needed is decided upon when the service is established (e.g. in the figure there is three logical channels). The type of the logical channels depends on if the higher layer is located in the control plane (DCCH) or in the user plane (DTCH).
3. Acknowledged mode data transfer
RLC receives SDUs from the higher layers. The SDUs are segmented and/or concatenated to PDUs of fixed length. The length of the PDUs is decided upon when the service is established. After that RLC adds a header and the PDU is placed in the retransmission buffer and the transmission buffer. The MUX then decides which PDUs and when the PDUs are delivered to MAC, e.g. it could be useful to send RLC control PDUs on one logical channel and data PDUs on another logical channel. The PDUs are delivered to the MUX via a function that sets the poll bit in the PDUs.
The retransmission buffer also receives acknowledgements from the receiving side, which are used to indicate retransmissions of PDUs and when to delete a PDU from the retransmission buffer.

The RLC control unit controls the RLC entity and handles control signalling between the peer entities (e.g. establishment and release of a RLC link). It is split between the transmitting and receiving side.

4.2.1.2. Model of receiving side

A model of the receiving side of an RLC entity is presented in Figure below.

[image: image3.wmf]Receiver

buffer

Remove RLC

Header &

Reassembly

Reassembly

Unacknowledged mode

RLC Control

Unit

BCCH/PCCH/

CCCH/DTCH

DEMUX/ROUTING (FFS)

Receiver

buffer &

Retransmission

management

Acknowledgements

Received

Acknowledgements

Remove RLC

Header &

Reassembly

Receiver

buffer

Tr-SAP

UM/AM-SAP

Acknowledged mode

Transparent mode

To transmitting side

DCCH

or

DTCH

DCCH

or

DTCH

DCCH

or

DTCH

Figure 4‑3
. RLC receiver entity.

The data flow through the receiving side of an RLC entity for the three different data transfer services are described below.

1. Transparent mode data transfer
RLC receives PDUs through either a DCCH or a DTCH from the MAC sublayer. RLC reassembles (if segmentation has been performed) the PDUs into RLC SDUs. How to perform the reassembling is decided upon when the service is established. RLC delivers the RLC SDUs to the higher layer through the RLC-SAP.
2. Unacknowledged mode data transfer
RLC receives PDUs through one of the logical channels from the MAC sublayer. RLC removes header from the PDUs and reassembles the PDUs (if segmentation has been performed) into RLC SDUs. After that the SDUs are delivered to the higher layer.
3. Acknowledged mode data transfer
RLC receives PDUs through one of the logical channels from the MAC sublayer. The PDUs are placed in the receiver buffer until a complete SDU has been received. The receiver buffer requests retransmissions of PDUs by sending negative acknowledgements to the peer entity. After that the headers are removed from the PDUs and the PDUs are reassembled into a SDU. Finally the SDU is delivered to the higher layer.
The receiving side also receives acknowledgements from the peer entity. The acknowledgements are passed to the retransmission buffer on the transmitting side.

The RLC control unit controls the RLC entity and handles control signalling between the peer entities (e.g. establishment and release of a RLC link). It is split between the transmitting and receiving side.

5.
Functions

For a detailed description of the following functions see [3].

· Connection Control;

· Segmentation and reassembly;

· Concatenation;

· Padding;

· Transfer of user data;

· Error correction;

· In-sequence delivery of higher layer PDUs;

· Duplicate Detection;

· Flow control;

· Protocol error detection and recovery.

The following potential function(s) are regarded as further study items:

· Suspend/resume function;

·
·
· Ciphering.
· Quick repeat (FFS).
6.
Services provided to upper layers

 For a detailed description of the following functions see [3].

· RLC connection establishment/release;

· Transparent data transfer Service

Following functions are needed to support transparent data transfer:

· Segmentation and reassembly
· Transfer of user data;

· Unacknowledged data transfer Service

Following functions are needed to support unacknowledged data transfer:

· Segmentation and reassembly

· Concatenation
· Transfer of user data;

· Acknowledged data transfer Service

Following functions are needed to support acknowledged data transfer:

· Segmentation and reassembly

· Concatenation

· Transfer of user data

· Error correction

· In-sequence delivery of higher layer PDUs

· Duplicate detection

· Flow Control
· Protocol error detection and recovery;

· QoS setting;

· Notification of unrecoverable errors.

· Multicast delivery of higher layer messages. (FFS)

Table 6‑1: RLC modes and functions in UE downlink side

Service
Functions
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
-
+

Segmentation
-
-
+

Unacknowledged

Service
Applicability
FFS
+
+

Segmentation
-
+
+

Concatenation
-
+
+

Acknowledged

Service
Applicability
-
+
+

Segmentation
-
+
+

Concatenation
-
+
+

Flow Control
-
+
+

Error Correction
-
+
+

Protocol error correction & recovery
-
+
+

.
Table 6‑2: RLC modes and functions in UE uplink side

Service
Functions
SCCH
BCCH
PCCH
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
+
+
+
-
+

Reassembly
+
+
+
-
-
+

Unacknowledged

Service
Applicability
+
+
+
FFS
+
+

Reassembly
+
+
+
-
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+

Reassembly
-
-
-
-
+
+

Error correction
-
-
-
-
+
+

Flow Control
-
-
-
-
+
+

In sequence delivery
-
-
-
-
+
+

Duplicate detection
-
-
-
-
+
+

Protocol error correction & recovery
-
-
-
-
+
+

Table 3.
Table 6‑3: RLC modes and functions in UTRAN downlink side
Service
Functions
SCCH
BCCH
PCCH
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
+
+
+
-
+

Segmentation
+
+
+
-
-
+

Unacknowledged

Service
Applicability
+
+
+
FFS
+
+

Segmentation
+
+
+
-
+
+

Concatenation
+
+
+
-
+
+

Acknowledged

Service
Applicability
-
-
-
-
+
+

Segmentation
-
-
-
-
+
+

Concatenation
-
-
-
-
+
+

Flow Control
-
-
-
-
+
+

Error Correction
-
-
-
-
+
+

Protocol error correction & recovery
-
-
-
-
+
+

Table 6‑4: RLC modes and functions in UTRAN uplink side
Service
Functions
CCCH
DCCH
DTCH

Transparent

Service
Applicability
+
-
+

Reassembly
-
-
+

Unacknowledged

Service
Applicability
FFS
+
+

Reassembly
-
+
+

Acknowledged

Service
Applicability
-
+
+

Reassembly
-
+
+

Error correction
-
+
+

Flow Control
-
+
+

In sequence delivery
-
+
+

Duplicate detection
-
+
+

Protocol error correction & recovery
-
+
+

7.
Services expected from MAC

For a detailed description of the following functions see [3].

· Data transfer;

· Acknowledged data transfer service by MAC for transmission on RACH/FACH is FFS.
8.
Elements for layer-to-layer communication

8.1.
Primitives between RLC and higher layers

The primitives between RLC and upper layers are shown in Table 8.1-1.

Table 8‑1 : Primitives between RLC and upper layers

Generic Name
Parameter

Req.
ind.
Resp.
conf.

RLC-AM-DATA
MU
MU
Not Defined
Not Defined

RLC-UM-DATA
MU, QR (ffs)
MU
Not Defined
Not Defined

RLC-TR-DATA
MU
MU
Not Defined
Not Defined

MRLC-CONFIGURE

MRLC RELEASE

Not Defined
Not Defined

Each Primitive is defined as follows:

a) RLC-AM-DATA req./ind.

It is used for acknowledged data transmission mode of point-to-point connection between the same level user entities.

[Editor’s note: Confirmation for the RLC-AM-DATA procedure is FFS.]

b) RLC-UM-DATA req./ind.

It is used for unacknowledged data transmission mode of point-to-point connection between the same level user entities.

c) RLC-TR-DATA req./ind
It is used for trasparent data transmission mode of point-to-point connection between the same level user entities.

d) MRLC-CONFIGURE
FFS
e) MRLC RELEASE
FFS
The parameter Message Unit (MU) is mapped on MU field on RLC PDU transparently in the case of RLC-AM-DATA req. or RLC-UM-DATA req. And the MU field of RLC PDU received is mapped on MU in the case of RLC-AM-DATA ind. or RLC-UM-DATA ind. transparently. Length of MU must be n octets (n is integer).

The Quick Repeat indicator (QR) indicates whether UMD PDU will be transmitted with Quick Repeat or not. It holds one of two values: “Yes” or “No”. (The need of this indicator is FFS)
9.
Elements for peer-to-peer communication

In unacknowledged transmission, only one type of unacknowledged data PDU is exchanged between peer RLC entities In acknowledged transmission, both (acknowledged) data PDUs and control PDUs are exchanged between peer RLC entities.

9.1.
Protocol data units

Data PDU

a) AMD PDU (Acknowledged Mode Data PDU)

The AMD PDU is used to convey sequentially numbered PDUs containing RLC SDU data. The AMD PDU is used by the RLC when it is in the acknowledged mode.
b) UMD PDU (Unacknowledged Mode Data PDU)

The UMD PDU is used to convey sequentially numbered PDUs containing RLC SDU data. It is used by the RLC when using the unacknowledged data transfer.

 Control PDU

a) BGN PDU (Begin)

The BGN PDU is used by a RLC entity in order to establish a RLC link between the entity and its peer entity.

b) BGAK PDU (Begin Acknowledge)

The BGAK PDU is an acknowledgement to the BGN PDU.

c) BGREJ PDU (Begin Reject)

The BGREJ PDU is used to reject the RLC link setup request of the peer RLC entity.

d) END PDU (End)

The END PDU is used by a RLC entity in order to release the RLC link between the entity and its peer entity.
e) ENDAK PDU (End Acknowledge)

The ENDAK PDU is an acknowledgement to the END PDU.

f) STAT PDU (Solicited Status Response) (FFS)

The STAT PDU is used to respond to a status request from the peer RLC entity.

g) USTAT PDU (Unsolicited Status Response) (FFS)

The USTAT PDU is transmitted upon detection of an erroneous transmission of one or more data PDUs. It is used to inform the transmitter side about missing AMD PDUs at the receiver RLC.
Table 9‑1 : RLC PDU names and descriptions

 Functionality
PDU name
Description

Establishment
BGN
Request Initialization

BGAK
Request Acknowledgement

BGREJ
Connection Reject

Release
END
Disconnect Command

ENDAK
Disconnect Acknowledgement

Acknowledged Data Transfer
AMD
Sequenced acknowledged mode data

STAT
Solicited Status Report

USTAT
Unsolicited Status Report

Unacknowledged Data Transfer
UMD
Sequenced unacknowledged mode data

9.2.
Formats and parameters

[All the section shall be reviewed when the protocol is defined]
AMD PDU

Note: R bit may be H bit. It is FFS.

[image: image4.wmf]Sequence Number

Sequence Number

A/U

E

E

Length Indicator

Data

PAD

Oct

１

Oct

２

Oct

３

OctN

P

(Optional)

R

Figure 9‑1. AMD PDU
UMD PDU

[image: image5.wmf]Oct

１

Oct

２

OctN

Sequence Number

E

E

Length Indicator

Data

PAD

A/U

(Optional)

Figure 9‑2. UMD PDU

BGN PDU

[image: image6.wmf]Oct

１

Oct

２

Oct

３

OctN

A/U

N(SQ)

PDU Type

PAD

N

(

M

R

)

N

(

M

R

)

Reserved

Figure 9‑3. BGN PDU

BGAK PDU

[image: image7.wmf]Oct

１

Oct

２

Oct

３

OctN

A/U

R

PDU Type

PAD

N

(

M

R

)

N

(

M

R

)

Reserved

Figure 9‑4. BGAK PDU

BGREJ, END, ENDAK PDU

[image: image8.wmf]Oct

１

OctN

A/U

R

PDU Type

PAD

Figure 9‑5. BGREJ, END, ENDAK PDU

STAT PDU

[image: image9.wmf]Oct

１

Oct

２

Oct

３

OctN

A/U

R

PDU Type

List Elements

N

(R

)

N

(

M

R

)

N

(R

)

N

(

M

R

)

Oct4

Number of List Elements

R

Oct5

PAD

Figure 9‑6. STAT PDU
USTAT PDU

[image: image10.wmf]Oct

１

Oct

２

Oct

３

OctN

A/U

R

PDU Type

List Element 1

N

(R

)

N

(

M

R

)

N

(R

)

N

(

M

R

)

Oct4

List Element 2

List Element 1

List Element 2

Oct5

Oct6

Oct7

PAD

Figure 9‑7. USTAT PDU
Note: Regarding STAT and USTAT, it is FFS. whether a bitmap type of PDU status indication would be more efficient than List elements.
The RLC PDU parameters are defined as follows:

· A/U bit: 1bit

This field indicates Acknowledged mode data PDU or Unacknowledged mode data PDU/ Control PDU. If it indicates Acknowledged mode, the PDU is AMD PDU.
Bit
Description

0
Unacknowledged mode data PDU/ Control PDU

1
Acknowledged mode data PDU

· PDU Type: 6bit

This field indicates the type of Control PDU. They are indicated by the special values of sequence number field.
Bit
PDU Type
Bit
PDU Type

111111
BGN
111010
STAT

111110
BGAK
111001
USTAT

111101
BGREJ
111000 – 110000
Reserved

111100
END

111011
ENDAK

· Sequence Number (SN)

This field indicates the sequence number of the RLC PDU.
PDU type
Length
Notes

AMD PDU
12 bit
Used for retransmission and reassembly

UMD PDU
6 bit
Used for reassembly

Especially “110000” – “111111” are reserved for PDU Type (Control PDU)

· Polling bit (P): 1bit

This field is used to request a status report (STAT PDU) from the receiver RLC.
Bit
Description

0
-

1
Request a status report

· Extension bit (E): 1bit

This bit indicates whether the next octet will be header information (LI) or data.
Bit
Description

0
The next octet is data

1
The next octet is header information (LI)

· Reserved (R):

One function of this field is to achieve octet alignment. Other functions are FFS. Where no functions are defined, this field shall be coded as zero. This field ignored by the receiver.

· Length Indicator (LI): 7bit

This field is optional and is used if concatenation or padding takes pRLCe. It indicates the end of the last segment of a SDU. Especially “0000000” indicates that the previous RLC PDU is exactly filled with the last segment of a RLC SDU, and “1111111” indicates that the rest part of the RLC PDU is padding.

· N(SQ): 1bit

This field carries the connection sequence value. VT(SQ) is mapped to N(SQ) whenever a new BGN PDU is transmitted. This field is used by the receiver together with VR(SQ) to identify retransmitted BGN PDU.
· N(R): 12bit

VR(R) is mapped to N(R) whenever a STAT or USTAT PDU is generated.
· N(MR): 12bit

VR(MR) is mapped to N(R) whenever a STAT, USTAT, BGN, or BGAK PDU is generated. This is the basis for credit granting by the receiver.
· Number of List Elements: 7bit

It indicates the number of list elements that included in the STAT PDU.
· Header extension flag (H): 1bit

This header extension flag indicates that there is an additional control part (SN+H+E) in an acknowledged mode RLC PDU header. The use of this flag is FFS
· Data:

In this field data from higher layer PDUs is mapped.

9.3.
Protocol states

This sub-section describes the states of a RLC entity. These states are used in the specification of the peer-to-peer protocol. The states are conceptual and reflect general conditions of the RLC entity in the sequences of signals and PDU exchanges with its user and peer, respectively. In addition, other conditions are used in the description, in order to avoid identification of additional states, as detailed in the SDLs. The basic states are:
–
State 1 – Idle

Each RLC entity is conceptually initiated in the Idle state (State 1) and returns to this state upon the release of a connection.

–
State 2 – Outgoing Connection Pending

A RLC entity requesting a connection with its peer is in the Outgoing Connection Pending state (State 2) until it receives acknowledgment from its peer.

–
State 3 – Incoming Connection Pending

A RLC entity that has received a connection request from its peer and is waiting for its user’s response is in the Incoming Connection Pending (State 3).

–
State 4 – Outgoing Disconnection Pending

A RLC entity requesting release of the peer-to-peer connection goes to the Outgoing Disconnection Pending state (State 4) until it receives confirmation that the peer entity has released and transited to the Idle state (State 1), after which it does the same.

–
State 5 – Data Transfer Ready

Upon successful completion of the connection establishment procedures, both peer RLC entities will be in Data Transfer Ready state (State 5) and acknowledged data transfer can take place.

9.4.
State variables

This sub-clause describes the state variables used in the specification of the peer-to-peer protocol. AMD PDUs are sequentially and independently numbered and may have the value 0 through n minus 1 (where n is the modulus of the sequence numbers). The modulus equals 212 and the sequence numbers cycle through the entire range, 0 through 212 – 1. All arithmetic operations on the following state variables and sequence numbers contained in this Recommendation are affected by the modulus: VT(S), VT(A), VT(MS), VR(R), VR(H), and VR(MR). When performing arithmetic comparisons of transmitter variables, VT(A) is assumed to be the base. When performing arithmetic comparisons of receiver variables, VR(R) is assumed to be the base. In addition, the state variables VT(SQ) and VR(SQ) use modulo 2 arithmetic and VT(US) and VT(UR) use modulo 48. The RLC maintains the following state variables at the transmitter.

a) VT(S) - Send state variable

The sequence number of the next AMD to be transmitted for the first time (i.e. excluding retransmission). Incremented after transmission of a AMD for the first time (i.e. excluding retransmission).

b) VT(A) - Acknowledge state variable

The sequence number of the next in-sequence AMD PDU expected to be acknowledged, which forms the lower edge of the window of acceptable acknowledgments. VT(A) is updated upon acknowledgment of in-sequence AMD PDUs.

c) VT(DAT)

This state variable is used to count the retransmission number of each AMD PDU. VT(DAT) is incremented by sending AMD.
d) VT(MS) - Maximum Send state variable

The sequence number of the first AMD PDU not allowed by the peer receiver [i.e. the receiver will allow up to VT(MS) – 1]. This value represents the upper edge of the transmit window. The transmitter shall not transmit a new AMD PDU if VT(S) = VT(MS). VT(MS) is updated based on receipt of a USTAT PDU, STAT PDU, BGN PDU, BGAK PDU.

e) VT(CC) - Connection Control state variable

The number of unacknowledged BGN, END PDUs. VT(CC) is incremented upon transmission of a BGN, END PDU. If an END PDU is transmitted in response to a protocol error, RLC does not wait for an ENDAK PDU [i.e. RLC moves directly to state 1 (Idle)] and VT(CC) is not incremented.

f) VT(SQ) - Transmitter Connection Sequence state variable

This state variable is used to allow the receiver to identify retransmitted BGN PDUs. This state variable is initialized to 0 upon creation of the RLC process and incremented and then mapped into the N(SQ) field before the initial transmission of either a BGN PDU.

g) VT(US) - Unit data state variable

This state variable means new sequence number of UMD-PDU which will send next. After new UMD-PDU is sent, VT(US) will be incremented.

h) VT(QR) - Quick repeat state variable (FFS)

This state variable is used to count the retransmission number when UMD-PDU is sent by quick repeat scheme. It is incremented after UMD-PDU is sent and quick repeat will be continued until VT(QR) becomes to equal MaxQR.

The RLC maintains the following state variables at the receiver:

a) VR(R) - Receive state variable

The sequence number of the next in-sequence AMD PDU expected to be received. Incremented upon receipt of the next in-sequence AMD PDU.

b) VR(H) - Highest expected state variable

The sequence number of the next highest expected AMD PDU. This state variable is updated whenever a new AMD PDU is received.
c) VR(MR) - Maximum acceptable Receive state variable

The sequence number of the first AMD PDU not allowed by the receiver [i.e. the receiver will allow up to VR(MR) – 1]. The receiver shall discard AMD PDUs with N(S) = VR(MR), (in one case, such an AMD PDU may cause the transmission of a USTAT). Updating VR(MR) is implementation dependent, but VR(MR) should not be set to a value < VR(H).

d) VR(SQ) - Receiver Connection Sequence state variable

This state variable is used to identify retransmitted BGN PDUs. Upon reception of a BGN PDU, this state variable is compared to the value of N(SQ) and then assigned the value of N(SQ). If the values are different, the PDU is processed and VR(SQ) is set to N(SQ). If they are equal, the PDU is identified as a retransmission.

e) VR(US) - Receiver Send Sequence state variable

The sequence number of the latest UMD PDU to be received. It is used to check the duplication receive. When new UMD PDU is received, VR(US) is compared with N(US). If VR(US),N(US), this PDU is quashed because duplication receive happens. And if not, N(US) is substituted for VR(US).

f) VR(EP) – Estimated PDU Counter state variable (FFS)

The number of PDUs that should have been received after the latest USTAT was sent. In acknowledged mode, this state variable is updated at the end of each transmission time interval. It is incremented by the number of PDUs that should have been received during the transmission time interval. If VR(EP) is equal to the number of requested PDUs in the latest USTAT, then check if all PDUs requested for retransmission have been received.

9.5.
Timers
a) Timer_STAT
It is used to detect the loss of the response from receiver side. This timer is set when transmitted AMD PDU requests status report (i.e. P bit is set to “1”). And it will be stopped when the transmitter receive Acknowledgement of the AMD PDU by STAT PDU or USTAT PDU. When this timer is over, the oldest unconfirmed AMD PDU should be retransmitted with requesting status report, and this timer is set again.
b) Timer_Prohibit
It is used to prohibit transmission of polling message within a certain period. It prohibits only the polling of every RLC SDU. For other polling trigger, even if this timer is active, polling message can be transmitted. This timer is set when AMD PDU with polling is transmitted. When this timer is over no action is performed. (T_STAT =< T_Prohibit)

c) Timer_CC

Timer_CC protects the transmission of PDU between connection establishment and connection release, during re-synchronization or during error recovery. Timer_CC is indicates retransmission interval when confirmation isn’t received against BGN PDU and ENDPDU. The value of Timer_CC should be a little larger than the round-trip delay.
d) Timer_QR (FFS)

Transmission interval of quick repeat for UMD PDU.
e) Timer_EPC (FFS)

This timer accounts for the roundtrip delay, i.e. the time when the first retransmitted PDU should be received after a USTAT/USTAT has been sent. The value of Timer_EPC is heavily based on the transmission time interval (corresponding to the Layer 1 interleaving depth). When changing the transmission time interval, then the value of the EPC timer also needs to be changed.

9.6. Protocol Parameters

The value of each RLC protocol parameter is application specific and may be defined in another Recommendation which references this Recommendation.

a) MaxCC

Maximum value for the state variable VT(CC), corresponding to the maximum number of transmissions of a BGN, END.
b) MaxDAT

It is Maximum value for the number of retransmission of AMD PDU. This parameter is an upper limit of counter VT(DAT). When the value of VT(DAT) comes to MaxDAT, error recovery procedure will be performed.
c) MaxQR

Maximum successive transmission number of UMD PDU. This parameter is an upper limit for counter VT(QR).
d) MaxSTAT

Maximum number of list elements placed in a STAT PDU. When the number of list items exceeds MaxSTAT, the STAT message shall be segmented. All of the PDUs carrying the segmented STAT message, except possibly the last one, contain MaxSTAT list items. This parameter is not used by the receiver of a STAT PDU for length checking, but is only used by the sender of the STAT message for segmentation purposes. This parameter should be an odd integer greater than or equal to 3.
e) Credit

This parameter is used to coordinate credit notifications to layer management. When RLC is blocked from transmitting a new AMD PDU due to insufficient credit, “Credit” is assigned the value “No”. When RLC is permitted to transmit a new AMD PDU, “Credit” is assigned the value of “Yes”. Credit is initially assigned “Yes”.
9.7.
Specific functions

[All the section shall be reviewed when the protocol is defined]

9.7.1. Credit and peer-to-peer flow control

Credit is granted by the RLC receiver to allow the peer RLC transmitter to transmit new AMD PDUs. The process by which a receiver entity determines credit is not subject to standardization, but is related to the buffer availability and the bandwidth/delay of the connection.

Details of the usage of Crediting is FFS.

9.2 Local flow control

RLC events, such as reception of PDUs and external and internal signals, are normally processed in the order in which they occurred. However, events pertaining to the exchange of RLC link status information have priority over data transfer.

An implementation may detect congestion (for example, a long queuing delay) in its lower protocol layers. If so, data transfer should be temporarily suspended in order to give priority to connection control messages. The means by which an RLC entity decides whether or not it is congested depends on the protocol environment, including protocol timer values, and is not subject to standardization.

If a RLC entity detects local congestion (“lower layer busy” in the SDL specification), it can elect to suspend the servicing of RLC-AM-DATA.request, RLC-UM-DATA.request It can also suspend the retransmission of requested AMD PDUs. The data transfer procedures allow this to occur without causing protocol errors.

Therefore, in terms of transmitting PDUs to the peer receiver, all types of PDUs except AMD PDU and UMD PDU are given highest priority. The AMD PDUs and UMD PDUs have equal priority. Among the AMD PDUs, retransmission have priority over new transmission if both types are pending. These priorities are only internal to RLC.

10.
Handling of unknown, unforeseen and erroneous protocol data

11.
Elementary procedures

(Examples: idle, data transfer, RLC connection setup, RLC connection release, re-synchronisation)
12.
SDL diagrams
The resultant SDL diagrams (Timer_Prohibit scheme) are followed is shown in ANNEX 1.

Estimated PDU Counter (EPC) scheme (receiving side) (FFS)

Send a status report (USTAT), requesting for the retransmission of K number of missing PDUs.

Start Timer_EPC. This timer accounts for the roundtrip delay, i.e. the time when the first retransmitted PDU should be received.

When the timer expires, start counting the received PDUs, or rather the PDUs that should have been received using the state variable VT(EP)

If VT(EP) = K, then check if all PDUs (requested in the status report in step 1) have been received.

If some of the previously missing PDUs are still missing, then repeat the procedure from step 1 for the PDUs that are still missing.

If none of the previously missing PDUs are still missing, then no status report needs to be sent, unless a poll had been transmitted or a new missing PDU has been detected. In case of a poll or a new missing PDU, then repeat the procedure from step 1.

Every poll received during the time when the Timer_EPC is active and VT(EP) < K will be discarded by the receiving side, i.e. neither STATs nor USTATs will be sent from the receiving side during this time.

[image: image11.wmf]Clear Transmitter

BGN PDU

VT(SQ) := 0

VT(US) := 1

Idle 1

VT(MS) := BGN.N(MR)

TRUE

FALSE

Set Timer_CC

Clear-

buffers := BR

Outgoing Connection

Pending 2

Idle 1

Idle 1

Idle 1

VR(SQ) := 0

VR(US) := 0

Clear-

buffers := Yes

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

Initialize

VR(MR)

LAC-ESTABLISH.

request

Incoming Connection

Pending 2

Detect Retransmission

BGN PDU

LAC-ESTABLISH.

Indication

Retransmission

BGREJ PDU

BGREJ PDU

END PDU

ENDAK PDU

Idle 1

ENDAK PDU

Figure 12‑1

[image: image12.wmf]Idle 1

Idle 1

BGAK PDU

STAT PDU

USTAT PDU

END PDU

Idle 1

AMD PDU

AMD PDU queued up

Figure 12‑2

[image: image13.wmf]Outgoing Connection

Pending 2

ENDAK PDU

STAT PDU

USTAT PDU

AMD PDU

END PDU

Outgoing Connection

Pending 2

AMD PDU queued up

Figure 12‑3

[image: image14.wmf]Reset Timer_CC

LAC-RELEASE.

indication

TRUE

Reset Timer_CC

Idle 1

Initialize State Variables

Outgoing Connection

Pending 2

BGAK PDU

BGREJ PDU

Outgoing Connection

Pending 2

VT(MS) := BGAK.N(MR)

LAC-ESTABLISH.

confirm

Set Data Transfer Timers

Data Transfer Ready 5

FALSE

Retransmission

BGN PDU

Reset Timer_CC

VT(MS) := BGN.N(MR)

Initialize

VR(MR)

BGAK PDU

LAC-ESTABLISH.

confirm

Initialize State Variables

Set Data Transfer Timers

Data Transfer Ready 5

Detect Retransmission

TRUE

Figure 12‑4

[image: image15.wmf]END PDU

TRUE

FALSE

Idle 1

Outgoing Connection

Pending 2

VT(CC) >= MaxCC

BGN PDU

Idle 1

Outgoing Connection

Pending 2

Timer_CC (expiry)

LAC-RELEASE.

indication

MLAC-RELEASE.

request

Reset Timer_CC

Set Timer_CC

VT(CC) := VT(CC) + 1

Reset Timer_CC

END PDU

Outgoing Disconnection

Pending 4

Set Timer_CC

VT(CC) := 1

LAC-RELEASE.

request

Figure 12‑5

[image: image16.wmf]Clear Transmitter

Initialize State Variables

Incoming Connection

Pending 3

Incoming Connection

Pending 3

Clear-

buffers := BR

Set Data Transfer Timers

Data Transfer Ready 5

FALSE

Retransmission

BGN PDU

VT(MS) := BGN.N(MR)

Initialize

VR(MR)

BGAK PDU

Detect Retransmission

TRUE

LAC-RELEASE.

indication

LAC-ESTABLISH.

indication

Incoming Connection

Pending 3

END PDU

LAC-ESTABLISH.

response

MLAC-RELEASE.

request

Idle 1

Idle 1

ENDAK PDU

LAC-RELEASE.

indication

Figure 12‑6

[image: image17.wmf]Incoming Connection

Pending 3

Incoming Connection

Pending 3

BGREJ PDU

LAC-RELEASE.

indication

TRUE

Idle 1

ENDAK PDU

BGAK PDU

LAC-RELEASE.

indication

TRUE

Idle 1

Idle 1

BGREJ PDU

LAC-RELEASE.

request

Figure 12‑7

[image: image18.wmf]Incoming Connection

Pending 3

Incoming Connection

Pending 3

AMD PDU

Idle 1

AMD PDU queued up

USTAT PDU

STAT PDU

LAC-RELEASE.

indication

END PDU

Figure 12‑8

[image: image19.wmf]Clear Transmitter

Clear-

buffers := BR

FALSE

Retransmission

BGN PDU

VT(MS) := BGN.N(MR)

Initialize

VR(MR)

BGN PDU

Detect Retransmission

TRUE

LAC-RELEASE.

confirm

LAC-ESTABLISH.

indication

Incoming Connection

Pending 3

LAC-ESTABLISH.

request

Set Timer_CC

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

Reset Timer_CC

Outgoing Connection

Pending 2

Reset Timer_CC

Outgoing Disconnection

Pending 4

Outgoing Disconnection

Pending 4

END PDU

BGAK PDU

Outgoing Disconnection

Pending 4

AMD PDU queued up

Figure 12‑9

[image: image20.wmf]BGAK PDU

Outgoing Disconnection

Pending 4

Outgoing Disconnection

Pending 4

AMD PDU

STAT PDU

USTAT PDU

Figure 12‑10

[image: image21.wmf]FALSE

Retransmission

Timer_CC (expiry)

ENDAK PDU

TRUE

LAC-RELEASE.

confirm

Reset Timer_CC

VT(CC) := VT(CC) + 1

Outgoing Disconnection

Pending 4

Outgoing Disconnection

Pending 4

END PDU

END PDU

Idle 1

LAC-RELEASE.

confirm

Reset Timer_CC

END PDU

Idle 1

BGREJ PDU

Idle 1

Set Timer_CC

LAC-RELEASE.

confirm

Figure 12‑11

[image: image22.wmf]Timer_STAT (expiry)

Data Transfer Ready 5

Put AMD PDU into

Retransmission queue with

AMD.P := 1

AMD PDU queued up

Data Transfer Ready 5

Save AMD PDU in

Transmission buffer

Remove

AMD.N(S) = VT(A)

from Transmission buffer

Idle 1

MLAC-RELEASE.

request

Reset Data Transfer

Timers

Release buffers

LAC-AMDATA.

request

AMD PDU queued up

Save AMD PDU in

AM queue

TRUE

FALSE

n := 0

n := n + 1

n >= NP

Segmentation for AMD PDU

Data Transfer Ready 5

Figure 12‑12

[image: image23.wmf]AMD PDU queued up

Retransmission

queue is empty

AM queue is empty

Remove AMD PDU from

AM queue

AM queue

is empty or VT(S) >=

VT(MS)

AMD.P := 1

AMD PDU

Set

Timer_STAT

Set

Timer_Prohibit

Timer_Prohibit is Active

AMD PDU

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

Save AMD PDU in Transmission

buffer VT(DAT) := 0

TRUE

FALSE

Remove AMD PDU from

Retransmission queue

FALSE

TRUE

AMD.P = 1

AMD PDU

Save AMD PDU in

Transmission buffer and

STAT_waiting buffer

P := 0

VT(DAT) := 0

AMD.

VT(DAT) >= MaxDAT

TRUE

Update stored AMD PDU.

VT(DAT) in Transmission buffer

VT(DAT) := VT(DAT) + 1

TRUE

FALSE

Save AMD PDU in

STAT_waiting buffer

P := 0

VT(DAT) := VT(DAT) + 1

AMD PDU

FALSE

A

AMD.P = 1

AMD.P := 0

Update stored AMD PDU.

VT(DAT) in Transmission buffer

P := 0

VT(DAT) := VT(DAT) + 1

If another AMD PDU is

already in

STAT_waiting

buffer, replace old AMD

PDU with new AMD PDU.

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Reset Data Transfer

Timers

VT(S) := VT(S) + 1

VT(S) := VT(S) + 1

Figure 12‑13

[image: image24.wmf]VT(CC) := 1

VT(SQ) := VT(SQ) + 1

A

BGN PDU

Set Timer_CC

Release buffers

Initialize

VR(MR)

Outgoing Connection

Pending 2

Figure 12‑14

[image: image25.wmf]Data Transfer Ready 5

FALSE

TRUE

AMD PDU

AMD PDU.P = 1

C

Receiver buffer

is available

AMD.N(S) < VR(R)

AMD.N(S) = VR(H)

Save AMD PDU in

Receiver buffer

VR(H) := VR(H) + 1

TRUE

TRUE

TRUE

FALSE

FALSE

C

C

TRUE

FALSE

FALSE

TRUE

Save AMD PDU in

Receiver buffer

Save AMD PDU in

Receiver buffer

VR(H) := AMD.N(S) + 1

VR(H) < AMD.N(S)

AMD.N(S)

is already in

Receiver buffer

AMD.N(S) < VR(MR)

AMD.N(S) = VR(R)

TRUE

TRUE

C

TRUE

FALSE

VR(H) := VR(MR)

VR(H) < VR(MR)

FALSE

FALSE

Data Transfer Ready 5

FALSE

Remove AMD PDU with

AMD.N(S) = VR(R) from

Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

AMD.N(S) =

VR(R) is in

Receiver buffer

TRUE

Save AMD PDU in

AM_Reassembly buffer

VR(R

) := VR(R) + 1

C

FALSE

FALSE

TRUE

VR(R

) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

B

Reassembly for AMD PDU

Reassembly for AMD PDU

Figure 12‑15

[image: image26.wmf]Receiver buffer

is available

VR(H) < AMD.N(S)

AMD.N(S) = VR(H)

Save AMD PDU in

Receiver buffer

VR(H) := VR(H) + 1

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

Save AMD PDU in

Receiver buffer

AMD.N(S) < VR(MR)

AMD.N(S) = VR(R)

TRUE

TRUE

A

TRUE

FALSE

VR(H) := VR(MR)

VR(H) < VR(MR)

FALSE

FALSE

Data Transfer Ready 5

FALSE

Remove AMD PDU with

AMD.N(S) = VR(R) from

Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

Reassembly for AMD PDU

AMD.N(S) =

VR(R) is in

Receiver buffer

TRUE

Save AMD PDU in

AM_Reassembly buffer

VR(R

) := VR(R) + 1

FALSE

FALSE

TRUE

VR(R

) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

B

USTAT PDU

AMD.N(S) is

in already in

Receiver buffer

USTAT PDU

Save AMD PDU in

Receiver buffer

VR(H) := AMD.N(S) + 1

Reassembly for AMD PDU

List

element1 := VR(H)

List

element2 := AMD.N(S)

List

element1 := VR(H)

List

element2 := VR(MR)

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Data Transfer Ready 5

Reset Data Transfer Timers

Figure 12‑16

[image: image27.wmf]FALSE

TRUE

FALSE

FALSE

TRUE

i

：＝

 VR(H)

TRUE

FALSE

Data Transfer Ready 5

AMD.N(S) = i

is in Receiver

buffer

TRUE

List_

Length

 := 0

i := VR(R)

FALSE

FALSE

C

STAT PDU

i

�„

 VR(H)

i

�F��

 i + 1

Append i to list

Data Transfer Ready 5

STAT PDU

STAT PDU

Append i to list

;

List_

Length

 := 1

TRUE

List_Length >= MaxSTAT

i

�F��

 i + 1

i < VR(H)

AMD.N(S) = i

is in Receiver

buffer

Append i to list

;

List_

Length

 :=

List_Length + 1

Append i to list

;

List_

Length

 :=

List_Length + 1

Start building a new STAT

TRUE

Figure 12‑17

[image: image28.wmf]Data Transfer Ready 5

FALSE

TRUE

TRUE

Remove AMD PDUs from

VT(A) to USTAT.N

(R)

 - 1 from

Transmission buffer

USTAT PDU

VT(A) <=

Seq1 < seq2 <

VT(S)

AMD

PDU.N(S)

<= USTAT.N

(R)

 - 1

is in

STAT_waiting

buffer

Remove AMD PDU from

STAT_waiting buffer

VT(A) := USTAT.N

(R)

VT(MS) := USTAT.N(MR)

Seq1 := List element 1

Seq2 := List element 2

VT(A) <=

USTAT.N(R) < VT(S)

FALSE

D

FALSE

D

E

Reset

Timer_STAT

Figure 12‑18

[image: image29.wmf]TRUE

Remove

AMD.N

(S)

 = seq1

from Transmission buffer

Put AMD PDU into

Retransmission queue

AMD.N(S) =

seq1 is in Transmission

buffer

FALSE

E

FALSE

TRUE

D

A

AMD PDU queued up

Save AMD PDU in

Transmission buffer

Seq1 := Seq1 + 1

Seq1 = Seq2

Reset Data Transfer

Timers

Data Transfer Ready 5

Figure 12‑19

[image: image30.wmf]F

A

Reset Data Transfer

Timers

Data Transfer Ready 5

FALSE

TRUE

TRUE

Remove AMD PDUs from

VT(A) to STAT.N

(R)

 - 1 from

Transmission buffer

STAT PDU

i > 1

AMD

PDU.N(S)

<= STAT.N

(R)

 - 1 is

in

STAT_waiting

buffer

Remove AMD PDU from

STAT_waiting buffer

VT(A) := STAT.N

(R)

VT(MS) := STAT.N(MR)

i := number of STAT list

elements Count := 0

VT(A) <=

STAT.N(R) <

VT(S)

FALSE

FALSE

F

G

Seq1 := First list element

i := i - 1

FALSE

F

Seq1 <

VT(S)

TRUE

TRUE

Reset

Timer_STAT

Data Transfer Ready 5

Figure 12‑20

[image: image31.wmf]FALSE

TRUE

Remove

AMD.N(S) = seq1

from Transmission buffer

Put AMD PDU into

Retransmission queue,

Count := Count + 1

Save AMD PDU in

Transmission buffer

AMD.N(S) = Seq1

is in Transmission

buffer

FALSE

F

FALSE

F

Seq1 < Seq2

<=

VT(S)

TRUE

H

Seq1 = Seq2

TRUE

TRUE

G

Seq

２

 := Next list element

I

 :=

I

 - 1

AMD PDU is

already in

Retransmission

queue

AMD PDU queued up

Seq

1 := Seq1 + 1

FALSE

F

TRUE

H

FALSE

FALSE

NO

YES

TRUE

TRUE

FALSE

TRUE

i > 0

FALSE

Seq

２

 := Next list element

I

 :=

I

 - 1

Clear-buffers

Remove

AMD.N(S) = seq1

from Transmission buffer

Seq1 < Seq2

<=

VT(S)

Seq

1 := Seq1 + 1

i > 0

Seq1 = Seq2

Data Transfer Ready 5

TRUE

FALSE

Remove

AMD.N(S) = seq1

from

STAT_waiting buffer

AMD.N(S) = seq1

is in

STAT_waiting

buffer

Update the P flag of

AMD.N(S) = Seq2

–

 1 in

Retransmission queue

P := 1

Figure 12‑21

[image: image32.wmf]LAC-UMDATA.

request

*

UMD PDU queued up

Save UMD PDU

in QR queue

TRUE

FALSE

n := 0

n := n + 1

n >= NP

UMD PDU

TRUE

FALSE

UMD.N(US) = VR(US)

Save UMD PDU in

UM_Reassembly buffer

VR(US) = UMD.N(US)

UMD PDU queued up

Save UMD PDU in

UM queue

TRUE

n := 0

n := n + 1

n >= NP

FALSE

Segmentation for UMD PDU

QR

YES

NO

Reassembly for UMD PDU

Invalid PDU

Figure 12‑22

[image: image33.wmf]*

TRUE

UMD PDU queued up

FALSE

TRUE

FALSE

QR queue is empty

Remove UMD PDU from

UM queue

UMD PDU

VT(US) := VT(US) + 1

UM queue is empty

Remove UMD PDU from

QR queue

UMD PDU

ｊ

 := 0

ｊ

 :=

ｊ

 + 1

ｊ

 >= MaxQR

TRUE

FALSE

VT(US) := VT(US) + 1

UMD PDU is transmitted

at Timer_QR intervals

Figure 12‑23

[image: image34.wmf]Segmentation and

Concatenation

Segmentation

for AMD PDU

Add LAC Header

NP := Number of AMD PDUs

AMD.P := 1 (If AMD includes the

last segment of LAC SDU)

AMD.P := 0 (For other cases)

Segmentation and

Concatenation

Add LAC Header

NP := Number of UMD PDUs

Segmentation

for UMD PDU

Figure 12‑24

[image: image35.wmf]Reassembly

for AMD PDU

TRUE

FALSE

Remove LAC SDU from

AM_Reassembly buffer

LAC SDU is completed

LAC-AMDATA.

indication

Reassembly

Remove LAC Header

TRUE

FALSE

Remove LAC SDU from

UM_Reassembly buffer

LAC SDU is completed

LAC-UMDATA.

indication

Reassembly

Remove LAC Header

Reassembly

for UMD PDU

Figure 12‑25

[image: image36.wmf]Release buffers

Clear

AM queue

Clear Transmission buffer

Clear

STAT_waiting buffer

Clear Retransmission queue

Clear Receiver buffer

NO

YES

Clear-buffers

Clear Transmitter

Clear

AM queue

Clear Transmission buffer

Clear

STAT_waiting buffer

Initialize State

Variables

VT(S) := 0

VT(A) := 0

VT(PD) := 0

VT(DAT) := 0

VR(R

) := 0

VR(H) := 0

Figure 12‑26

[image: image37.wmf]Reset Data

Transfer Timers

Reset

Timer_STAT

Reset

Timer_Prohibit

TRUE

FALSE

Detect Retransmission

VR(SQ) :

＝

 N(SQ)

retransmission := FALSE

N(SQ)

＝

 VR(SQ)

retransmission := TRUE

Initialize

VR(MR)

VR(MR) := value

This assignment of

VR(MR) is

the initial window size granted to

the peer transmitter, and is

implementation or connection

dependent.

VR(MR) is updated

as data transfer take place,

based on the static or dynamic

window selected by the receiver.

Figure 12‑27
Appendix
1. Recommended values
1.1 PDU length

The length of the data field in AMD / UMD PDUs is k (>=0) octets.
1.2 MaxCC

4
1.3 MaxDAT

[FFS]
1.4 MaxQR

[FFS]
1.5 MaxSTAT

This parameter should be an odd integer greater than or equal to 3.
1.6 Timer_STAT

[FFS]
1.7 Timer_Prohibit

[FFS]
1.8 Timer_CC

1 sec
1.9 Timer_QR

[FFS]
13. .
History

Document history

Date
Version
Comment

January 1999
0.0.1
Document created. Based on TSG RAN WG2 Tdoc 016/99, 006/99 and 021/99..

Rapporteur (temporarily) for 3GPP S2.22 is:

 Riccardo Santaniello
CSELT

Tel. : +39 011 228 7422
Fax : +39 011 228 7055

Email : riccardo.santaniello@cselt.it

This document is written in Microsoft Word version 6.0c/95.

3GPP

_977683223.doc

Clear-buffers := BR

TRUE

Initialize State Variables

Detect Retransmission

Incoming Connection Pending 3

LAC-RELEASE. indication

Initialize VR(MR)

VT(MS) := BGN.N(MR)

Data Transfer Ready 5

END PDU

FALSE

Idle 1

Clear Transmitter

MLAC-RELEASE. request

BGAK PDU

ENDAK PDU

LAC-ESTABLISH. indication

Retransmission

Incoming Connection Pending 3

BGN PDU

LAC-ESTABLISH. response

Set Data Transfer Timers

Incoming Connection Pending 3

Idle 1

LAC-RELEASE. indication

_977683233.doc

A/U

R

PDU Type

PAD

Oct１

OctN

_977683238.doc

OctN

Oct３

Oct２

Oct１

(Optional)

PAD

Data

Length Indicator

E

E

A/U

Sequence Number

Sequence Number

P

R

_978939470.doc

Transmission buffer

RLC Control Unit

MUX

BCCH/PCCH/

CCCH/DTCH

Segmentation & Concatenation & Set RLC Header

Tr-SAP

Segmentation

UM/AM-SAP

From receiving side

Transparent mode

Unacknowledged mode

Acknowledged mode

Retransmission buffer & mangement

Transmission buffer

Complete RLC Header (eg poll bits)

MUX/Logical channel Selection (FFS)

Acknowledgements

Received acknowledgements

Transmission buffer

DCCH or

DTCH

DCCH or

DTCH

DCCH or

DTCH

Segmentation & Concatenation & Set RLC Header

_978943854.doc

Receiver

buffer

RLC Control Unit

Remove RLC Header &

Reassembly

UM/AM-SAP

Reassembly

To transmitting side

Receiver

buffer & Retransmission management

DCCH or

DTCH

Transparent mode

Acknowledged mode

Unacknowledged mode

BCCH/PCCH/

CCCH/DTCH

DEMUX/ROUTING (FFS)

Acknowledgements

Received Acknowledgements

Remove RLC Header &

Reassembly

Receiver

buffer

Tr-SAP

DCCH or

DTCH

DCCH or

DTCH

_978273941.doc

Unack. functions

MUX

Transp. functions

Ack. functions

Transp. functions

Radio Interface

DEMUX

Ack. functions

RLC Ctrl Unit

RLC Ctrl Unit

Transp. functions

Transp. functions

Unack. functions

Ack. functions

DEMUX

MUX

Ack. functions

Unack. functions

Unack. functions

MS

RLC

Transmitting side

UTRAN

Receiving side

Receiving side

Transmitting side

MAC

Higher layer

_977683235.doc

A/U

N(SQ)

PDU Type

PAD

Oct２

Oct１

Oct３

OctN

Reserved

N(MR)

N(MR)

_977683237.doc

OctN

Oct２

Oct１

PAD

Data

Length Indicator

E

E

(Optional)

Sequence Number

A/U

_977683234.doc

A/U

R

PDU Type

PAD

Oct２

Oct１

Oct３

OctN

Reserved

N(MR)

N(MR)

_977683228.doc

Idle 1

BGAK PDU

Idle 1

Idle 1

END PDU

STAT PDU

AMD PDU queued up

USTAT PDU

AMD PDU

_977683230.doc

A/U

R

PDU Type

PAD

List Element 1

Oct7

Oct6

Oct２

Oct１

Oct5

List Element 2

List Element 1

List Element 2

Oct4

N(MR)

Oct３

OctN

N(R)

N(MR)

N(R)

_977683231.doc

A/U

R

PDU Type

List Elements

Oct２

Oct１

PAD

Oct5

R

Number of List Elements

Oct4

N(MR)

Oct３

OctN

N(R)

N(MR)

N(R)

_977683229.doc

VT(MS) := BGN.N(MR)

Idle 1

Retransmission

BGN PDU

Initialize VR(MR)

BGN PDU

ENDAK PDU

Idle 1

Idle 1

ENDAK PDU

VR(SQ) := 0

VR(US) := 0

Clear-buffers := Yes

Idle 1

BGREJ PDU

FALSE

TRUE

Outgoing Connection Pending 2

Clear Transmitter

BGREJ PDU

END PDU

LAC-ESTABLISH. request

Detect Retransmission

VT(SQ) := 0

VT(US) := 1

Idle 1

LAC-ESTABLISH. Indication

Set Timer_CC

Incoming Connection Pending 2

Clear-buffers := BR

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

_977683225.doc

VT(MS) := BGAK.N(MR)

Idle 1

TRUE

BGAK PDU

Initialize State Variables

Initialize State Variables

Detect Retransmission

LAC-ESTABLISH. confirm

Initialize VR(MR)

VT(MS) := BGN.N(MR)

Data Transfer Ready 5

BGREJ PDU

FALSE

TRUE

Data Transfer Ready 5

Reset Timer_CC

Set Data Transfer Timers

LAC-RELEASE. indication

BGAK PDU

Reset Timer_CC

Retransmission

Outgoing Connection Pending 2

BGN PDU

LAC-ESTABLISH. confirm

Set Data Transfer Timers

Outgoing Connection Pending 2

Reset Timer_CC

_977683227.doc

ENDAK PDU

END PDU

Outgoing Connection Pending 2

AMD PDU queued up

STAT PDU

USTAT PDU

AMD PDU

Outgoing Connection Pending 2

_977683224.doc

Set Timer_CC

LAC-RELEASE. indication

END PDU

Idle 1

Reset Timer_CC

Timer_CC (expiry)

LAC-RELEASE. request

FALSE

TRUE

VT(CC) := 1

Set Timer_CC

BGN PDU

MLAC-RELEASE. request

VT(CC) >= MaxCC

Outgoing Connection Pending 2

Idle 1

Outgoing Disconnection Pending 4

END PDU

Outgoing Connection Pending 2

Reset Timer_CC

VT(CC) := VT(CC) + 1

_977683213.doc

Outgoing Connection Pending 2

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

BGN PDU

Initialize VR(MR)

A

Set Timer_CC

Release buffers

_977683218.doc

Outgoing Disconnection Pending 4

USTAT PDU

AMD PDU

Outgoing Disconnection Pending 4

BGAK PDU

STAT PDU

_977683221.doc

STAT PDU

Incoming Connection Pending 3

END PDU

LAC-RELEASE. indication

AMD PDU

AMD PDU queued up

Incoming Connection Pending 3

USTAT PDU

Idle 1

_977683222.doc

Idle 1

TRUE

BGREJ PDU

Idle 1

LAC-RELEASE. indication

Idle 1

LAC-RELEASE. request

BGAK PDU

ENDAK PDU

TRUE

Incoming Connection Pending 3

BGREJ PDU

Incoming Connection Pending 3

LAC-RELEASE. indication

_977683219.doc

Clear-buffers := BR

TRUE

END PDU

Outgoing Disconnection Pending 4

Reset Timer_CC

Detect Retransmission

Incoming Connection Pending 3

Outgoing Disconnection Pending 4

Initialize VR(MR)

VT(MS) := BGN.N(MR)

Outgoing Connection Pending 2

FALSE

Reset Timer_CC

Clear Transmitter

VT(CC) := 1

VT(SQ) := VT(SQ) + 1

BGAK PDU

BGN PDU

AMD PDU queued up

LAC-ESTABLISH. indication

Retransmission

Outgoing Disconnection Pending 4

BGN PDU

LAC-ESTABLISH. request

Set Timer_CC

LAC-RELEASE. confirm

_977683216.doc

LAC-AMDATA. request

MLAC-RELEASE. request

AMD PDU queued up

Put AMD PDU into Retransmission queue with AMD.P := 1

Data Transfer Ready 5

Data Transfer Ready 5

Remove AMD.N(S) = VT(A) from Transmission buffer

Save AMD PDU in AM queue

Idle 1

FALSE

TRUE

Data Transfer Ready 5

Timer_STAT (expiry)

Reset Data Transfer Timers

AMD PDU queued up

n >= NP

Release buffers

Save AMD PDU in Transmission buffer

n := n + 1

n := 0

Segmentation for AMD PDU

_977683217.doc

TRUE

END PDU

Outgoing Disconnection Pending 4

VT(CC) := VT(CC) + 1

Outgoing Disconnection Pending 4

Idle 1

Idle 1

FALSE

Reset Timer_CC

LAC-RELEASE. confirm

Idle 1

ENDAK PDU

LAC-RELEASE. confirm

Retransmission

BGREJ PDU

Timer_CC (expiry)

END PDU

Set Timer_CC

Reset Timer_CC

END PDU

LAC-RELEASE. confirm

_977683214.doc

Data Transfer Ready 5

AMD PDU queued up

Retransmission

queue is empty

AM queue is empty

Remove AMD PDU from AM queue

AM queue

is empty or VT(S) >= VT(MS)

AMD.P := 1

AMD PDU

Set Timer_STAT

Set Timer_Prohibit

Data Transfer Ready 5

Data Transfer Ready 5

AMD.P = 1

Timer_Prohibit is Active

AMD PDU

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

Save AMD PDU in Transmission

buffer VT(DAT) := 0

Update stored AMD PDU. VT(DAT) in Transmission buffer

VT(DAT) := VT(DAT) + 1

TRUE

FALSE

Save AMD PDU in

STAT_waiting buffer

P := 0

VT(DAT) := VT(DAT) + 1

FALSE

TRUE

Data Transfer Ready 5

TRUE

Data Transfer Ready 5

AMD. VT(DAT) >= MaxDAT

Save AMD PDU in

Transmission buffer and

STAT_waiting buffer

P := 0

VT(DAT) := 0

AMD PDU

AMD.P = 1

AMD PDU

TRUE

FALSE

Remove AMD PDU from Retransmission queue

Update stored AMD PDU. VT(DAT) in Transmission buffer

P := 0

VT(DAT) := VT(DAT) + 1

FALSE

A

Reset Data Transfer Timers

AMD.P := 0

If another AMD PDU is already in STAT_waiting buffer, replace old AMD PDU with new AMD PDU.

VT(S) := VT(S) + 1

VT(S) := VT(S) + 1

_977683208.doc

Seq1 := List element 1

Seq2 := List element 2

Remove AMD PDUs from VT(A) to USTAT.N(R) - 1 from Transmission buffer

VT(A) <=

Seq1 < seq2 < VT(S)

Data Transfer Ready 5

VT(A) := USTAT.N(R)

VT(MS) := USTAT.N(MR)

FALSE

FALSE

Reset Timer_STAT

TRUE

VT(A) <=

USTAT.N(R) < VT(S)

TRUE

USTAT PDU

E

D

Remove AMD PDU from STAT_waiting buffer

AMD PDU.N(S)

<= USTAT.N(R) - 1 is in STAT_waiting buffer

D

FALSE

_977683211.doc

FALSE

FALSE

TRUE

VR(H) := VR(H) + 1

FALSE

VR(H) < VR(MR)

VR(H) := VR(MR)

FALSE

List element1 := VR(H)

List element2 := VR(MR)

TRUE

A

TRUE

TRUE

AMD.N(S) = VR(R)

AMD.N(S) < VR(MR)

Data Transfer Ready 5

Reset Data Transfer Timers

USTAT PDU

Save AMD PDU in Receiver buffer

B

FALSE

List element1 := VR(H)

List element2 := AMD.N(S)

TRUE

Data Transfer Ready 5

Receiver buffer is available

TRUE

Reassembly for AMD PDU

Save AMD PDU in Receiver buffer

TRUE

Data Transfer Ready 5

VR(H) := AMD.N(S) + 1

FALSE

Data Transfer Ready 5

Save AMD PDU in Receiver buffer

VR(H) < AMD.N(S)

AMD.N(S) = VR(H)

AMD.N(S) is

in already in Receiver buffer

Data Transfer Ready 5

FALSE

Remove AMD PDU with AMD.N(S) = VR(R) from Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

Reassembly for AMD PDU

AMD.N(S) = VR(R) is in Receiver buffer

TRUE

USTAT PDU

VR(R) := VR(R) + 1

Save AMD PDU in

AM_Reassembly buffer

Data Transfer Ready 5

FALSE

FALSE

TRUE

VR(R) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

_977683212.doc

FALSE

FALSE

AMD PDU.P = 1

TRUE

VR(H) := VR(H) + 1

FALSE

VR(H) < VR(MR)

VR(H) := VR(MR)

FALSE

Data Transfer Ready 5

TRUE

C

TRUE

TRUE

AMD.N(S) = VR(R)

AMD.N(S) < VR(MR)

AMD.N(S)

is already in Receiver buffer

VR(H) < AMD.N(S)

VR(H) := AMD.N(S) + 1

Save AMD PDU in Receiver buffer

Save AMD PDU in Receiver buffer

B

FALSE

FALSE

TRUE

C

Receiver buffer is available

TRUE

TRUE

Save AMD PDU in Receiver buffer

TRUE

FALSE

AMD PDU

FALSE

TRUE

C

AMD.N(S) < VR(R)

AMD.N(S) = VR(H)

C

Data Transfer Ready 5

FALSE

Remove AMD PDU with AMD.N(S) = VR(R) from Receiver buffer

Save AMD PDU in

AM_Reassembly buffer

AMD.N(S) = VR(H)

Reassembly for AMD PDU

AMD.N(S) = VR(R) is in Receiver buffer

TRUE

Reassembly for AMD PDU

VR(R) := VR(R) + 1

Save AMD PDU in

AM_Reassembly buffer

C

FALSE

FALSE

TRUE

VR(R) := AMD.N(S) + 1

VR(H) := AMD.N(S) + 1

_977683210.doc

FALSE

Start building a new STAT

i ＞ VR(H)

FALSE

Append i to list;

List_Length := List_Length + 1

Append i to list;

List_Length := List_Length + 1

TRUE

Append i to list

i ：＝ VR(H)

AMD.N(S) = i

is in Receiver buffer

i < VR(H)

C

FALSE

TRUE

Data Transfer Ready 5

i ：＝ i + 1

TRUE

FALSE

List_Length >= MaxSTAT

i ：＝ i + 1

TRUE

Data Transfer Ready 5

TRUE

Append i to list;

List_Length := 1

AMD.N(S) = i

is in Receiver buffer

TRUE

STAT PDU

List_Length := 0

i := VR(R)

STAT PDU

FALSE

FALSE

STAT PDU

_977683204.doc

LAC-UMDATA. request

Segmentation for UMD PDU

VR(US) = UMD.N(US)

UMD.N(US) = VR(US)

YES

*

TRUE

Save UMD PDU in UM queue

UMD PDU queued up

QR

UMD PDU

Save UMD PDU in QR queue

FALSE

FALSE

TRUE

NO

Invalid PDU

FALSE

Reassembly for UMD PDU

UMD PDU queued up

n >= NP

Save UMD PDU in

UM_Reassembly buffer

n := 0

n := n + 1

TRUE

n := n + 1

n := 0

n >= NP

_977683206.doc

i := number of STAT list elements Count := 0

Remove AMD PDUs from VT(A) to STAT.N(R) - 1 from Transmission buffer

i > 1

Data Transfer Ready 5

Data Transfer Ready 5

Reset Timer_STAT

TRUE

TRUE

Seq1 < VT(S)

VT(A) := STAT.N(R)

VT(MS) := STAT.N(MR)

FALSE

FALSE

F

F

TRUE

VT(A) <=

STAT.N(R) < VT(S)

TRUE

Reset Data Transfer Timers

A

FALSE

STAT PDU

Seq1 := First list element i := i - 1

G

F

Remove AMD PDU from STAT_waiting buffer

AMD PDU.N(S)

<= STAT.N(R) - 1 is in STAT_waiting buffer

FALSE

_977683207.doc

Seq1 = Seq2

Remove AMD.N(S) = seq1 from Transmission buffer

Seq1 := Seq1 + 1

Data Transfer Ready 5

TRUE

FALSE

D

TRUE

AMD.N(S) =

seq1 is in Transmission buffer

Reset Data Transfer Timers

A

AMD PDU queued up

Put AMD PDU into Retransmission queue

Save AMD PDU in Transmission buffer

E

FALSE

_977683205.doc

TRUE

TRUE

Save AMD PDU in Transmission buffer

Remove AMD.N(S) = seq1 from Transmission buffer

Seq1 := Seq1 + 1

FALSE

TRUE

TRUE

YES

H

NO

FALSE

FALSE

F

FALSE

AMD PDU is already in Retransmission queue

Seq２ := Next list element I := I - 1

G

TRUE

TRUE

Seq1 = Seq2

FALSE

FALSE

H

Update the P flag of AMD.N(S) = Seq2 – 1 in Retransmission queue

P := 1

TRUE

AMD.N(S) = Seq1 is in Transmission buffer

Remove AMD.N(S) = seq1 from STAT_waiting buffer

TRUE

Seq1 < Seq2 <= VT(S)

FALSE

AMD PDU queued up

TRUE

F

Put AMD PDU into Retransmission queue, Count := Count + 1

Data Transfer Ready 5

F

FALSE

i > 0

FALSE

Seq２ := Next list element I := I - 1

Clear-buffers

Remove AMD.N(S) = seq1 from Transmission buffer

Seq1 < Seq2 <= VT(S)

Seq1 := Seq1 + 1

i > 0

Seq1 = Seq2

AMD.N(S) = seq1

is in STAT_waiting buffer

_977683201.doc

Add LAC Header

Segmentation and Concatenation

Segmentation and Concatenation

Segmentation

for UMD PDU

NP := Number of UMD PDUs

Add LAC Header

Segmentation

for AMD PDU

NP := Number of AMD PDUs

AMD.P := 1 (If AMD includes the last segment of LAC SDU)

AMD.P := 0 (For other cases)

_977683202.doc

Remove UMD PDU from QR queue

*

UMD PDU is transmitted at Timer_QR intervals

ｊ := ｊ + 1

ｊ := 0

UMD PDU

VT(US) := VT(US) + 1

TRUE

UM queue is empty

FALSE

TRUE

VT(US) := VT(US) + 1

UMD PDU queued up

FALSE

TRUE

QR queue is empty

ｊ >= MaxQR

UMD PDU

Remove UMD PDU from UM queue

FALSE

_977683199.doc

Clear-buffers

Clear Retransmission queue

VT(S) := 0

VT(A) := 0

Initialize State Variables

Clear Transmission buffer

YES

NO

Clear STAT_waiting buffer

Clear STAT_waiting buffer

Clear Transmission buffer

Clear Receiver buffer

Clear AM queue

Release buffers

VR(R) := 0

VR(H) := 0

Clear Transmitter

Clear AM queue

VT(PD) := 0

VT(DAT) := 0

_977683200.doc

Remove LAC Header

Remove LAC SDU from UM_Reassembly buffer

FALSE

TRUE

Reassembly

Reassembly

for UMD PDU

LAC-AMDATA. indication

LAC SDU is completed

Remove LAC Header

Reassembly

Remove LAC SDU from AM_Reassembly buffer

FALSE

LAC-UMDATA. indication

LAC SDU is completed

TRUE

Reassembly

for AMD PDU

_977683198.doc

retransmission := FALSE

Reset Timer_STAT

Reset Timer_Prohibit

Reset Data

Transfer Timers

This assignment of VR(MR) is the initial window size granted to the peer transmitter, and is implementation or connection dependent. VR(MR) is updated as data transfer take place, based on the static or dynamic window selected by the receiver.

VR(MR) := value

Initialize VR(MR)

retransmission := TRUE

FALSE

VR(SQ) :＝ N(SQ)

Detect Retransmission

TRUE

N(SQ) ＝ VR(SQ)

