
1

TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3) 76*5����������
Stockholm 8th to 11th March 1999

$JHQGD�,WHP� 6.1

6RXUFH�� Nokia

7LWOH� Descriptive SDL and its use in 3GPP standards

'RFXPHQW�IRU� Decision

��� ,QWURGXFWLRQ

SDL included in standards has generally fallen into two categories. The first one includes SDL code which is
complex and accurate, but unreadable. This is undesirable, because implementations depend on human
understanding of the SDL code even if automatic tools are also available. The second category is readable
but syntactically incorrect and/or ambiguous SDL, which cannot be used as a basis of implementations. SDL
in protocol standards should be both validatable by automatic tools and easy to read by human beings.
However, these two requirements can be mutually exclusive.

ETSI MTS (Methods for Testing and Specification) is currently developing a set of guidelines [1] which, if
followed by rapporteurs, would help them to produce SDL that:

• is easy to read

• is syntactically correct

• has correct static semantics

• expresses requirements unambiguously

• can be transformed into a validation model by an expert with the minimum of effort.

In this contribution the main ideas of these guidelines are described, some of them using examples. The
guideline document itself is presented in WG2 contribution R2-99082 [2].

��� 'HVFULSWLYH�6'/

����� %DVLF�SULQFLSOHV�RI�GHVFULSWLYH�6'/

The basic idea behind descriptive SDL is to be able to produce readable and syntactically correct SDL code.
The descriptive SDL guidelines are not intended to be an SDL tutorial – a basic knowledge of SDL is still
required. On the other hand, code produced according to the guidelines should be readable even to persons
who are not SDL experts.

Descriptive SDL concentrates on the ZKDW rather than the KRZ. Everything the target protocol does must be
described, and the different actions must be in the correct order. However, the way in which the details of
these actions are coded is not important in descriptive SDL, and indeed often worsens the readability of the
code.

To be able to test the syntax and static semantics of the SDL code it would be best to produce descriptive
SDL with a proper SDL tool. In addition, this makes it easier to develop the code further into a (part of a)
validation model for more thorough testing. However, a specific SDL tool is not mandatory, since descriptive
SDL can very well be produced with normal drawing tools as well.

2

����� 6WUXFWXUH�RI�WKH�JXLGHOLQH�GRFXPHQW

The guideline document is grouped into eight categories, and examples of the guidelines in each category
are briefly presented below. In the document itself the guidelines are written in EROG�LWDOLF, and they are
grouped together at the end of the document for easy reference.

������� 1DPLQJ�FRQYHQWLRQV

It is not possible to impose a strict rule on the length of identifiers used in SDL, but as a general guideline
names between 6 and 30 characters in length should be preferred over shorter or longer ones. Underscores
should be used to separate different parts of a long name, e.g. Deliver_Message. Names should also be
meaningful and unambiguous – for instance, a signal named Id_Req could be interpreted as
Identity_Request or equally well as Identifier_Required. Process names should be noun phrases which
indicate the general function of the process, while procedure names should be verb phrases indicating the
specific activity to be carried out by the procedure.

������� 3UHVHQWDWLRQ�DQG�OD\RXW�RI�GLDJUDPV

The control flow of SDL process diagrams should be from the top of the page to the bottom. This enhances
the readability of the code greatly when compared to the zig-zag style sometimes used. Also, the symbols
that terminate the processing on a particular page should be aligned horizontally. This way it is easy to see
at one glance all the possible points where transitions terminate. Also, if a symbol is not large enough to
contain all the text necessary to specify the task represented by the symbol, a text extension symbol should
be used to carry the additional information.

������� 6WUXFWXULQJ

A state, input and the associated transition to the next state should be contained within a single SDL page.
Transitions from the next state should not be presented on the same page. In some cases the transitions
are so complex that connectors must be used, but in general connectors should be used as little as
possible.

������� 7KH�XVH�RI�SURFHGXUHV�DQG�RSHUDWRUV

To hide the potentially distracting details of e.g. variable handling and input analysis procedures and
operators should be used. However, input and output operations should not be included in procedures. For
specification purposes it is often enough to name the procedure in a descriptive manner, include the
procedure call in the process code and leave the procedure itself unspecified. The procedure can be
specified in more detail when constructing a validation model of the protocol. Macros, however, should be
avoided in other cases than timer handling.

������� 7KH�XVH�RI�GHFLVLRQV

Informal text can be used in decisions, but only in cases where the decision is obviously boolean in nature.
A better solution is to use enumerated types. Also, the complete range of possible values must be covered.

������� 6\VWHP�VWUXFWXUH��FRPPXQLFDWLRQ�DQG�DGGUHVVLQJ

When coding protocols with SDL complete systems should be specified instead of just specifying the
process(es) corresponding to the target protocol(s). This way the interfaces between different parts of the
system can be specified. Whenever possible, a minimal number of static process instances should be used
instead of dynamically created SDL processes. If the target process of a signal or the signal route the signal
can be sent on is ambiguous, either a TO- or a VIA-clause should be used in the output symbol to indicate
the recipient clearly.

3

������� 7KH�VSHFLILFDWLRQ�DQG�XVH�RI�GDWD

SDL signals should be used to represent normative messages with ASN.1 describing the parameters
carried by the messages. Apart from the very simplest of cases one single structured type parameter should
be preferred over a list of simple type parameters.

������� 7KH�XVH�RI�PHVVDJH�VHTXHQFH�FKDUWV

In the use of MSC charts the same basic principles apply as in the case of SDL code – clear, uncluttered
MSC charts should be used. An MSC should concentrate on the description of the message flows and
should not be obscured by too many other symbols, such as an extensive amount of conditions.

����� ([DPSOHV

One previous example of using SDL to clarify text standards is an SMG12 contribution [3], which describes
a sequence from GSM 03.60 [4]. In the process of converting the textual standards to SDL some cases in
which the textual document required clarification were found – textual documents are usually open to some
interpretation, which may lead in unresolved issues and implementation-specific solutions in the production
phase. However, SDL was used in the contribution mainly as a drawing tool, not a full-fledged specification
method. The following list contains some of the most noticeable bad features of the SDL code in [3]. Some
of them are syntax errors, others just not-so-good practice.

• One page should contain a state and transition(s) from this state to another (possibly the same) state,
but not transitions from the second state. In other words, the control flow on a page should start from a
state (or a connector symbol) and end in a state (or a connector symbol) with no nextstate symbols in
between.

• The same signal is received in several different signal input symbols representing succesful and
unsuccesful cases. The correct way to do this is to use signal parameters to distinguish between
different cases.

• Natural language is used in e.g. task symbols. While this can be quite descriptive, it is not the way a
formal specification method such as SDL should be used.

• In most cases macros should be replaced with procedures.

• Extensive use of connector symbols makes the control flow difficult to grasp.

• It is possible to reach the decision symbol with the text "Response Expected?" even if the variable
Response Expected has not been set. Also, on page 3 of the original code a cause value for a failure is
stored, but it is never used.

Annex 1 contains the original SDL code from the SMG12 contribution and a new version of the same code
written using the descriptive SDL guidelines. If the new version would have been written from scratch using
only the GSM technical specifications as a reference, the code would probably look very much different, but
for the purposes of this contribution the method of modifying the existing SDL was the most convenient one.
This example shows the importance of having a commonly agreed, syntactically correct way of using SDL.

The example also shows two possible drawbacks of the descriptive SDL guidelines – the increased number
of pages used to express a given segment of code and the increased amount of variables. However, having
well-structured and readable code should be more important than the number of pages used. The variables
are needed e.g. in decisions to make the code more formal – and when the variables are named suitably,
they increase readability as well.

����� :KHQ�WR�XVH�GHVFULSWLYH�6'/

Descriptive SDL is perhaps best suited for protocols in which the handling of protocol variables can
conveniently be hidden inside procedures. A prime example from the point of view of WG2 is RRC, but the
guidelines would be quite suitable for RLC as well. As for other protocols, for example NBAP, RANAP,
RNSAP and non-access stratum protocols would benefit from descriptive SDL as well. MAC and especially
layer 1 are perhaps a little too fine-grained to take full advantage of descriptive SDL guidelines – if the

4

protocols by nature handle data at high level of detail close to the physical layer, there is little sense in
hiding this natural behaviour by layering and structuring the SDL code too extensively. The descriptive SDL
guidelines should not be abandoned altogether when coding MAC and layer 1, however. The guidelines on
e.g. naming conventions, presentation and layout of diagrams, structuring, use of decisions and system
structure, communication and addressing are still valid even in these cases.

��� 3URSRVDO

It is proposed that the following paragraph replaces the first paragraph of Chapter 8 in R2.01 V0.0.1:

The groups are encouraged to use SDL where appropriate. The SDL code included in the standards should
follow the descriptive SDL guidelines from ETSI TC-MTS (DEG/MTS-00050) as closely as possible.

��� 5HIHUHQFHV

[1] ETSI DEG/MTS-00050 V1.5 (Sep-98), Methods for Testing and Specification (MTS); Guidelines for the
use of formal SDL as a descriptive tool

[2] 3GPP TSG-RAN WG2, Tdoc TSGR2#2(99)082: Descriptive SDL guidelines. Source: Nokia.
[3] ETSI STC SMG12, Tdoc 98S764: Proposed specification of SDLs for GSM 03.60. Source: Nortel.
[4] Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service

description; Stage 2 (GSM 03.60 version 6.20 Release 1997)

5

$QQH[����&RPSDULQJ�GHVFULSWLYH�6'/�FRGH�DQG�IUHH�IRUP�6'/�FRGH

$���)UHH�IRUP�6'/

Unfortunately these SDL diagrams do not have an EPS preview attached to them, so they will not be
readable on screen.

Signals to/from the right
are to/from the old SGSN.
Signals to/from the left
are to/from the MS.

Process SGSN_Location_Update 1(4)

IDLE

Attach
Request

Check
Indication

Attach with
IMSI?

Store IMSI

3
pg 2New

SGSN?
Set P−TMSI, old
RAI & old P−TMSI
signature

Identification
Request

Wait for
response

Identification
Response

Store IMSI,
Auth. Triplets

2
pg 2

Error: MS
Not Known

Set Identity
Type = IMSI

Identity
Request

Start Timer:

1
pg 2

Error: No
P−TMSI Match

Recover IMSI
using P−TMSI

Store IMSI

2
pg 2

yes
no

yes
no

6

Signals to/from the right
are to/from the old SGSN.
Signals to/from the left
are to/from the MS.

Process SGSN_Location_Update 2(4)

2

Security
Function

Security
Function

Cause Value:
illegal MS

Attach
Reject

IDLE

Identity
Check Proc

Check IMEI

First Attach or GPRS attach
and the SGSN has changed ?

Update
Location

To HLR
(See GSM 09.02)

Wait for
response

Update HLR
Negative Response
(GSM09.02)

Cause Value: IMSI
unknown in HLR

Attach
Reject

IDLE

Update HLR
Response (GSM09.02)

4
pg 3

5
pg 3

Cause Value:
IMEI not accepted

Attach
Reject

IDLE

3

1

Wait for
response

Id Res.
with IMSI

Store IMSI

3

Timer
Expires

MS id can’t
be derived

Attach
Reject

IDLE

yes

errorok

yes

ok

yes
no

error

no

no

7

Signals to/from the right
are to/from the old SGSN.
Signals to/from the left
are to/from the MS.

Process SGSN_Location_Update 3(4)

5

Attach Type:
IMSI?

IMSI
Attached?

Look up VLR
using RAI

Set IMSI, LAI,
SGSN No.

Location Update
Request (GSM09.18)

Wait for
response

Location
Update

Accept
(GSM09.18)

Allocate New
P−TMSI ?

Set P−TMSI,
Ciphering = y

Response
Expected = y

6
pg 4

Response
Expected = n

Location
Update

Reject
(GSM09.18)

Store Cause
Value

6
pg 4

4

MS
Validated?

Set Cause
Value?

Attach
Reject

IDLE

Construct
MM Context

5

no

yes

yes
no

no

yes

no

yes

8

Signals to/from the right
are to/from the old SGSN.
Signals to/from the left
are to/from the MS.

Process SGSN_Location_Update 4(4)

6

Cipher ?

Start
Ciphering

Attach
Accept

Response
Expected?

Start Timer

Wait for
response

Timer
Expires

IDLE

Attach
Complete

TMSI Reallocation
Complete (GSM09.18)

IDLE

IDLE

yes

yes no

no

9

$��� 'HVFULSWLYH�6'/

Process SGSN_Location_Update 1(7)

Idle

Attach_
_Request

(identity,
indication,
attach_type)

indication

Identify_MS
(MS_Known,
identity)

MS_Known

Get_IMSI_
_from_P_TMSI

(identity,
IMSI)

Store_IMSI
(IMSI)

Security_
_Function

1 Located on
page 2

2 Located on
page 3

Set_P_TMSI
(identity,
P_TMSI, old_RAI,
old_P_TMSI_sig)

Identification_
_request

(P_TMSI, old_RAI,
old_P_TMSI_sig)

Wait_for_
_response

Get_IMSI_
from
_identity

(identity, IMSI)

Store_IMSI
(IMSI)

P_TMSI

TRUE

Implemented
Not_implemented

FALSE

IMSI

10

Process SGSN_Location_Update 2(7)

1

Perform_
Security
_Function

(result)

result

cause :=
Illegal_MS

Attach_
_Reject
(cause)

Idle 2 Located on
page 3

Error
Ok

11

Process SGSN_Location_Update 3(7)

2

Identity_
_Check_Proc

Check_IMEI
(result)

result

cause :=
IMEI_not_
_accepted

Check_if_first_
_attach_and_
_new_SGSN

(first_and_new)

Attach_
_Reject
(cause)

first_and_new

Update_
_Location

attach_type

Check_if_IMSI_
_attached
(IMSI_attach)

IMSI_
_attach

Get_VLR
(VLR, RAI)

Set_IMSI_LAI_
SGSN

Location_
Update
_Request

Idle Wait_for_
_response

3 Located on
page 4

Wait_for_
_response

Implemented Not_implemented

Error
Ok

TRUE

FALSE

GPRS_only

ELSE

TRUE

FALSE

12

Process SGSN_Location_Update 4(7)

3

Check_
_Ciphering
(ciphering)

ciphering

Start_
_Ciphering

Attach_
_Accept

ciphering = response_
_expected

StartTimer
(T_AttCompl)

Wait_for_
_response

Idle

TRUE

TRUE FALSE

FALSE

13

Process SGSN_Location_Update 5(7)

Wait_for_
_response

Identity_
_response
(IMSI)

Store_IMSI
(IMSI)

Perform_
Security
_Function

(result)

result

cause :=
Illegal_MS

Attach_
_Reject
(cause)

Idle 2

Identification_
_response

(errorCode,
IMSI, authentication_
_triplets)

errorCode

idType :=
IMSI

Identity_
_request

(idType,
identity)

StartTimer
(T_IdReq)

Wait_for_
_response

Store_IMSI
(IMSI)

Store_auth_
_triplets

(authentication_
_triplets)

Security_
_function

Error

Ok

ELSEOk

Implemented

Not_implemented

14

Process SGSN_Location_Update 6(7)

Wait_for_
_response

T_IdReq

cause :=
MSId_
_unsolvable

Attach_
_Reject
(cause)

Idle

T_AttCompl

Idle

Update_HLR
(response)

response

cause :=
IMSI_unknown_
_in_HLR

Attach_
_Reject
(cause)

Idle

Check_if_MS_
_validated
(validated)

validated

Construct_
_MM_context

attach_type

Check_if_IMSI_
_attached
(IMSI_attach)

IMSI_
_attach

Get_VLR
(VLR, RAI)

Set_IMSI_LAI_
SGSN

Location_
Update
_Request

Wait_for_
_response

3

cause :=
MS_not_
_validated

Attach_
_Reject
(cause)

Idle

Failure Success

TRUE

GPRS_only

TRUE

FALSE

ELSE

15

Process SGSN_Location_Update 7(7)

Wait_for_
_response

Location_
_update
(response)

response

cause :=
Location_
_update_reject

Check_new_
_P_TMSI_
_allocation

(new_P_TMSI)

new_P_
_TMSI

Set_P_TMSI

ciphering :=
TRUE,

response_
_expected :=
TRUE

3

response_
_expected :=
FALSE

Reject

TRUE

FALSE

Accept

