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1 Introduction

Several documents from multiple companies (‎[1], ‎[2], ‎[3], ‎[4]) have addressed the complexity and implementation of data demodulation for the addition of UE functionality to support downlink OFDM transmission. This document contains text proposals that summarizes this work and puts it into the agreed upon structure of the technical report TR25.892.
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3 Proposed Text for Data Demodulation
-------------------------------START of the TEXT1 --------------------------------------
6.8.5
Data demodulation 


Data demodulation for the downlink OFDM signal can be broken into three blocks: (1) time-domain-to-frequency-domain translation (i.e. the FFT), (2) channel estimation, and (3) channel equalization. These three blocks and their relationship are shown in Figure 1 below. Each block will be considered in turn in the following sections.
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Figure 1: OFDM Data Demodulation Block Diagram

-------------------------------END of the TEXT1 --------------------------------------

4 Proposed Text for FFT

-------------------------------START of the TEXT2 --------------------------------------
6.8.5.1
Time-Domain-to-Frequency-Domain Translation (i.e. FFT) Complexity

The FFT operation can be implemented with the following commonly used architecture for demodulating OFDM systems (see Figure 2). 
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Figure 2: FFT Processor Block Diagram
The key components of this FFT processor are:

· FFT Memory unit : Memory is needed in order to be able to store the incoming OFDM symbols while processing the available OFDM symbol. The input samples are usually coded with 12 to 16 bits.

· Twiddle_Factor_Rom: The Fourier Transform operation done on a NFFT-point is given by the expression: 
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where the terms 
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, called twiddle factors, are given by 
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The twiddle factors are usually coded on a number of bits ranging from 13 to 16 bits. The ROM size can be reduced by using symmetrical properties and the fact that in some cases, the twiddle factor is just equal to 1, -1, j or –j.

· Radix 2/4 Butterfly and complex multiplier: The FFT algorithms consist in decomposing the NFFT-point  DFT (Discrete Fourier Transform) into NFFT / 2 two-point DFTs (radix-2) or NFFT / 4 four-point DFTs (radix-4), which are then recombined recursively until reaching the result of the NFFT-point DFT. A radix-2 butterfly is illustrated in Figure 3, and a radix-4 butterfly is illustrated in Figure 4.
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	Figure 3: Radix-2 butterfly structure
	Figure 4: Radix-4 butterfly structure


The most straightforward implementation for the 512-point FFT of OFDM parameter set 1 is with a radix-2 FFT. Each butterfly in a radix-2 FFT requires 1 complex multiply, 4 real additions, and 1 table look-up (with a complex value returned per table look-up). This count does not take into account the fact that some of the twiddle factors lead to trivial multiplications (i.e. multiply by +1, or –j). There are a total of (NFFT / 2) log2NFFT butterflies, which for a 512-point FFT equals 2304 butterflies. The FFTs are performed at the OFDM symbol rate, 1/Ts.

There are other slightly more efficient 512-point FFT implementations possible. These alternatives do not make a large difference to the complexity estimates. The most obvious alternative is a mixed-radix FFT with a combination of radix-2 and radix-4 FFT butterflies. Each radix-2 butterfly requires 1 complex multiply, 4 real additions, and 1 table look-up, and there are (NFFT / 2) such radix-2 butterflies. Each radix-4 butterfly requires 3 complex multiplies, 16 real additions, and 3 table look-ups, and there are a total of (NFFT / 4) log4(NFFT / 2) radix-4 butterflies. Once again, the FFTs are performed at the OFDM symbol rate, 1/Ts.

For the 1024-point FFT required for parameter set 2, a radix-4 FFT can be used. Each butterfly in a radix-4 FFT requires 3 complex multiplies, 22 real additions, and 3 table look-ups (with a complex value returned per table look-up). This count does not take into account the fact that some of the twiddle factors lead to trivial multiplications (i.e. multiply by +1, or –j). There are a total of (NFFT / 4) log4NFFT butterflies, which for a 1024-point FFT equals 1280 butterflies. The FFTs are performed at the OFDM symbol rate, 1/Ts.
Note that each complex multiplication can be done as follows:
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and so, by storing the quantity 
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 a complex multiplication requires 5 real additions and 3 real multiplications.

The FFT complexity main features are summarized below for both OFDM reference sets: 

For set 1, with the 512-point FFT and a radix-2 architecture:

· a 65 MHz clock rate guarantees real time processing,

· the number of real multiplies per second is 93.312 million and the number of real additions per second is 279.936 million,

· for input samples of (12..16) bits the required FFT RAM memory is (24..33) Kbits, and the twiddle factor ROM memory is (3..4) Kbits, and

· the complex multiplier gate count is (6..12) K.

For set 2, with the 1024-point FFT, and a radix-4 architecture: 

· a 39 MHz clock rate guarantees real time processing,

· the number of real multiplies per second is 69.12 million and the number of real additions per second is 238.08 million,

· for input samples of (12..16) bits the required FFT RAM memory is (49..66) Kbits, and  the twiddle factor ROM memory is (6..8) Kbits, and

· the complex multiplier gate count is (6..12) K.

Note that the FFT complexity figures given above have been calculated assuming a radix-2 implementation for parameter set 1 and a radix-4 implementation for parameter set 2. However, other possibilities exist that enable trading off speed for code and memory size. For example, 512-point FFT cores are available which employ a mixed radix-4/2 architecture and require less processing speed than the radix-2 architecture, at the cost of extra control code and memory.
-------------------------------END of the TEXT2 --------------------------------------

5 Proposed Text for Channel Estimation
-------------------------------START of the TEXT3 --------------------------------------
6.8.5.2
Channel Estimation

Since the pilot symbols are transmitted in specific time/frequency locations, channel estimation is generally done by interpolating among these pilots. The complexity depends on the interpolation method.

The simplest method without additional complexity is to simply repeat the channel value of the nearest pilot. This may be sufficient when the channel is relatively constant between two consecutive pilots.

Another straightforward method is to perform 2-D linear interpolation. For example, if the 4 nearest pilots are linearly combined with real coefficients to determine the channel estimate, there is a requirement for 8 real multiplies and 6 real additions per data sub-carrier. The number of data sub-carriers is equal to the number of useful sub-carriers minus the number of pilots. So for instance, if 10% of the sub-carriers are pilots then there are 269 data sub-carriers per OFDM symbol, and the OFDM symbol rate is 13500 symbols per second for OFDM parameter set 1. For parameter set 2, there would be 635 data sub-carriers (with 10% pilot) per OFDM symbol and the OFDM symbol rate is 6000 symbols per second. A single real MAC unit would need to operate at 29 MHz and 30 MHz for parameter set 1 and 2 respectively. Other, more efficient, methods may exist to perform the 2-D linear interpolation.
A more complex interpolating method is based on projection over some orthogonal basis of an arbitrarily chosen dimension. The advantage of this method is its flexibility, with the basis dimension chosen to cope with the rate of change of the channel conditions (higher dimension for higher channel variability).

-------------------------------END of the TEXT3 --------------------------------------

6 Proposed Text for Channel Equalization
-------------------------------START of the TEXT4 --------------------------------------
6.8.5.3
Channel Equalization

Let ci stand for the channel coefficient, yi the received (demodulated) symbol and 
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 the equalizer output. 

Single symbol equalization can be done by one of several methods:

· Phase Compensation (PC) :  
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· Maximum Ratio Combiner (MRC): 
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· Zero Forcing : 
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· MMSE : 
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is the Additive White Gaussian Noise variance.

Obviously, these methods are not of equal complexity and so the choice of method depends on the receiver realization, the mapping constellation and the required performance. Note that these operations are also applicable to HSDPA.
So, for instance, for channel equalization with a maximum ratio combiner each of the useful data sub-carriers is multiplied by the conjugate of the complex channel gain corresponding to that carrier. In this case, there are Nu x (1/Ts) complex multiplies per second with 3 real multiplies and 5 real additions required per complex multiply. This formula applies to both parameter sets. For example, if 10% of the sub-carriers are assumed to carry pilot signals, then a single complex multiplier unit would need to operate at approximately 4.25 MHz for both parameter set 1 and 2.
-------------------------------END of the TEXT4 --------------------------------------
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