

3GPP TSG RAN WG1 Meeting AH 1801		 R1-1800631
Vancouver, Canada, January 22nd – 26th, 2018

Agenda Item:	7.3.1.2
Source:	InterDigital Inc.
Title:	On remaining issues of search spaces and blind detection
Document for:	Discussion and Decision

Introduction
In RAN1 meeting #91 [1], there were following agreements regarding blind detection and search space design:

Agreements:
· For information, the following cases are clarified:
· Case 1: PDCCH monitoring periodicity of 14 or more symbols
· Case 1-1: PDCCH monitoring on up to three OFDM symbols at the beginning of a slot
· Case 1-2: PDCCH monitoring on any span of up to 3 consecutive OFDM symbols of a slot
· For a given UE, all search space configurations are within the same span of 3 consecutive OFDM symbols in the slot
· Case 2: PDCCH monitoring periodicity of less than 14 symbols
· Note: this includes the PDCCH monitoring of up to three OFDM symbols at the beginning of a slot
· The numbers in bracket in the following table can be further adjusted but not to be increased
· X<=16, Y<=8
· FFS whether or not to have case 2’, where the values of X and/or Y can be smaller than case 2
	Max no. of PDCCH BDs per slot
	SCS

	
	15kHz
	30kHz
	60kHz
	120kHz

	Case 1-1
	44
	36
	22
	20

	Case 1-2
	[44]
	
	
	-

	Case 2
	[44+X]
	[36+Y]
	[22+Y]
	[20]

Working assumption:
· For PDCCH monitoring for receiving RMSI, the number of PDCCH candidates are following:
· 4 candidates for AL = 4
· 2 candidates for AL = 8
· DCI size for RMSI scheduling and DCI size for OSI scheduling are the same
· FFS: Paging and fallback

Conclusion:
· RAN1 common understanding is that the PDCCH channel estimation complexity is not negligible at least in some cases.
· FFS: Possible solutions to resolve the channel estimation complexity issue together with the impact on PDCCH blocking probability
· Opt.1: Define the limits of “the number of CCEs for PDCCH channel estimation which refers to the union of the sets of CCEs for PDCCH candidates”
· Note: the overlapped CCEs associated with different CORESETs are counted separately.
· FFS: CCEs for the same precoder-granularity are counted as one channel estimation
· FFS: whether/how to handle the variation on the actual number of CCEs for PDCCH channel estimation and BDs over time
· Application of overbooking is considered
· Strive for not having specific UE capability to report the maximum number of CCEs for PDCCH channel estimation.
· Study the solutions considering the cases 1-1, 1-2, 2, and 2’.
· Opt.2: Modify the hashing function
· Opt.3: Increase the size of the precoder granularity

Based on these agreements and conclusions, one open issue is to finalize the maximum number of blind decodes for the cases of 1-2 and 2. The other open issue is how to address the PDCCH channel estimation complexity. In this document, we discuss our views on how to ensure a limit on the channel estimation complexity at the UE.
Remaining issues on channel estimation and blind detection
To limit the complexity of channel estimation in blind detection, we need to limit the number of CCEs that are covered by the PDCCH candidates inside a slot (or in other words, the number of CCEs in the footprint of the search spaces that are used for blind detection by the UE).
Proposal 1: To curb the complexity of channel estimation for blind detection, NR should define limits on the number of CCEs that are covered by the union of PDCCH candidates that should be monitored in a slot.
One option is changing the granularity of the precoder and making the granularity larger than one CCE (Option 3 in the “conclusion” from the last Chairman’s notes). However, this method is essentially already covered by the case of wideband RS and is not suitable for all scenarios and channel conditions. One example is the case for a highly frequency selective channel wherein the wideband RS removes the possibility of frequency-selective precoding.
Another method which was mentioned in the offline email discussion is to put a limit on the worst case (i.e. the case that the PDCCH candidates have the least overlap and their union covers the most number of CCEs). However, the worst-case number of CCEs which is the summation of the number of CCEs for all candidates can be much larger than the actual number of covered CCEs (because of considerable overlap among different candidates with different aggregation levels). Therefore, putting a limit on the summation of the number of CCEs for all candidates is too restrictive to be useful for most practical cases.
Therefore, from our perspective, there remains two main practical alternatives to solve this problem:
1- Overbooking: designing search spaces such that the number of covered CCEs is smaller than certain limits with high probability, but without requiring the gNodeB to configure the search spaces to satisfy the limits for the worst case.
2- Modifying hashing function: changing the hashing function such that the search spaces have some nested or semi-nested structure.

Overbooking: Dropping rules to satisfy limits on the number of CCEs
Search space randomness (even for one monitoring occasion) results in fluctuations in the number of covered CCEs. One solution for curbing the channel estimation complexity is to design search spaces for different monitoring occasions such that the number of covered CCEs in one slot are smaller than the corresponding limits with high probability, without designing for the worst case. With a low probability, deemed probability of dropping, the fluctuations in the number of covered CCEs results in passing the limit. In the case of the need for dropping, there should be some rules for dropping some candidates from the blind search to conform to the limits on the number of the covered CCEs.
[bookmark: _GoBack]Dropping rules may be fixed rules that are specified or semi-static rules that are configured by higher layer signaling, or a combination of the two. The dropping rules may also be based on some hierarchy of priorities for different types of PDCCHs or monitoring occasions or other parameters, such as aggregation level (i.e. candidates with highest aggregation level having lowest priority for remaining compared to other PDCCH candidates). It should be noted that both UE and gNodeB should have the knowledge of the dropping rules, so that the UE does not perform blind search on the dropped candidate and the gNB does not transmit DCI on it.
The main objective of a candidate dropping method is to reduce the total number of covered CCEs for channel estimation. Therefore, one method to determine the candidate(s) to be dropped from the blind search can be based on the number of CCEs that the candidate(s) has which are not overlapping with CCEs of the other remaining candidates. In other words, the candidate(s) dropped should be those whose removal most reduces the number of CCEs from the pool for channel estimation. In the case that multiple candidates with same metric are identified, their index in the search space may dictate their precedence.
Another solution is to assign a PDCCH candidate index to each PDCCH candidate, and the UE can use a function to select the indices of the valid candidates maximizing the number of PDCCH candidates given the maximum number of blind decodes and maximum number of channel estimates. The function can be as simple as selecting the largest set of the lowest index values that satisfy the criteria. On the other hand, to introduce some level of randomization of dropped PDCCH candidates, the function can be determined based on parameters such as UE ID, slot index, etc. For example, to determine the dropped PDCCH candidates, one could cycle through all the monitored CORESETs and search spaces and remove PDCCH candidates until the BD and PDCCH channel estimate criteria are met.
Modifying hashing function: CCE Mappings for two-stage nested or semi-nested search space design
Another method to limit the number of the covered CCEs is to use nested or semi-nested designs for the search space. A simple approach for designing hierarchical or nested search spaces is to locate the candidates with highest aggregation level first and then locate the candidates with lower aggregation inside the region spanned by them. In this method, a hashing function (hashing function #1) indicates the indices of the first CCEs of the PDCCH candidates with highest aggregation level that are assigned to the search space of a UE (CCEs of a candidate have consecutive indices beginning from a starting index). Then, the CCEs that are covered by those candidates are enumerated with consecutive virtual indices and then a second hashing function (hashing function #2) is used to locate the virtual indices of the of the first CCEs of the PDCCH candidates, for other aggregation levels. An example of this method of two-stage design with virtual indices is shown in figure 2, for the case of a CORESET of size of 32 CCEs and a search space that includes two candidates with highest aggregation level (which is 8 in this example).
It should be note that while hashing function #1 works on the entire CORESET, hashing function #2 only works on a smaller sub-region that is covered with the candidates with highest aggregation level and its corresponding effective CORESET size is the number of CCEs in that sub-region (for example, the effective CORESET size for hashing function #2 is 16 in the example in figure 1).
[image:]
Figure 1. Two-stage search space design with the use of virtual indices for lower aggregation levels.
 While nested search spaces are useful in reducing the channel estimation overhead, they may result in higher blocking probability. To reduce the effect of this drawback, one solution is to have two-stage search space design with the first stage done for the k highest aggregation levels. Figure 2 shows an example of this method when k=2 and the 2 highest aggregation levels are 8 and 4. In this case, the sub-region that is used for locating candidates with lower aggregation levels is the region that is covered by candidates with the two highest aggregation level (i.e. the set of CCEs that are included in at least one of the candidates with the two highest aggregation level).
[image:]
Figure 2. Example of two-stage search space design where the first stage is done for the two highest aggregation levels (8 and 4 in this example). PDCCH candidates with lower aggregation levels are selected by a hashing function pointing to the virtual CCE indices in the sub-region that is covered by the candidates with the two highest aggregation level.
[image: C:\Users\taherzmx\AppData\Local\Microsoft\Windows\INetCache\Content.Word\BlockprobFixed (003).jpg]
Figure 3. Comparison of blocking probability for three different cases of search space design: non-nested (using EPDCCH hashing function), semi-nested (i.e. k=2), and nested (k=1).
In general, there is a trade-off between reducing the blocking probability and reducing the channel estimation overhead: smaller k (more nested) results in higher blocking probability and lower channel estimation overhead (as shown in figure 3). Therefore, one solution to achieve flexibility in this tradeoff is to have configurable k. In this solution, the value of k may be selected from a set of possibilities (e.g. {1,2}) and the selection is included in the CORESET configuration. For example, one bit in CORESET configuration may indicate whether the corresponding search spaces are constructed by k=1, or k=2.
Proposal 2: To satisfy limits on the number of monitored CCEs, NR should down-select one of these three options:
1- Define dropping rules to be applied when the number of CCEs covered by the union of search spaces surpasses the limits.
2- Support at least two different levels of nestedness in search space design, configurable by CORESET configuration.
3- Enable gNodeB selection of configuration parameters to ensure current hashing function satisfies the limits on the number of CCEs.

Summary

This contribution discussed the issues related to search spaces design and blind detection. We proposed the following proposals:
[bookmark: _Ref455734493][bookmark: _Ref434502751][bookmark: _Ref419296613][bookmark: _Ref434227915][bookmark: _Ref434501473]Proposal 1: To curb the complexity of channel estimation for blind detection, NR should define limits on the number of CCEs that are covered by the union of PDCCH candidates that should be monitored in a slot.
Proposal 2: To satisfy limits on the number of monitored CCEs, NR should down-select one of these three options:
1- Define dropping rules to be applied when the number of CCEs covered by the union of search spaces surpasses the limits.
2- Support at least two different levels of nestedness in search space design, configurable by CORESET configuration.
3- Enable gNodeB selection of configuration parameters to ensure current hashing function satisfies the limits on the number of CCEs.

References
[1] RAN1#91 Chairman’s Notes, Reno, USA, 2017

image1.png
Original CCE indices

17

18

19

20

21

22

23

CCE virtual indices used in determining candidates with lower aggregation levels (lower than 8)

image2.png
Original CCE indices used by hashing function #1 for aggregation levels 8 and 4

0 |[1 2 3 41516 7

o|1l |23 415|6 |7

18

19

20

21

22

23

12

13

14

21

22

23

24| 25

26

27

CCE virtual indices used in determining candidates with lower aggregation levels (lower than 4)

image3.jpeg
Blocking prob. for various search space allocation schemes

10°

8
a
2
a
o
&
k3
il
2
o

=—EPDDCH hashing function
== semi-nested search space

=B~ nested search space

4 6 8 10 12 14 16
Number of scheduled UEs

