[bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: _Ref452454252]3GPP TSG RAN WG1 Meeting NR#3 	 R1-1716786
Nagoya, Japan, 18th – 21st, September 2017

Agenda item:		6.4.2.4
Source:	Nokia, Nokia Shanghai Bell
Title:	Bit-interleaving for polar codes
Document for:		Discussion and Decision
1 	Introduction
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN1 #90 meeting, the following agreement and working assumption have been made on channel interleaver,
Working Assumption:
· Channel interleaver:
· Uplink: Triangular interleaver (e.g. as in R1-1713474)
· Downlink: Parallel rectangular interleaver (e.g. as in R1-1714691)
· To be confirmed at NR AH#3 unless it is shown that there are no meaningful benefits of including the downlink channel interleaver, using evaluation assumptions in R1-1714983

Agreement:
· For UL, the channel bit interleaver is a separate stage after rate matching.
· For DL, see working assumption above in 6.1.4.2.3.

In this contribution, we discuss the detailed design of uplink interleaver.
2 	Discussion
Channel interleaving is a periodic and reversible reordering of coded bits prior to transmission, it enables the de-interleaver at receiver to redistribute a long error burst into multiple short bursts, and thus the error correction scheme can correct them individually. In other words, channel bit interleaving is intended to spread or decorrelate a large chunk of consecutive errors so that they appear to the channel decoder as scattered random errors.
2.1 Bit-interleaving for UL
2.1.1 Design criterion

Channel interleaverscan be mathematically defined as a one-to-one mapping from input indices to output indices. The main design criterion for channel interleavers should be selected in such a way that the consecutively corrupted bits are spread as far as possible at the decoder input through deinterleaving. Spreading efficiency of an interleaver can be measured by the spreading distance, which can be defined, without loss of rigor, as the separation at the output of the interleaver between any two symbols that were adjacent at the input of the interleaver. We use the corresponding minimum spreading distance and average/mean spreading distance as the design criteria in this contribution, which are formulated below respectively,

Minimum spreading distance:

Mean spreading distance:

wheredescribes the interleaving for bit indexed in time.

A triangular interleaver is discussed in [1] and the schematic of proposal is illustrated in Figure 1 below. A sequence of N encoded bits at the output of rate-matching are written row by row (top to bottom) to a triangular array that holds maximum Q bits. Two equal sides of the triangle have length P, such that P is the smallest integer to satisfy . In case of ,dummy bits are padded after information bits. Once the triangular array is filled, the interleaver starts to output the content from buffer column by column (left to right).
[image: tri]
Figure 1. Structure of the interleaver, copied from [1] (row in and column out)

It is not difficult to notice in Figure 1 that entryand its closest neighbour before interleavingis inevitably separated by only one bitafter interleaving, regardless of the input bit sequence length or the side length of triangle P. Hence, the interleaver in [1] has a constant minimum spreading distance of, which clearly constrains good decoding performance significantly.
Furthermore, when applying higher order modulations, e.g. 16QAM or 64QAM, for UL control transmission over PUSCH, a group of 4 or 6 consecutive coded bits is gathered to construct individual QAM symbol respectively. Channel interleaver with consistently low minimum spreading distance is incapable of spreading the erroneous bits evenly over symbols resulting in increased performance degradation. The limitation imposed by constant minimum spreading distance will become even more severe under higher order modulations.
Observation 1: The interleaver in [1] has a constant minimum spreading distance of 2, which constrains the decoding performance significantly.
In fact, there are quite some good examples showing better performance than the interleaver in [1].
For example, the input bits can be written into the triangular array with H elements on the edge. The writing is performed in an interlaced manner and the order is depicted in Figure 2. ‘X’ indicates <NULL>. Writing procedure is repeatedly performed row by row downwards until the triangular array is fully occupied. The read-out can be simply carried out row by row from the bottom upwards. The interleaved sequence of the example above can be expressed as {15 10 17 6 12 19 3 8 14 20 1 5 9 13 18 0 2 4 7 11 16}. It can be seen that the minimum spreading distance at the corner is much improved.

Figure 2. Triangular interleaver example

Another example is shown in Figure 3. The triangle-shaped array can be viewed as big triangle stacked on top of a smaller one. The first element of individual segment always goes to the top vertex of the triangle. The followings are written along two equal-length edges of the isosceles triangle in an alternating manner. The detailed writing order is shown in Figure 3. Once the triangular array is filled, its content is read out from bottom to top, left to right. The interleaved sequence of the example above can be expressed as {9 7 5 16 3 14 1 12 19 0 11 18 2 13 20 4 15 6 17 8 10}.The distance between input bits at adjacent locations are well-dispersed with minimum spreading distance no less than 3 for the example above.

Figure 3. Triangular interleaver example 2

Even a simple writing and reading scheme of a triangular interleaver might be better spreading distance than the scheme in [1]. As shown in Figure 4, the minimum spreading distance at the corner is 3.

Figure 4. Another interleaver example

The issues to be considered in the detailed uplink bit interleaver may include:
· What’s the shape of the triangle, e.g. Figure 2, 3, 4 or Figure 5, 6. It is observed that the triangular in Figure 5 and 6 is easier for simultaneous reading and writing.
· What’s writing/reading order? The writing and reading should provide sufficiently large spreading distance and good BLER performance. The proposed scheme described in 2.1.2 shows better performance than the interleaver in [1].
· What’s the implementation complexity and latency and whether the scheme supports parallel operation.
· Do we need to define the interleaver by the interleaver pattern, e.g. nested, derived from the triangular buffer array, instead of the detailed implementation algorithms? Yes, only the interleaving pattern needs to be specified, which is the simplest way for specification.

2.1.2 Proposed uplink interleaver
A triangular interleaver with different read and write design is introduced below, which eliminates the constraints of constant minimum spreading distance leading to improved block error rate (BLER) performance. At the same time, the efficient parallel write/read operations are supported.

The construction of proposed channel interleaver involves writing input bits to an isosceles triangle-shaped array then reading out the content with a certain order. The triangular array used in the scheme is defined as follows. The height H of the isosceles triangle is the smallest integer such that . Two equal sides have a length of P, while the length of the remaining side is. Therefore, a total number of bits can be accommodated in such triangle. An illustration is provided in Figure 4. In case of , dummy bits are appended after the coded information bits.

[image: Untitled]
Figure 5. Schematic of write-in procedure for proposed triangular interleaver.

Write Access Procedure:

Input bits are written to specific memory elements or cells of the triangular buffer, located at coordinate, where a, b are row index and column index respectively and both count from 0. Due to the symmetry of isosceles triangle, it is easy to locate the central column indexed as.

The procedure commences from the 0th row, the first input bit is written to the vertex of triangle, if assumingin Figure 4 for concision. Writing operation is then performed row by row downwards. Move down to the 1st row, the second and third input bits are written to and , respectively. The same process is repeatedly performed H-1 times until the last row at the bottomis reached, where a pair of input bits are written toand , respectively. The entire procedure described above is visualized with green color in Figure 2 reading from top to bottom, left to right.

It would be intuitive to generalize the above procedure for the first pass and extend to the i-th pass () as follows. During the i-th stage of writing, the proposed procedure initially works at row i and writes downwards. At the r-th row, two input bits are written to. Writing all input bits (including the attached dummy bits) to the triangular buffer defined above takes up to H passes. Below is an example of fully occupied triangular buffer with. For better demonstration purpose, indices of the input bits are shown instead of the contents carried by these bits.

[image:]

Figure 6. Interleaving pattern

Read Access Procedure:
The read access procedure is simple and straightforward. The output sequence of the proposed channel interleaver is obtained by reading out the content of triangular buffer from left to right, top to bottom and skipping any dummy bits. The interleaved sequence of the example above can be expressed as {7 5 14 3 12 19 1 10 17 22 0 9 16 21 24 2 11 18 23 4 13 20 6 15 8}.
2.1.3 Performance evaluation
Figure 3 depicts the minimum spreading distance comparison between the scheme used in [1], and proposed interleaver. As expected, the curve of [1] is flat as the minimum spreading distance is bounded by 2 regardless of the block length or length of two equal sides P. In contrast, the minimum spreading distance of proposed interleaver increases considerably with the block sizes. Note that the minimum spreading distance of the proposed scheme (red curve in Figure 5) is not continuous, this can be explained by the fact that mathematical properties of the interleaving pattern is, to some extent, compromised by removal of dummy or <NULL> bits when performing read-out procedure.
Figure 6 indicates the mean spreading distance comparison. Again the proposed interleaver outperforms [1] significantly, especially for large block size.

[image:]
Figure 7. Minimum spreading distance comparison

[image:]
Figure 8. Mean spreading distance comparison

Observation 2: The proposed triangular interleaver exhibits considerable improvement on both minimum spreading distance as well as mean spreading distance.

BLER comparison:
Proposed channel interleaver is thoroughly evaluated under the assumption of various block length and code rate. The maximum block length for transmission is assumed to be 1024 bits. Only performance under fading channel is studied as it is more critical than that of AWGN. Higher order modulations, e.g. 16QAM, 64QAM, are prioritized. Constellation mapping rules for all tested modulation schemes comply with TS36.211.

Simulation results are summarized below, where K indicates the information block length excluding CRC bits. Detailed assumptions are captured in the table below.

Table 1 Simulation parameters for evaluation
	Channel
	Rayleigh Fading

	Modulation
	16-QAM, 64-QAM

	Code construction
	CA Polar with 8-bit CRC (0x19B)

	Rate-matching
	Merged rate matching option 2 in R1-1715000

	Decoding algorithm
	SCL with L=8

[image:]
Figure 9. SNR versus BLER performance for 16QAM, K=32.

[image:]
Figure 10. SNR versus BLER performance for 16QAM, K=64.

[image:]
Figure 11. SNR versus BLER performance for 16QAM, K=128.

[image:]
Figure 12. SNR versus BLER performance for 16QAM, K=256.

[image:]
Figure 13. SNR versus BLER performance for 64QAM, K=32.

[image:]
Figure 14. SNR versus BLER performance for 64QAM, K=64.

[image:]
Figure 15. SNR versus BLER performance for 64QAM, K=128.

[image:]
Figure 16. SNR versus BLER performance for 64QAM, K=256.

It can be seen that BLER of the proposed interleaver outperforms reference triangular design from [1] in most scenarios. Only for a small portions, the performance is as good as reference design.

Less priority is given to QPSK since different interleaver designs have less impact to the performance of QPSK over fading channel. Results for QPSK are therefore provided in appendix for your reference.

From the comprehensive analyses above, it is fairly certain that the proposed scheme is more effective in terms of redistribution of a burst of errors, in both theoretical and numerical point of view.

2.1.4 Implementation parallelism
Triangular interleaver proposed in this contribution supports two-level parallelism. Specifically, the first-level enables segmentation of the input sequence allowing simultaneous writing of multiple segments to triangular buffer. For example, in Figure 2, bits distributed to those locations highlighted with the same color can be processed during one pass, whilst parallel operations can be conducted between different colors.
Moreover, the write-in procedure defined in the proposed scheme can be viewed as writing along two equal-length sides of the triangle (highlighted with color) from top to bottom, left to right during one pass. Then move onto the smaller triangle inside current, the height of which is decreased by one, namely H’= H-1. Apparently, parallel operations can be conducted between different colors.

The second-level parallelism further reduces the end-to-end latency of interleaving process. The second-level parallelism results from the unique approach employed to perform the write/read access operations. It can be seen from Figure 2 that as soon as the first pass of writing is complete, read-out operation is immediately triggered to carry out the output procedure starting from location. In such way, write and read access can be performed simultaneously with very high parallelism efficiency.
Last but not the least, it is worth mentioning that the second-level parallelism would bring extra benefit in terms of size of memory consumed and time of occupation. It is not difficult to see that the memory cells occupied during write-in stage are released and can be recycled for other purposes at the earliest possible time. Hence, the proposed interleaver offers more flexibility and provides better support for implementation parallelism.

To conclude, the proposed interleaver is more qualified as control channel bit interleaver with obvious superiority measured in efficiency, latency and memory usage.
Observation 3: The proposed triangular interleaver supports two-level parallelism, and offers good balance between latency and memory usage.
Proposal 1: Adopt proposed scheme as channel interleaver for uplink control channel.
3	Conclusion
In this contribution, the details of uplink channel interleaver with enhanced distance property are provided. It is capable of achieving better or competitive BLER performance comparing with the interleaver in [1]. Furthermore, the complexity as well as end-to-end write/read latency is significantly reduced.
Observation 1: The interleaver in [1] has a constant minimum spreading distance of 2, which constrains the decoding performance significantly.
[bookmark: _GoBack]Observation 2: The proposed triangular interleaver exhibits considerable improvement on both minimum spreading distance as well as mean spreading distance.
Observation 3: The proposed triangular interleaver supports two-level parallelism, and offers good balance between latency and memory usage.
Proposal 1: Adopt proposed scheme as channel interleaver for uplink control channel.

References
[1] R1-1713474, “Design and evaluation of interleaver for Polar codes”, Qualcomm, RAN1#90, Prague, Czech Republic, Aug. 2017.

Appendix

[image:]
Figure 17. SNR versus BLER performance for QPSK, K=32.

[image:]
Figure 18. SNR versus BLER performance for QPSK, K=64.

[image:]
Figure 19. SNR versus BLER performance for QPSK, K=128.

[image:]
Figure 20. SNR versus BLER performance for QPSK, K=256.

image1.wmf
()

k

p

oleObject1.bin

image2.wmf
0,1,2,...2

min()(1)

kN

kk

pp

=-

-+

oleObject2.bin

image3.wmf
0,1,2,...2

()(1)

1

kN

kk

N

pp

=-

-+

-

å

oleObject3.bin

image4.wmf
()

k

p

oleObject4.bin

image5.wmf
k

oleObject5.bin

image6.wmf
(1)

2

PP

N

+

³

oleObject6.bin

image7.wmf
QN

>

oleObject7.bin

image8.wmf
QN

-

oleObject8.bin

image9.jpeg

image10.wmf
2

P

y

-

oleObject9.bin

image11.wmf
1

P

y

-

oleObject10.bin

image12.wmf
22

P

y

-

oleObject11.bin

image13.wmf
min

2

d

=

oleObject12.bin

image14.emf
02471116

1591318X

381420XX

61219XXX

1017XXXX

15XXXXX

row 0row 1row H-1

…….

Read 0

Read 1

Read H-1

oleObject13.bin
0

2

4

7

11

16

1

5

9

13

18

X

3

8

14

20

X

X

6

12

19

X

X

X

10

17

X

X

X

X

15

X

X

X

X

X

row 0

row 1

row H-1

…….

Read 0

Read 1

Read H-1

image15.emf
0246810

1131517X

3121820XX

51419XXX

716XXXX

9XXXXX

row 0row 1row H-1

…….

write buffer: 0th segment

write buffer: 1st segment

 write buffer: 2nd segment

11

oleObject14.bin
0

2

4

6

8

10

1

11

13

15

17

X

3

12

18

20

X

X

5

14

19

X

X

X

7

16

X

X

X

X

9

X

X

X

X

X

row 0

row 1

row H-1

…….

write buffer: 0th segment

write buffer: 1st segment

 write buffer: 2nd segment

image16.emf
02591420

1481319X

371218XX

61117XXX

1016XXXX

15XXXXX

row 0row 1row H-1

…….

Read 0

Read 1

Read H-1

Read 2

oleObject15.bin
0

2

5

9

14

20

1

4

8

13

19

X

3

7

12

18

X

X

6

11

17

X

X

X

10

16

X

X

X

X

15

X

X

X

X

X

row 0

row 1

row H-1

…….

Read 0

Read 1

Read H-1

Read 2

image17.wmf
2

HN

³

oleObject16.bin

image18.wmf
21

H

-

oleObject17.bin

image19.wmf
2

QH

=

oleObject18.bin

oleObject19.bin

oleObject20.bin

image20.png

image21.wmf
(,)

yab

oleObject21.bin

image22.wmf
1

cH

=-

oleObject22.bin

image23.wmf
(0,)(0,4)

ycy

=

oleObject23.bin

image24.wmf
5

H

=

oleObject24.bin

image25.wmf
(1,1)(1,3)

ycy

-=

oleObject25.bin

image26.wmf
(1,1)(1,5)

ycy

+=

oleObject26.bin

image27.wmf
1

rH

=-

oleObject27.bin

image28.wmf
(,)(1,0)

yrcryH

-=-

oleObject28.bin

image29.wmf
(,)(1,22)

yrcryHH

+=--

oleObject29.bin

image30.wmf
0,1,2...1

iH

=-

oleObject30.bin

image31.wmf
(,())

yrcri

±-

oleObject31.bin

image32.wmf
25,5

NH

==

oleObject32.bin

image33.emf
0

192

31016114

512172118136

7141922242320158

ù

é

ú

ê

ú

ê

ú

ê

ú

ê

ú

ê

ú

ê

ë

û

0192310161145121721181367141922242320158

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.wmf
(1,0)

yH

-

oleObject33.bin

image45.png

image46.png

image47.png

image48.png

