3GPP TSG RAN WG1 NR Ad-Hoc#2	R1-1711439
Qingdao, China, 27th-30th June 2017

Agenda Item:	5.1.4.1.1.2
Source:	Huawei, HiSilicon
Title:	Segmentation for eMBB data
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In the last RAN1 meeting, the agreements below were achieved for NR coding chain[1],
Agreement:
· FFS: how CB sizes are determined within a TB
· One of the following approaches will be selected at June Adhoc for determining the Z values of code blocks within a TB:
· Alt 1. Same value of Z
· Alt 2. At most two different values of Z for a given TB
This contribution continues to investigate the CB segmentation procedure and the relative factors that should be considered for CB segmentation.
CB segmentation
In LTE, By given a certain desired code rate r after rate-matching, CBS is the only factor that influences BLER performance. Typically, the larger CBS is, the more coding gain is observed. This is also true for LDPC codes. In this principle, the sizes of CBs after segmentation should be as large as possible without difference on length (no performance difference between CBs).
Because the granularity of information bits of LDPC codes is 1 bit, CB size could be any number no larger than 8448. We can evenly segment one transport block by following steps:
· Define Kmax = 8448, input TBS including TB-CRC is B, length of CB-CRC is L,
· If B≤Kmax, CBS = B, no additional CB-CRC attached;
·
Number of code blocks: ;
·
Calculate the length including CB-CRC:;
·
First segmentation size: ;
·

Number of segments of size: ;
·

	Number of segments of size: ;
·
Second segmentation size: .
In this way, the difference between K+ and K- is at most 1 bit.
Proposal 1: One transport block should be almost evenly segmented into code blocks with 1-bit difference of length.
Zero padding before encoding
The legal input bit length of a LDPC encoder should be Z times Kbmax, where Kbmax denotes the number of systematic columns in BG1 or BG2, and Z is the lifting size selected from a set of allowed Z values, as shown in Table 1. For those CB sizes which are not exact legal input lengths, one possible value of Z should be selected and certain filler bits should be padded to the end of the code block so that the total length with filler bits is a legal input length. Then, the question is how to select Z.
Typically, Z is selected with the principle of least filler bits to avoid performance degradation, as expressed below,

.
The filler bit length is calculated as

where K+/- denotes K+ or K-.
However, for some cases, e.g. small blocks, the principle of least filler bits would not be the best in terms of BLER performance. In contrast, more padding bits and shortening columns would result in better performance. In order to select an optimal Z, we need a table of offset Z for a certain K range. Table 2 provides an exemplary table of offset Z according to different K ranges. Note that this table could be changed after PCM and corresponding lifting method are finally decided. The final selected Z is determined by

.
Table 1. Allowed lifting sizes
	Zallowed
	1 a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

Table 2. Example of offset values and selected Z
	
(2 bit)
	Automatically calculated parameters

	
	
	
	

	3
	7
	
	40

	2
	7
	
	41-42

	3
	8
	
	43-47

	2
	7
	
	48

	…
	…
	
	…

	8
	72
	
	640

[bookmark: _GoBack]Proposal 2: Filler bits should be padded to the end of the code block and the length of filler bits is decided by selected Z and Kbmax, where the selected Z is obtained by the principle of least filler bits or a lookup table of offset Z.
Because the filler bit length is only K-dependent, to simplify the coding chain and decouple CB segmentation and encoder, it is preferred not to involve K+ and K- for padding, and let encoder process each CB independently. In other words, it should be allowed two different values of Z within one TB after padding.
Proposal 3: At most two different values of Z within one TB should be considered.
Conclusions
This contribution describes a design of CB segmentation for NR eMBB data channel. In summary, the proposed design has the following characteristics:
Proposal 1: One transport block should be almost evenly segmented into code blocks with 1-bit difference of length.
Proposal 2: Filler bits should be padded to the end of the code block and the length of filler bits is decided by selected Z and Kbmax, where the selected Z is obtained by the principle of least filler bits or a lookup table of offset Z.
Proposal 3: At most two different values of Z within one TB should be considered.
References
[bookmark: _Ref478113521][bookmark: _Ref470853125]Chairman’s Notes, RAN1_AH meeting, Spokane, January 2017
[bookmark: _Ref478114888]R1-1701629, “Code Block Segmentation for LDPC Codes”, Ericsson
[bookmark: _Ref478108087]3GPP TS 36.212, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding” V14.2.0 (2017-03)
[bookmark: _Ref481768063]R1-1704250, “LDPC design for eMBB data”, Huawei, HiSilicon, RAN1#88bis, Spokane, April 2017

image2.wmf
L

C

B

B

×

+

=

¢

oleObject2.bin

image3.wmf
(

)

é

ù

C

L

C

B

K

/

×

+

=

+

oleObject3.bin

image4.wmf
-

K

oleObject4.bin

image5.wmf
(

)

L

C

B

C

K

C

×

+

-

×

=

+

-

oleObject5.bin

image6.wmf
+

K

oleObject6.bin

image7.wmf
-

+

-

=

C

C

C

oleObject7.bin

image8.wmf
(

)

-

+

+

-

×

-

×

+

=

C

C

K

L

C

B

K

/

oleObject8.bin

image9.wmf
(

)

é

ù

allowed

orig

Z

Z

Kb

K

Z

t

s

Z

Z

Î

Ç

>

=

-

+

/

.

.

min

arg

/

oleObject9.bin

image10.wmf
-

+

-

×

=

/

max

K

Z

Kb

L

orig

F

oleObject10.bin

image11.wmf
Z

Z

Z

orig

select

D

+

=

oleObject11.bin

image1.wmf
(

)

é

ù

L

K

B

C

-

=

max

/

oleObject1.bin

