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Introduction
In RAN1#88 meeting, an agreement was reached to adopt Polar codes for both UL and DL control channels in NR (except for very small block lengths where repetition/simplex/Reed-Mueller block codes are used). Rate matching methods are needed to attain high block length granularity for NR control channels.
Puncturing is an essential process in rate-matching. In this contribution, we study the relationship between the locations of punctured bits in a Polar codeword and those of the bit-channels with inferior or superior qualities under different statistical models of punctured bits.  This complements the results in [1][2] and provides and a common theoretical basis for the two types of complementary puncturing described in [3].  Sketch of proof for necessary and sufficient conditions for reciprocal puncturing [3] is provided.
The analysis here assumes successive cancellation (SC) decoding, but the same conclusion applies when successive cancellation list (SCL) decoding is used as the arguments are applicable to each candidate of any list of possible decision paths.

Statistical Models of Punctured Bits
Under the SC (or SCL) decoding paradigm, Polar coding can be viewed as a transformation of a sequence of independent binary-input discrete memoryless channels (BI-DMC), denoted by , into another sequence of bit-channels  with polarized levels of reliabilities, where .  In conventional polar coding, the underlying BI-DMC channels are assumed to have an identical channel transition probability function .  However, when some of the code bits are punctured, a statistical model different from  is needed at the punctured locations, as illustrated in Figure 1, where  denotes the normal BI-DMC for non-punctured bits with transition probability , and  denotes a BI-DMC used to model punctured bits with a different transition probability .  For example, in this figure, the code bits  are punctured and assumed to go through  while other code bits go through .  In this section, we study two statistical models of  that leads to two different imputation strategies at the decoder for punctured code bits, along the two corresponding strategies of placing assigning data bits into bit-channels at the encoder.  These two sets of strategies are currently referred to as “puncturing” and “shortening” in 3GPP, respectively.
Let  denote the target code length after puncturing, let  be the length of the mother polar code, and let  be the number of punctured bits.
Useless Channel
One way of modelling the puncturing of a code bit is to assume that the bit passes through a useless BI-DMC whose output is independent of its input, i.e.  for some distribution .  The capacity of such a useless channel is zero (i.e. .  Hence, the sum capacity of a group of  BI-DMCs with  useless channels is  bits, where  denotes the capacity of BI-DMC at non-punctured bit locations.  The performance of any coding scheme designed for this group of BI-DMCs can be realized by imputing the punctured bits with random bit values that are equally likely of being one or zero at the decoder.  The imputation strategy for punctured bits under this model is to assign values with a symmetric probability distribution, which is exemplified by filling in zeros as LLR for the punctured bits at the decoder.
Perfect Channel
Another way of modelling the puncturing of a code bit is to assume that the bit passes through a perfect BI-DMC whose output is the same as its input.  The capacity of such a perfect channel with binary input is one (i.e. .  Hence, the sum capacity of a group of  BI-DMCs with  of perfect channels is  bits.  Of course, the perfect channel does not exist in practice.  However, it can be emulated by assigning the puncture bits with deterministic values at that have been pre-agreed with the encoder, so that the encoder limits the transmitted codewords to be in the (offset) subspace specified by those pre-agreed deterministic values.  Thus, the realistic/relevant capacity under this model is again  bits.  The imputation strategy for punctured bits is to assign fixed known bit values, which corresponds to assigning LLR of infinite magnitudes for the punctured bits corresponding to pre-agreed code bit values at the decoder.


[bookmark: _Ref477996150]Figure 1. Polar code of length  with non-uniform channel reliabilities across code bits due to puncturing
  
Impact of Puncturing and Shortening on Bit-Channels
In this section, we consider the impact of puncturing on the polarized bit-channels under the two statistical models of puncturing described above.  Let  denote a puncturing pattern, i.e. a set of punctured code bit indices.
Case with Useless Channel Model
For the useless-channel model, define an indicator function:

For the case , the impact of puncturing on the bit-channel capacities for all possible puncturing patterns is illustrated in Figure 2.  The table on the right-hand side lists all possible puncturing patterns labelled by the indicator function , while the table on the left-hand side lists the corresponding bit-channel capacities after one stage of polarization, where  and  denotes the bit-channel capacities resulted from “polarizing” two channels with the same capacity .  


[bookmark: _Ref482006466]Figure 2. Capacity of bit-channels under useless channel model 
for all possible puncturing patterns  for 
As shown in these tables, the number of useless bit-channels (of zero capacity) is identical on both sides.  These bit-channels should not be used to carry data.  As shown in this table, G polarized bit channel on the left-hand side with index ‘0’ is useless if any of the input bit channels on the right-hand side is useless, while the bit channel with index ‘1’ is useless if all of the input bit channels are useless.  Hence, the locations of these useless channels (on the left) after one stage of polarization can be derived from those of the original useless channels (on the right) using simple Boolean operators as illustrated in Figure 3.


[bookmark: _Ref482008124]Figure 3. Relationship between punctured bit locations and useless bit-channel locations for 
In this figure, two Boolean functions are defined as 
  					(1)
  					(2)
which serves as upper bounds to the respective bit-channel capacities, where  and  denote the AND and OR operations over , respectively.
One can repeat the argument and obtain the Boolean functions  relating the punctured locations and the bit-channel capacities for a larger by adding polarization stages.  Those bit channels associated with  must be useless since the capacity   is upper bounded by  and must be non-negative.  These bit-channels are termed catastrophic bit channels in [2] and should not be used to carry data. These bit channels should instead be “frozen” to fixed values that are pre-agreed with the decoder.  
Repeatedly applying the above recursions, one can see that the corresponding relationship for any  can be derived simply by replacing the binary-addition operations in normal Polar encoding by the corresponding Boolean operators (ANR, OR) [2].  As an example, Figure 5 shows how the locations of useless bit-channels at the input of Polar encoder can be derived from the Boolean functions  of the puncturing pattern , and the useless bit-channel locations after each polarization stage for the example in Figure 1 is shown in the figure.  Let  denote the indices of this useless bit channels, i.e.
.						(3)
By induction, it follows that the size of  is the same after each polarization stage and equals to the number of punctured bits, as shown in Figure 5.
Case with Perfect Channel Model
For the perfect-channel model, re-define the indicator function  as:

For the case , the impact of puncturing on bit-channel capacities for all possible puncturing patterns is illustrated in Figure 4.  The table on the right-hand side lists all possible puncturing patterns labelled by the indicator function , and the table on the left-hand side lists the corresponding bit-channel capacities.  The same Boolean functions,  and , given in (1) and (2) are now lower bounds for the bit channel capacities,  and ,    i.e.  
  					(4)
  					(5)
As in the case with useless channel, one can repeat the argument and obtain the Boolean functions  relating the punctured locations and the bit-channel capacities for larger.  Those bit channels associated with  must be perfect since the capacity   is lower bounded by  and must be less than one.  In a similar fashion, the locations of perfect channels for any  can be derived simply by replacing the binary-addition operations in normal Polar encoding by the corresponding Boolean operators (ANR, OR), as shown in Figure 5.  The only difference is that the bit channels with  (instead of ) are the ones that should not be used to carry data bits which have uncertain values. These bit channels should be “frozen” to fixed values that lead to the pre-agreed code bit values at the punctured locations at the decoder.  Let  denote the indices of this perfect bit channels that should not be used to carry data, i.e.
.						(6)
By induction, one can see that the size of  is the same after each polarization stage and equals to the number of punctured bits, as shown in Figure 5.




[bookmark: _Ref482133345]Figure 4. Relationship between punctured bit locations and perfect bit-channel locations for 



[bookmark: _Ref482024671]Figure 5. Relationship between punctured bit locations and useless bit-channel locations for 

Reciprocal Puncturing and Shortening
From the above discussions, it should be clear that for each puncturing pattern  for a polar code of length , there is a corresponding set  of bit-channel indices of the same size that should be excluded from carry data bits, where  is defined in (3) and (6) depending on the statistical model of the punctured bits at the decoder.  Regardless of how the punctured bits are modelled, at the input of the encoder, the bit-channels with indices in  should be frozen to fixed values pre-agreed with the decoder.  The set  and the associated puncturing pattern  are different in general.  A puncturing pattern  is called reciprocal in [3] when .   When a useless channel model is used for punctured bits, a necessary and sufficient condition for  to be reciprocal is that it satisfies the following property [3]:
 			One-covering Property:  If  and , then  .
where  means that for every digit of ‘1’ in the binary representation of index , the corresponding digit in the index  must also be ‘1’.  Useless channel model corresponds to the case of puncturing at encoder output. Hence reciprocal puncturing pattern is realized when the one-covering property is satisfied.
When a perfect channel model is used for punctured bits a necessary and sufficient condition for  to be reciprocal is that it satisfies [3]:
Zero-covering Property:  If  and , then  .
where  means that for every digit of ‘0’ in the binary representation of index , the corresponding digit in the index  must also be ‘0’.  Perfect channel model corresponds to the case of shortening at encoder output. Hence reciprocal shortening pattern is realized when the zero-covering property is satisfied.
Based on the above discussion, we sketch the proof of these conditions.  We show only the case with useless channel, and the case with perfect channel follows in the same manner.   
For any given block length , by the definition of , the set of Boolean functions  computed by a modified Polar encoder with AND-OR operators (as illustrated in Figure 5 for ) determines  for any given .  To show sufficiency, it therefore suffices to show that the input and output remain the same after each polarization stage in the modified encoder if the one-covering property is satisfied, since then the locations of ‘0’ in the input of the modified polar encoder with AND-OR operators would be the same as those at its output. Let the binary representation of an index be denoted by where  denotes the th most significant bit of index . At polarization stage , where , there are  pairs of AND-OR operators in the form of that in Figure 4, each corresponding to one combination of  .  If the one-covering property is satisfied, the input and the output of each pair of these AND-OR operators are identical as only the 1st, 2nd, and 4th column of the tables in Figure 4 are allowed in this case.  Since this is true for each polarization stage, it follows that the one-covering property implies reciprocity. Conversely, to show necessity, first note that if the input and the output of the modified Polar encoder are the same (i.e. ), then the input and output after each polarization stage must be also the same, since the largest bit index with value ‘0’ is monotonically non-increasing after each polarization stage as the output of the AND operator must be smaller than that of the OR operator for the same input (as illustrated in the location of the lowest red ‘0’ at each stage in Figure 5).  Now suppose there exist  and  such that  and   but .  Since   , there must exist a  such that  and .  It follows that at stage , one of the two pairs of AND-OR operators that correspond to  and , respectively, must have different input and output as shown in the 3rd column of the tables in Figure 4.  It follows that the input and output after (at least) the th polarization stage must be different, and hence the input and output of the whole modified Polar encoder must be different, so .

Conclusions
In this contribution, we study the relationship between punctured bit locations and bit-channel with extreme capacities under two statistical models of punctured bit values.  Each of them leads to a different imputation strategy for the punctured bits at the decoder.  Based on the study, we made the following observations:

Observation 1 The missing values of punctured bits can be modelled statistically at the decoder by a useless binary-input channel or by a perfect binary-input channel.  These models correspond to puncturing are shortening operations, respectively.
Observation 2 For any given set of punctured bit locations, the way that the missing bit values are modelled statistically and thus imputed at the decoder determines the set of the bit channels that should be avoided for carrying data at the encoder.
Based on the analysis, we have the following proposals:
1. Reciprocal puncturing and shortening are adopted in NR.
1. [bookmark: _GoBack]One-covering and zero-covering properties are used to verify reciprocity of puncturing and shortening patterns.
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