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Introduction
[bookmark: OLE_LINK10]At 3GPP RAN1 meetings, the following were agreed for the LDPC codes[1-2] :
Working Assumption: [1]
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined is {8448, 384} => Kbmax = 22
· To be confirmed automatically at RAN1#89 if no significant implementation or performance issues are identified. 
· The base graph supporting Kmax should support the following set of shift sizes Z, where :

	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	 
	 

	
	6
	128
	192
	320
	 
	 
	 
	 
	 

	
	7
	256
	384
	 
	 
	 
	 
	 
	 



Agreement:  [2]
· The selection of base graph design is narrowed down to Alts 1a and 2 from RAN1#88bis
· For base graph #1:
· The dimensions of the base matrix are 68 columns, 46 rows (to support R=1/3)
· Seven 46x68 base matrices are identified as the set of candidates:
· Provided in the excel file R1_1709751.xlsx in R1-1709751 as Candidates A to G.
· By constructive email discussion until Thursday 1st June, agree (from the set of candidates or a merged solution), for evaluation and downselection until June adhoc:
· a single 46x68 base matrix, 
· the set of shift sizes
· For base graph #2:
· By constructive email discussion until Monday 12th June, agree a single base matrix for Alt 1a and a single base matrix for Alt 2, for evaluation and downselection until June adhoc
· Kbmax = 10 
· Design supports Kmax2 = 
· Working assumption 2560 
· 3840 can be considered further if significant benefit is shown
· The dimensions of the base matrix are 42x52
· Evaluations are to be performed up to Kmax2; primary focus for code selection is performance for K up to around 1024

According to email discussion, merged solutions for LDPC BG#1 and BG#2 are agreed for compromise purpose.
In this contribution, we discuss shifting coefficients design for eMBB LDPC base graphs. 

2    Base graph 

· BG#1
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]The merged schemed for base graph#1 with check nodes (CNs) 0~45 and variable nodes (VNs) 0~ 67 as shown in Figure 1.The blocks of variable nodes (VNs) 0~21 correspond to information bits and the other VN blocks correspond to parity bits. Blocks of VN0 and VN1 are punctured in the beginning of the initial transmission.
[image: ]
[bookmark: _Ref485546945]Figure 1: Base Graph #1
The merged schemed for base graph#2 with CNs 0~41 and VNs 0~ 51 as shown in Figure 2.The blocks of VNs 0~10 correspond to information bits and the other VN blocks correspond to parity bits. 
[image: ]
[bookmark: _Ref485546954]Figure 2: Base Graph #2

Shifting coefficients design 

For base BG#1 and BG#2, the number of shift coefficient designs is 8. All lift sizes are divided into 8 sets base on ‘a’, where ‘a’ is used for definition of lifting-size, a2j.
Shift value Pi,j can be calculated by a function Pi,j = f(Vi,j, Z), where Vi,j is the (i, j)-th element of the designed exponent matrix for the lift size set that includes Z. Function f is defined as


Design process
In this section, we propose a LDPC codes with algebraic structure. An algebraic-based method is first applied to obtain the preliminary result, which can decrease the construction complexity and search range.
The following procedures are the steps of constructing the parity check matrix of target LDPC code.

Step 1: Get the base graph which is shown in Figure 1or Figure 2F. Each element “1” in the base graph is replaced by a circulant permutation matrix, and element “0” in the base graph is replaced by a ZxZ zero matrix. The shift values are determined in the following steps.
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Step 2: Construct the original circulant coefficient matrix by an algebraic method. An original circulant coefficient matrix is built.
Step 3: Derive the modified circulant coefficient matrix for each set from the original circulant coefficient matrix by modular  operation, where  is the maximum number of one’s in this set, e.g.,  is 240 for Set 8.
Step 4: Search the shift values to construct the exponent matrix E for each set by choosing different rows from the corresponding modified circulant coefficient matrix.
Table 2: Relationship between exponent matrices and sets of lift sizes
	Exponent matrix
	Lift sizes

	PCM1
	2
	4
	8
	16
	32
	64
	128
	256

	PCM2
	3
	6
	12
	24
	48
	96
	192
	384

	PCM 3
	5
	10
	20
	40
	80
	160
	320
	

	PCM 4
	7
	14
	28
	56
	112
	224
	
	

	PCM 5
	9
	18
	36
	72
	144
	288
	
	

	PCM 6
	11
	22
	44
	88
	176
	352
	
	

	PCM 7
	13
	26
	52
	104
	208
	
	
	

	PCM 8
	15
	30
	60
	120
	240
	
	
	



Step 5: Let the lift size Z=K/22 (or K/10) for given information length K. Once the lift size Z is decided, the corresponding exponent matrix according to the relationship is choosen in Table 2. The final shifting coefficient matrix for lifting size Z by modular Z operation is obtained as discussed before.
Step 6: Replace each non-negative entry in the final exponent matrix with corresponding circulant permutation matrix of size Z×Z. 
 The LDPC code construction is completed.
For any Z, the exponent matrix of proposed LDPC codes is determined by unique base graph and OriM. We only need to store the row index for each set of shift size. 

The resulting shifting coefficients matrices
Evaluations on Performance

Conclusions
In this contribution, we discuss the LDPC code design for eMBB. The above discussion is summarized with following observations and proposals:
Proposal 1:  The proposed algebraic-aided computer optimization-based construction method is an efficient method for constructing LDPC codes for eMBB data channels, and should be considered in the eMBB data channel.
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