3GPP TSG RAN WG1 WG1 NR Ad-Hoc#2	 R1-1710046
Qingdao, P.R. China, June 27th-30th, 2017

Source: 		CATT
[bookmark: Title]Title:	LDPC design for eMBB data
Agenda Item:	5.1.4.1.2
Document for:	Discussion/Decision

Introduction
[bookmark: OLE_LINK10]At 3GPP RAN1 meetings, the following were agreed for the LDPC codes[1-2] :
Working Assumption: [1]
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined is {8448, 384} => Kbmax = 22
· To be confirmed automatically at RAN1#89 if no significant implementation or performance issues are identified.
· The base graph supporting Kmax should support the following set of shift sizes Z, where :

	Z
	a

	
	2
	3
	5
	7
	9
	11
	13
	15

	j
	0
	2
	3
	5
	7
	9
	11
	13
	15

	
	1
	4
	6
	10
	14
	18
	22
	26
	30

	
	2
	8
	12
	20
	28
	36
	44
	52
	60

	
	3
	16
	24
	40
	56
	72
	88
	104
	120

	
	4
	32
	48
	80
	112
	144
	176
	208
	240

	
	5
	64
	96
	160
	224
	288
	352
	
	

	
	6
	128
	192
	320
	
	
	
	
	

	
	7
	256
	384
	
	
	
	
	
	

Agreement: [2]
· The selection of base graph design is narrowed down to Alts 1a and 2 from RAN1#88bis
· For base graph #1:
· The dimensions of the base matrix are 68 columns, 46 rows (to support R=1/3)
· Seven 46x68 base matrices are identified as the set of candidates:
· Provided in the excel file R1_1709751.xlsx in R1-1709751 as Candidates A to G.
· By constructive email discussion until Thursday 1st June, agree (from the set of candidates or a merged solution), for evaluation and downselection until June adhoc:
· a single 46x68 base matrix,
· the set of shift sizes
· For base graph #2:
· By constructive email discussion until Monday 12th June, agree a single base matrix for Alt 1a and a single base matrix for Alt 2, for evaluation and downselection until June adhoc
· Kbmax = 10
· Design supports Kmax2 =
· Working assumption 2560
· 3840 can be considered further if significant benefit is shown
· The dimensions of the base matrix are 42x52
· Evaluations are to be performed up to Kmax2; primary focus for code selection is performance for K up to around 1024

According to email discussion, merged solutions for LDPC BG#1 and BG#2 are agreed for compromise purpose.
In this contribution, we discuss shifting coefficients design for eMBB LDPC base graphs.

2 Base graph

· BG#1
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]The merged schemed for base graph#1 with check nodes (CNs) 0~45 and variable nodes (VNs) 0~ 67 as shown in Figure 1.The blocks of variable nodes (VNs) 0~21 correspond to information bits and the other VN blocks correspond to parity bits. Blocks of VN0 and VN1 are punctured in the beginning of the initial transmission.
[image:]
[bookmark: _Ref485546945]Figure 1: Base Graph #1
The merged schemed for base graph#2 with CNs 0~41 and VNs 0~ 51 as shown in Figure 2.The blocks of VNs 0~10 correspond to information bits and the other VN blocks correspond to parity bits.
[image:]
[bookmark: _Ref485546954]Figure 2: Base Graph #2

Shifting coefficients design

For base BG#1 and BG#2, the number of shift coefficient designs is 8. All lift sizes are divided into 8 sets base on ‘a’, where ‘a’ is used for definition of lifting-size, a2j.
Shift value Pi,j can be calculated by a function Pi,j = f(Vi,j, Z), where Vi,j is the (i, j)-th element of the designed exponent matrix for the lift size set that includes Z. Function f is defined as

Design process
In this section, we propose a LDPC codes with algebraic structure. An algebraic-based method is first applied to obtain the preliminary result, which can decrease the construction complexity and search range.
The following procedures are the steps of constructing the parity check matrix of target LDPC code.

Step 1: Get the base graph which is shown in Figure 1or Figure 2F. Each element “1” in the base graph is replaced by a circulant permutation matrix, and element “0” in the base graph is replaced by a ZxZ zero matrix. The shift values are determined in the following steps.
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Step 2: Construct the original circulant coefficient matrix by an algebraic method. An original circulant coefficient matrix is built.
Step 3: Derive the modified circulant coefficient matrix for each set from the original circulant coefficient matrix by modular operation, where is the maximum number of one’s in this set, e.g., is 240 for Set 8.
Step 4: Search the shift values to construct the exponent matrix E for each set by choosing different rows from the corresponding modified circulant coefficient matrix.
Table 2: Relationship between exponent matrices and sets of lift sizes
	Exponent matrix
	Lift sizes

	PCM1
	2
	4
	8
	16
	32
	64
	128
	256

	PCM2
	3
	6
	12
	24
	48
	96
	192
	384

	PCM 3
	5
	10
	20
	40
	80
	160
	320
	

	PCM 4
	7
	14
	28
	56
	112
	224
	
	

	PCM 5
	9
	18
	36
	72
	144
	288
	
	

	PCM 6
	11
	22
	44
	88
	176
	352
	
	

	PCM 7
	13
	26
	52
	104
	208
	
	
	

	PCM 8
	15
	30
	60
	120
	240
	
	
	

Step 5: Let the lift size Z=K/22 (or K/10) for given information length K. Once the lift size Z is decided, the corresponding exponent matrix according to the relationship is choosen in Table 2. The final shifting coefficient matrix for lifting size Z by modular Z operation is obtained as discussed before.
Step 6: Replace each non-negative entry in the final exponent matrix with corresponding circulant permutation matrix of size Z×Z.
 The LDPC code construction is completed.
For any Z, the exponent matrix of proposed LDPC codes is determined by unique base graph and OriM. We only need to store the row index for each set of shift size.

The resulting shifting coefficients matrices
Evaluations on Performance

Conclusions
In this contribution, we discuss the LDPC code design for eMBB. The above discussion is summarized with following observations and proposals:
Proposal 1: The proposed algebraic-aided computer optimization-based construction method is an efficient method for constructing LDPC codes for eMBB data channels, and should be considered in the eMBB data channel.
References
[1]. Chairman’s notes, 3GPP TSG RAN WG1 #88bis meeting.
[2]. Chairman’s notes, 3GPP TSG RAN WG1 #89 meeting.
[3]. Email discussion: [89-24] LDPC code base graph #1 for NR.
[4]. Email discussion: [89-25] LDPC code base graph #2 for NR
image2.emf
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051

011110010011100

11001111111011000000000000000000000000000000000000000

21101100010101100000000000000000000000000000000000000

30110111111100100000000000000000000000000000000000000

41100000000010010000000000000000000000000000000000000

51100010100010001000000000000000000000000000000000000

61000010101010000100000000000000000000000000000000000

70100010100010100010000000000000000000000000000000000

81100000000001000001000000000000000000000000000000000

90100000010110000000100000000000000000000000000000000

101100001100000000000010000000000000000000000000000000

111000000101000100000001000000000000000000000000000000

120101000000010000000000100000000000000000000000000000

131100000010000100000000010000000000000000000000000000

140100001000010100000000001000000000000000000000000000

151000000000110000000000000100000000000000000000000000

160100000001011000000000000010000000000000000000000000

170100010000011000000000000001000000000000000000000000

181000001100000000000000000000100000000000000000000000

191100000000100000000000000000010000000000000000000000

200100100000010000000000000000001000000000000000000000

211000000010000100000000000000000100000000000000000000

220110000000000000000000000000000010000000000000000000

231001010000000000000000000000000001000000000000000000

240110000001000000000000000000000000100000000000000000

251000010000000000000000000000000000010000000000000000

260010000100001100000000000000000000001000000000000000

271000001000000000000000000000000000000100000000000000

280110010000000000000000000000000000000010000000000000

291000100000000000000000000000000000000001000000000000

300010010101000000000000000000000000000000100000000000

310100000000000100000000000000000000000000010000000000

321000010000001000000000000000000000000000001000000000

330010000100100000000000000000000000000000000100000000

341000000000001100000000000000000000000000000010000000

350100010000010000000000000000000000000000000001000000

361010000100000000000000000000000000000000000000100000

370000000000100100000000000000000000000000000000010000

380100010000010000000000000000000000000000000000001000

391000000100001000000000000000000000000000000000000100

400010000000100100000000000000000000000000000000000010

410100010000010000000000000000000000000000000000000001

image3.wmf
,

,,

,

1 if 1

(,Z)

mod(,Z) else

ij

ijij

ij

V

PfV

V

-==-

ì

ï

==

í

ï

î

oleObject1.bin

image1.emf
012345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667

0

11110110011111011011111100

1

1011110111011011110101111000

2

1110111111100111011110001100

3

1101101110111110111011100100

4

110000000000000000000000001000

5

110100000000100010000110000100

6

10000010001101000110100000001000000000000000000000000000000000000000

7

11001001100000100000000000000100000000000000000000000000000000000000

8

11010000000010001001011010000010000000000000000000000000000000000000

9

11000000001101000110100000000001000000000000000000000000000000000000

10

01101001100000100000000000000000100000000000000000000000000000000000

11

11000000000010001000011100000000010000000000000000000000000000000000

12

11000000001101000010000000000000001000000000000000000000000000000000

13

10010001000000000000100100000000000100000000000000000000000000000000

14

10000000000010011100010000000000000010000000000000000000000000000000

15

11000000001001000010000001000000000001000000000000000000000000000000

16

01010000000100000000101000000000000000100000000000000000000000000000

17

10000000000000101100010000000000000000010000000000000000000000000000

18

01000000000011000011000000000000000000001000000000000000000000000000

19

11000001101000000000000000000000000000000100000000000000000000000000

20

10010000010100000000001000000000000000000010000000000000000000000000

21

01000100000000001000110000000000000000000001000000000000000000000000

22

10000000000011000100000000000000000000000000100000000000000000000000

23

01100000001000000010000000000000000000000000010000000000000000000000

24

10011000000100000000001000000000000000000000001000000000000000000000

25

01000011000000100000000000000000000000000000000100000000000000000000

26

10101000000000010000000000000000000000000000000010000000000000000000

27

010000101001000000000000000000

28

10001000000000000001010000000000000000000000000000100000000000000000

29

01000000000000100010000001000000000000000000000000010000000000000000

30

10000000001001000000000010000000000000000000000000001000000000000000

31

01000001000000000000001001000000000000000000000000000100000000000000

32

10000000000010100000000010000000000000000000000000000010000000000000

33

01100000000100000000010000000000000000000000000000000001000000000000

34

10000001000000010100000000000000000000000000000000000000100000000000

35

01000010000010000000001000000000000000000000000000000000010000000000

36

10000000000000110010000000000000000000000000000000000000001000000000

37

01000000000001000000000100000000000000000000000000000000000100000000

38

100000000110100010000000

39

010100010000000000010001000000

40

10000000100000000100100000

41

01010000010000000010010000

42

10001000000000000000000010000000000000000000000000000000000000001000

43

01000000000000001010000001000000000000000000000000000000000000000100

44

1000000101000000000000100010

45

01000010001001

