Page 1
[bookmark: _GoBack]3GPP TSG RAN WG1 NR Ad-Hoc#2 	R1-1709882
27 – 30 June 2017
Qingdao, China

[bookmark: Source]Agenda item:	5.1.4.2.1
Source: 	Tsofun Algorithm
Title: 	Enhancement of Early Termination of Polar Codes by placing UE-ID on Frozen Bits
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction

In RAN1#88b meeting [1], the following agreement was reached:
Conclusion:
· Study until RAN1#89 polar code construction techniques to facilitate early termination (i.e. before decoding all the information bits) without degrading BLER performance or latency (especially considering the time for deinterleaving the information and assistance bits) compared to purely implementation based methods such as path-metric based pruning
· e.g. assistance bits distributed in the codeword in such a way that error detection can be performed after partial decoding
· Investigate performance, complexity and FAR impacts
· Study of use of data-independent scrambling to facilitate early termination is also not precluded

In RAN1#89 meeting [2], the following agreement was reached to proceed with the evaluations:
Agreement:
· For DL:
· J’ = 3 or 6, to be downselected at June adhoc
· J’’ = 0
· At least some of the J + J’ bits are appended
· FFS until June adhoc:
· how the J + J’ bits are obtained
· If J’=6, working assumption that at least some of the J + J’ bits are distributed (including to support early termination in the code construction) (Consideration of J’=6 proposals without distributed J+J’ bits are not precluded.)
· If J’=3, FFS until June adhoc whether some of the J + J’ bits are distributed (including to support early termination in the code construction)
· Consideration of distribution of bits shall consider complexity versus benefit and comparison to implementable purely implementation based methods for early termination
Email discussion until Thursday 1st June to align calculation methods for latency and complexity with early termination.
Companies are requested to provide proposed schemes for evaluation by Thursday 8th June.
For enabling early termination (ET) in blind decoding of frames that are not targeted to a certain user or group, it was proposed to scramble the sent message by adding to it an offset word [3][4][5][6]. Before decoding occurs the system may cancel the UEID offset word (e.g. by manipulating decoder input LLRs). If indeed the user is the target of the frame (i.e. scheduled UE), decoding would proceed as normal. However, if it is not the target of the frame (i.e. unscheduled UE), then the original message is shifted by a certain vector. This may generate greater distortion than anticipated by the decoder, and as such it is expected that resultant decoded word will have smaller likelihood score (or large |PM| value) compared to the case of scheduled UE. This property can be utilized to terminate decoding if |PM| is above some threshold.
In this document, we propose a scheme to select offset vectors by an appropriate placement of UEID in polar code frozen bits. Previous proposals suggested placing an expanded representation of UEID on all the frozen bits by employing seeded pseudo-random generator [3] [5]. In our proposal, we recommend to place UEID on a limited number of frozen bits. This has an advantage of employing simple low latency polar-code encoder for generating the UEID based offset vector.
The discussion in this document is oblivious to the choice of J and J’. We chose to present our results on codes with single CRC of 19 bits located at the end of the information word. In an additional contribution by Tsofun [8], we present a complementary code construction scheme using split CRC, to support ET. Please note that the two schemes proposed by Tsofun are not mutually exclusive and can be used together.

[bookmark: _Ref485312245]Embedding UEID by Frozen Bits Selection
Let be the size of in bits, i.e. . Let a codebook of length and dimension and let be an offset codebook of length and dimension . For each there exists an offset word in . When transmitting a message to certain UEID it is encoded into a codeword and then an offset is made to it by adding that corresponds to that UEID. Consequently, the sent message is .
Let be an LLR vector corresponding to the word received by user with UEID . The decoder may first cancel , the offset that corresponds to . This can be done by manipulating the that are given at the input to the decoder, i.e. by employing for . Then is provided to the SCL decoder. If then this results in an equivalent channel with noisy user message . On the other hand, if , then the user frame is distorted both by the channel noise and the offset . Since the decoder is unaware of this shift, it would try to find a likely codeword that explains . In ML decoding over AWGN, should be the closest codeword (in the sense of low Euclidian distance) to the noisy version of . The likelihood of this candidate (manifested by the path-metric, PM) will be smaller if the Euclidian distance is high.
Hence, a reasonable selection of would be such that for each s.t , the Euclidian distance between modulation of and modulations of the coset is high (distance between two sets is the minimum distance between any two elements and). In standard mapping of QPSK this feature is equivalent to having high Hamming distance between the aforementioned sets. If and D are linear, the Hamming distance between and is the minimum Hamming weight in for
A simple approach for selection of is by some random selection independent with the codebook [9]. A simple encoder for can be implemented by pseudo-random numbers generator for which the seed is function of UEID. However, the danger in this approach is the possibility of event in which for some two different UEIDs andthe encoded offsets . If this rare (yet attainable) event occurs, when attempts to decode a frame scheduled to UE it will decide that the frame is intended for itself with high probability, and moreover will decode wrong information (corresponding to)[footnoteRef:2]. Let us emphasize that while is rare, if it happens the described mix-up between and would always occur for the specific code (which violates FAR requirements) which is a prohibitive behaviour. [2: Note that in case we use polar code concatenated by some error detection code (e.g. CRC), we denote by the codebook of the polar-code concatenated with that error detection code. In that case, the word will be wrongly decoded, and the linear error detection code will not be able to detect the error.]

Placing UEID on certain frozen bits of the sent word generates a linear offset codebook that prevents the above hazard. The selection of appropriate set of frozen bits is important as it determines the effect on PM in case of mismatched UEIDs. This is useful as we may terminate decoding earlier if |PM| is higher than expected compared to the scheduled UE scenario.
It was Korada that noted [6]:
1. The weight of the row in Kronecker product is , where denotes the number of ones in the binary expansion of , where .
2. The minimum Hamming distance of polar code with non-frozen set of indices is .
Following those observations, we see that mapping UEID on frozen bits with large is advantageous. Note however, that for early termination to be effective the outcome of the offset on PM should be noticed in early stages of the sequential decoding process. The effect of placing non-zero value on frozen symbol is only manifested in SCL decoding steps that follow , because when SCL decides on information symbol it assumes that further bits with indices are random. Therefore, it is also preferable to have the UEID placed on frozen bits with smallest indices as possible.
Previous proposals suggested placing an expanded representation of UEID on all the frozen bits by employing seeded pseudo-random generator [3] [5]. In our proposal, we recommend to place UEID on a limited number of frozen bits. This is advantageous as it enables employing simple polar-code encoder for generating the UEID based offset vector. Specifically, we would like to have the bits of the UEID mapped to frozen bits. In this case, the offset may be generated at the receiver by encoding those bits by simple low latency polar code encoder that takes as input the UEID values and their locations. This allows efficient cancellation of the offset vector before the starting SCL decoder (e.g. on-the-fly while loading input LLRs to the decoder). Therefore, it enables SCL to be oblivious to the UEID placement.
This discussion leads us to the following proposal.
Proposal:
Assuming that is of bits (according to size of C-RNTI in [10]). We propose the following scheme for embedding UEID in the polar code codeword, by employing an offset vector.
1. UEID is placed explicitly on frozen bits selected as follows:
- frozen bits corresponding to rows of large hamming weight in the polar code generating matrix are preferred over frozen bits with rows of lower weight.
- if ties occur frozen bits that are decoded earlier by SCL are preferred.
2. [bookmark: _Ref485306523]The first bits of the CRC are xor-ed with UEID.

Early Termination Based Decoding
Preliminaries
In the sequel, we use reliability based metric to distinguish between messages that are sent to our UEID (i.e. scheduled UEs) and messages that are not sent to us. We demonstrate the latency/complexity gains by employing a threshold(s) based termination criterion on the path metric parameter.
Let us first define the path metric used in our contribution.
Let be a codeword of length bits modulated by QPSK and sent over AWGN with noise and receive , i.e. . is our modulator. In this contribution, we consider QPSK as our modulation scheme. The even indices of the vectors are corresponding to the in-phase part and odd indices are corresponding to the quadrature part.
 for and .
When the SNR is known by receiver, LLRs can be calculated :
		(1).
The SCL decoder may consider on each step up to candidates (also referred to as decoding-paths). Each one of them has path-metric score that reflects the reliability of the candidate. Specifically, after step we should have as our-path metric corresponding to path .
 (2).
In SCL PM is updated according to

where is the LLR of the decision of and can be implemented by a lookup table (LUT). In the design used in our analysis we decided to null out the LUT, thereby using the approximation:

In the SCL decoder itself we also omitted the LUT usage from the LLR of , i.e.

Note that in this case the SCL LLR calculation is linear, so the input can be multiplied by constant value without affecting results. Moreover, when the SNR is not known, we cannot assume that is given. In such cases we assume that LLR in (1) is normalized by the factor , i.e. .
ET Decoder Specification
In this part, we specify SCL decoder with early termination capabilities. For each decoding stage , let be the minimum of a decoding path considered at that stage (this is the PM of the path with highest reliability). By (1) and (3) we can see that is monotone increasing in . We devise a sequence of thresholds .
The condition for (early) termination on stage : if there exists such that and
Example:
For [192,32] shortened code, let the two thresholds sequence be {}. This means that for decoding indices the decoder terminates if and for decoding indices the decoder terminates if . Note that throughout this document the decoding stage is the ordinal of the information part including frozen bits.
Threshold Determination
While setting thresholds allow earlier termination of decoding attempts, it might also result in termination of scheduled messages that otherwise would have been decoded successfully. In other words, BLER degradation might occur as side-effect of early termination. It is thus reasonable to limit the allowed degradation to BLER at some working point, to be BLER, such that the overall BLER would rise to .
Having determined the allowable degradation, we search for that meet those requirements. Specifically, by computing the distribution of our decoder as function of the SNR and , we can specify such thresholds to meet the degradation criterion. On the other hand, comparing this threshold to the distribution of of a false decoding candidate will reveal the early termination probability.

Example:
Figure 1 depicts average for polar code (M=192, K=64) on different decoding indices (and for two SNR points of 1.27 dB and 1.90 dB corresponding to BLER of and respectively. The following scenarios were considered:
· scheduled message - the frame was intended for the UE.
· different UEID (naive) – unscheduled message of UEID placed on the first frozen bits.
· different UEID (high weight) – unscheduled message of UEID placed on frozen bits according to the proposal in Section 2.
· random word – the transmitted word is random.

[image:]
[bookmark: _Ref485305814]Figure 1 Average (normalized) for [192,64] code
It is easy to see that indeed is monotone increasing function of . It also increases as the SNR decreases for the scheduled cases. The proposed placement of UEID on high weight frozen bits yields average similar to the random word. On the other hand, the naïve approach results in significantly smaller values compared to the proposal.
Let us consider Figure 2 in which we see the average as function of decoding index for random word and scheduled message for different SNR points. We notice again that as SNR grows the of scheduled messages decreases (this is reasonable as low normalized means high reliability). We also observe different behavior for the random word, for which normalized increases as SNR increases. The latter behavior of random words is not universal and is reversed for low rate codes such as [480,80] as seen in Figure 3.
[image:]
[bookmark: _Ref485638170]Figure 2 Average (normalized) for [180,120] code for random word and scheduled message
[image:]

[bookmark: _Ref485638848]Figure 3 Average (normalized) for [480,80] code for random word and scheduled message
In Figure 4, we selected in [192,64] code and considered the reverse cumulative distribution function, i.e. the probability to be above threshold: of the scenarios. We can see that allowing degradation of would suggest setting thresholds of For the naïve approach it will result in probability of early termination, while in the proposed UEID scheme it allows chance for early termination.

[image:]
[bookmark: _Ref485308654]Figure 4 Reverse cumulative distribution of for [192,64] polar code.

Simulation Results
Below we provide latency and complexity gains for threshold-based early termination decoder. We aimed at devising for each code a single set of (SNR independent) thresholds while inflicting limited degradation (typically < 0.1 dB) for SNRs corresponding to BLER . We consider two cases: unscheduled UEID with the proposed UEID placement on frozen bits and random word case. The SNR points in each table correspond to BLER and . The thresholds list is specified on the title of each table and the degradation [dB] column specifies the shift in BLER curve due to those thresholds corresponding to each SNR working point.
The complexity gain is the average number of operations saved thanks to early termination, divided by the total number of operations for (uninterrupted) decoding. Similarly, the latency gain is the total number of clock cycles saved thanks to early termination scheme divided by the total number of clock cycles for decoding. Both the latency and complexity models are of simplified SCL with and special outer-code decoder of length four bits and 32 processing elements. The exact latency and complexity calculation algorithm is provided in [11]. The rate matching technique used in this contribution is bit-reversed shortening.
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
In most of the cases the proposed UEID placement gives latency and complexity gains very close to the random word case. However, as the number of frozen symbols in codeword increases the gap between the gains of random codeword and the proposal increases as well. As an example, consider the [720,120] code. In order to bridge the gap, we consider in this case three UEID placements:
· Unscheduled UEID (16 bits) – original proposal with
· Unscheduled UEID (32 bits) – our proposal with , however the number of selected frozen bits is 32 and we place UEID on this sequence by concatenating two copies of the 16 bits UEID representation.
· Unscheduled UEID (48 bits) – our proposal with , however the number of selected frozen bits is 48 and we place UEID on this sequence by concatenating three copies of the 16 bits UEID representation.

We can see that while gaps between the random case and UEID (16 bits) gains are significant, for the UEID (32 bits) they are very small and become negligible for UEID (48 bits). Therefore, if such low rate large codewords are of relevance it may be useful to consider using UEID (32 bits) proposal. Since in most cases the random word scenarios dominate the performance of blind decoding it seems reasonable that we may tolerate this degradation in gains for unscheduled long low rate frames for the benefit of simpler offset encoder.
[image:]
We also provide below details on the early termination probabilities for unscheduled case for several of the examples above. For each case, we specify for some decoding indices the early termination probability for the mentioned SNR point and thresholds set. As measure of the complexity we specify how many bits are non-frozen before the index and the complexity gain and latency gain that would be achieved if ET occurred with probability 1 at the decoding index.
[image:]
Conclusions
Observation 1: The approach of random UE-specific scrambling applied on the codeword - side is unacceptable, because it doesn’t prevent the occurrence of (the unlikely, yet possible) disastrous scenarios with FAR=1.
Observation 2: Using PM thresholds based early termination may provide considerable complexity and latency gains, while inflicting limited degradation on BLER performance.
[bookmark: OLE_LINK74]Observation 3: In most cases placing UEID on frozen indices corresponding to high weight rows of the generating matrix yields similar results to the case of random noise.
For polar codes with large number of frozen bits (i.e. of long code length and low rate) there might be a gap between the gains achievable with random offset and gains achievable with single copy of UEID on frozen bits with high weight. In those cases, placing concatenated copies of UEID on selected frozen bits locations with high weight may close the gap, while still allowing efficient offset encoder.
Observation 4: The UEID placement scheme proposed achieves similar gains to a random offset approach, except for codes with a large number of frozen bits, where some gap is possible. A simple modification of the scheme can close this gap.

Proposal: 	 The UEID placement scheme from Section 2 should be adopted for the EMBB DL control channel.
References
[1] Chairman’s notes RAN1#88b.
[2] Chairman’s notes RAN1#89.
[3] [bookmark: _Ref450735844][bookmark: _Ref484695493]R1-1707747 “Polar code construction for control channels”, AT&T.
[4] [bookmark: _Ref484695663]R1-1708316 “Study of early termination techniques for Polar code”, Intel Corporation.
[5] [bookmark: _Ref484697473]R1-1707686 “Early block discrimination with polar codes for DCI blind detection”, Coherent Logix Inc.
[6] [bookmark: _Ref485305163]R1-1700090 “On latency, power consumption and implementation complexity for polar codes”, Huawei, HiSilicon.
[7] [bookmark: _Ref484690024]S.B. Korada, “Polar Codes for Channel and Source Coding”, available https://infoscience.epfl.ch/record/138655.
[8] R1-1709883 “Study of Split-CRC Polar Code Construction for Early Termination”, Tsofun Algorithm
[9] R1-1708316 “Study of early termination techniques for Polar code”, Intel
[10] TS 36.331, Radio Resource Control (RRC) Protocol specification
[11] “Simplified Timing Model for NR SCL Decoding”, Tsofun, [89-26] offline email discussion

1/5
image1.png

image2.png

image3.png

image4.png

image5.emf
Code[96,32]Thresholds(58,4.3)

SNR [dB]degradation [dB]complexity gainlatency Gaincomplexity Gainlatency Gain

1.50.150.500.450.490.45

2.60.10.540.500.540.49

3.30.030.570.520.560.51

3.90.010.640.580.620.57

unscheduled UEIDrandom word

image6.emf
Code[192,32]Thresholds(126,18.0)(190,23.3)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

-1.750.150.630.600.640.62

-1.20.150.570.550.590.57

-0.50.020.500.480.530.51

3.900.460.440.460.45

unscheduled UEIDrandom word

image7.emf
Code[96,64]Thresholds(18,0.9)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

5.50.020.370.340.370.34

6.30.030.460.430.470.44

7.10.050.600.560.600.57

80.000.700.660.700.66

unscheduled UEIDrandom word

image8.emf
Code[128,64]Thresholds(18,0.9)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

2.80.100.290.270.300.28

3.70.060.390.370.390.37

4.30.050.460.420.460.43

4.80.050.550.510.550.51

unscheduled UEIDrandom word

image9.emf
Code[192,64]Thresholds(108,9.6)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

0.40.150.660.620.680.64

1.270.070.680.640.710.66

1.90.030.700.650.730.68

2.40.000.690.650.730.68

unscheduled UEIDrandom word

image10.emf
Code[384,64]Thresholds(240,38.5)(350,52.8)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

-30.150.620.600.660.64

-2.250.020.460.450.510.49

-1.70.000.330.320.380.37

-1.20.000.230.220.280.27

unscheduled UEIDrandom word

image11.emf
Code[120,80]Thresholds(35,1.4)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

4.80.060.230.210.230.20

5.80.040.390.350.390.36

6.40.050.480.440.490.44

6.90.150.600.550.600.55

unscheduled UEIDrandom word

image12.emf
Code[160,80]Thresholds(58,3.4)(88,4.0)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

2.750.160.470.440.470.44

3.60.070.540.500.560.52

4.250.050.610.580.640.60

4.750.100.680.640.700.66

unscheduled UEIDrandom word

image13.emf
Code[240,80]Thresholds(118,13.3)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

00.150.510.490.560.53

10.000.470.450.540.52

1.50.000.470.450.560.53

20.000.470.450.590.56

unscheduled UEIDrandom word

image14.emf
Code[480,80]Thresholds(254,49.4)(350,68.0)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

-3.250.150.830.820.860.84

-2.50.050.700.690.760.74

-20.000.590.580.650.64

-1.50.000.480.470.550.54

unscheduled UEIDrandom word

image15.emf
Code[180,120]Thresholds(60,2.1)(132,2.5)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

2.50.060.810.760.810.76

4.50.060.880.830.890.84

5.260.080.910.860.910.86

5.80.000.920.880.930.88

unscheduled UEIDrandom word

image16.emf
Code[240,120]Thresholds(85,6.4)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

2.250.150.730.690.730.70

30.110.770.740.780.74

3.550.060.800.770.800.77

4.050.000.830.800.830.79

unscheduled UEIDrandom word

image17.emf
Code[360,120]Thresholds(118,17.6)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gain

00.100.860.830.870.84

0.60.100.850.820.870.84

1.20.030.850.820.870.84

1.80.000.850.820.880.85

unscheduled UEIDrandom word

image18.emf
Code[720,120]Thresholds(504,74.6)(638,92.7)

SNR [dB]Degradation [dB]complexity Gainlatency Gaincomplexity Gainlatency Gaincomplexity Gainlatency Gaincomplexity Gainlatency Gain

-3.50.150.770.750.880.860.890.870.890.87

-2.750.000.560.540.770.750.790.770.800.78

-2.250.000.380.370.650.630.680.660.680.67

-1.750.000.240.230.520.510.560.540.560.54

unscheduled UEID (48 bits)random wordunscheduled UEID (16 bits)unscheduled UEID (32 bits)

image19.emf
Code[96,32]Thresholds(58,4.3)SNR =3.3 dB

decoding index# of non-frozen indices

before decoding index

ET prob.Complexity GainLatency Gain

4420.400.870.80

5670.680.790.71

Average0.570.52

Code[192,32]Thresholds(126,18.0)(190,23.3)SNR =-0.5 dB

decoding index# of non-frozen indices

before decoding index

ET prob.Complexity GainLatency Gain

12020.330.950.92

17280.520.560.54

184120.730.510.48

Average0.530.51

Code[96,64]Thresholds(18,0.9)SNR =7.1 dB

decoding index# of non-frozen indices

before decoding index

ET prob.Complexity GainLatency Gain

1100.460.950.90

2040.640.890.82

Average0.600.56

Code[128,64]Thresholds(42,3.4)SNR=4.3 dB

decoding index# of non-frozen indices

before decoding index

ET prob.Complexity GainLatency Gain

2830.050.900.85

3860.410.780.73

4490.580.740.69

Average0.460.42

Code[192,64]Thresholds(108,9.6)SNR=1.9 dB

decoding index# of non-frozen indices

before decoding index

ET prob.Complexity GainLatency Gain

9120.270.890.85

10740.810.830.77

Average0.700.65

