3GPP TSG RAN WG1 Ad-Hoc Meeting	R1-1700088
Spokane, USA , 16th - 20th January 2017

Agenda Item:	5.1.5.2.1
Source:	Huawei, HiSilicon
Title:	Summary of polar code design for control channels
Document for:	Discussion/Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In RAN1#87 meeting [1] the channel coding scheme for control information for eMBB was agreed. The agreement is as follows:
· UL control information for eMBB
· Adopt Polar Coding (except FFS for very small block lengths where repetition/block coding may be preferred)
· DL control information for eMBB
· Working Assumption to adopt Polar Coding (except FFS for very small block lengths where repetition/block coding may be preferred)
· To be confirmed unless significant issues are identified by the RAN1 Jan ad-hoc in relation to performance, latency, power consumption and implementation complexity.
The objective of this contribution is to summarize the design steps in the polar coding design [2]. Further analysis of the latency and implementation aspects is given in [3]. Channel coding for very small block lengths is discussed in [4].
Control Channels
Although the control channel design for NR is still under discussion, we can consider the LTE control channels as baseline to identify the range of information block lengths to be used for NR control information. The specific design of the NR control channel will not have an impact on the channel coding scheme. Some most common control related payload conveyed in control/broadcasting/TrCH channels in LTE system are listed in Table 1. It can be seen that the information block length is between 1 and 200 bits.
Table 1. Payload size of LTE channels
	
	Payload size
	Legacy coding scheme

	Control Information
	DCI on
PDCCH/ePDCCH
	16< K< 200, 64 < N < 2048
	LTE-TBCC

	
	CFI on PCFICH
HI on PHICH
	K=1,2
	repetition and simplex

	
	UCI on PUCCH/PUSCH
	PUCCH format 1,1a,1b
	repetition and simplex

	
	
	PUCCH format 2/2a/2b/3
	LTE-RM

	
	
	PUCCH format 4/5
	LTE-TBCC

	TrCH
	BCH on PBCH
	K=40, N=1920/4
	LTE-TBCC

	
	SI on PDSCH
	1. scheduled by DCI format 1C, N<=1736 bits
2. scheduled by DCI format 1A, N<=2216 bits
	Turbo

 Polar Codes
2
3
3.1 Code construction
The main characteristics of PC (Parity-Check) polar code ([2]) are summarized as follows:
· It uses the parity-check bits instead of CRC for error correction;
· It supports 1-bit granularity for both information block and code block;
· It is a SNR-independent code construction.
For the PC-polar code construction, a subset of the frozen-subchannel set is selected as PC-frozen-subchannels. Over these sub-channels, a PC (parity-check) function is established for error correction. At each parity-check sub-channel position, all the decoded bits involved into the PC function over this PC-frozen-subchannel would help prune the list decoding tree: only the paths that meets the PC-function/PC-frozen bit would survive, the rest are eliminated on the fly. The PC function is a forward-only function consistently with any SC (successive-cancellation)-based decoder.
A summary of the encoding steps following the PC-polar design in [2] is given below. Notations are in Appendix A. More details about each step are in Appendix B. A numerical example of polar code construction is given in Appendix C.
PC-polar code construction can be summarized in four steps:
1. Information/Frozen/PC-Frozen set selection
1. Encoding vector generation and PC-function setup
1. Arikan kernel encoding
1. Rate-matching
Step 1: Information/Frozen/PC-Frozen set selection
The selection of the Information/Frozen/PC-Frozen sets is done under the constraint that
N = length of (I + F + PF + P).
· Generate the Ordered Sequence Q of length N
· Generate Shortening/Puncturing Pattern P
· Generate I, F and PF sets
Step 2: Encoding vector generation and PC-function setup
The encoding vector [u0, u1, u2, … ,uN-1] is obtained by:
1. Set the information bits according to the I
1. Set the frozen bits according to the F, P
1. Setup the PC-Functions according to the I, PF
1. Set the PC-Frozen bits according to the PF and PC-Functions.
Step 3: Arikan kernel encoding
The N-sized vector u is multiplied by an Arikan kernel matrix to obtain an N-sized codeword x.
Step 4: Rate-matching
The N-sized codeword x is shortened/punctured into M-sized code length by P.
3.2 Performance evaluation
From the evaluation results in [5][6], it can be seen that
· Across all block length (8,16,32,48,64,80,120,200) and all code rate (2/3,1/2,1/3,1/6,1/12)
· PC-Polar(L=32) outperforms TBCC;
· At block length=8,16,64,80,120,200 and all code rate (2/3,1/2,1/3,1/6,1/12)
· PC-Polar(L=8) outperforms (or performs similarly as) TBCC;
· At block length=32,48 and low code rate (1/6,1/12)
· PC-Polar(L=8) outperforms (or performs similarly as) TBCC;
It was also observed that PC-Polar code has similar or even better false-alarm and miss-detection rates than TBCC code, and stable performance over the block length range with fine granularity.
3.3 Implementation aspects
The latency, power consumption and implementation complexity for polar codes are further discussed in [3]. From the implementation point of view, the polar code can be further optimized on the real hardware by techniques such as parallel bit decoding, optimized sort, and decision-aided decoding, etc. It should be noted that, in the Appendix of [3], we provide an example of how the code construction (Information / Frozen / PC-Frozen set selection) can be fully parallelized and completed in one or few cycles, while following the algorithmic description given in Appendix B in this contribution.
Summarizing the findings from [3], we observe that,
· PC-SCL8 hardware results (area, latency, power) include all the logic to implement the parity check algorithm and decoding
· All PC-SCL8 decoder design enhancements used to optimize the decoding latencies are included in the BLER performance evaluation.
· The BLER impact resulting from the decoder taking advantage of reliable bit positions inside a Polar codeword is less than 0.1dB for all codeword scenarios.
· PC-SCL8 blind detection total decoding latency is 4.07us.
· PC-SCL8 requires 1.04mW for LTE PDCCH blind detection.
The proposed decoder has limited implementation complexity, acceptable decoding latencies and very small estimated power consumption while maintaining good BLER performance.

3.4 CA-Polar discussion
In [8], a baseline design of a CA (CRC-aided)-Polar code was proposed consistently with the agreed simulation assumptions for NR data and control channel in [9],[10]. In that agreement, any extra CRC bits used for error correction is not accounted as part of the information block, and CB (code-block)-level CRC bits were appended only for error detection for CA-Polar design. Performance of CA-Polar and/or PC-Polar codes was simulated in many contributions ([11] to [22]). It is noted that CA polar has inferior performance respect to PC-polar especially when the information block length is small because of the penalty of using extra CRC bits for error correction (not accounted as information bits). If instead no extra CRC bits to be used for error correction in the polar decoder are inserted, but the CRC bits that are appended for error detection are also used for error correction, the overall error detection capability of CRC bits degrades. In addition, the amount of CRC bits inserted for error correction has an impact on the List size that the decoder would use in order to provide certain performance.
[bookmark: _GoBack]
Conclusion
In this contribution we summarize the construction of polar codes [2], performance evaluation [5][6] and implementation aspects [3] for information block lengths of interest for control channels. Based on the above discussion, we have the following proposals.
Proposal 1: Convert the working assumption to agreement and adopt polar coding for DL control information for eMBB.

Proposal 2: Agree to the description of the polar code construction as described in Sec.3.1.

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]References
[bookmark: _Ref457925438]Chairman’s notes, 3GPP TSG RAN WG1 #87 meeting.
[bookmark: _Ref471735206][bookmark: _Ref471735227]R1-1611254, “Details of the Polar code design”, Huawei, HiSiliconR1-1700090, “On latency, power consumption and implementation complexity for polar codes”, Huawei, HiSilicon
[bookmark: _Ref471735244]R1-1700091, “Channel coding for very small control block length”, Huawei, HiSilicon
R1-1611257, “Performance evaluation of channel coding schemes for control channel”, Huawei, HiSilicon
[bookmark: _Ref471737043]R1-1700089, “Performance of polar codes for control channels”, Huawei, HiSilicon
[bookmark: _Ref471735519]R1-167533, “Examination of NR coding candidates for low rate applications”, MediaTek Inc.
[bookmark: _Ref471755092]R1-164309, “Polar codes - encoding and decoding”, Huawei, HiSilicon
[bookmark: _Ref471755105]Chairman’s notes, 3GPP TSG RAN WG1 #84 bis meeting.
[bookmark: _Ref471758252]Chairman’s notes, 3GPP TSG RAN WG1 #86 meeting.
[bookmark: _Ref471755113]R1-164377, “Performance of channel coding schemes for eMBB scenario”, Huawei, Hisilicon
[bookmark: _Ref471755115]R1-164378, “Performance of channel coding schemes for mMTC and uRLLC scenarios”, Huawei, Hisilicon
[bookmark: _Ref471755116]R1-167212, “Performance of polar and LDPC codes for eMBB scenarios”
[bookmark: _Ref471755376]R1-167216, “Channel coding for control channels” Huawei, Hisilicon
[bookmark: _Ref471757297]R1-1609072, “Performance of Short-Length Polar Codes” Samsung
R1-1612548, “Discussion on Channel Coding for eMBB Control Channel,” Samsung
R1-1608771, “CATT Evaluation of channel coding schemes for NR control channels” CATT
R1-1609590, “Polar codes for control channels” Nokia
R1-166935, “Channel coding techniques for control info in NR” Ericsson
R1-1612275, “Selection for short block” Nokia
R1-1610141, “Short block-length design” Qualcomm, RAN86b;
[bookmark: _Ref471757301]R1-1612088, “Control channel performance,” Qualcomm, RAN87;

Appendix A: Notations
K:	information bits length
M:	code block length
N:	mother code block length, equal to
R: 	code rate
I: 	Information set
F: 	Frozen set
PF: 	PC-Frozen set
P:	Shorting/Puncture Pattern

Appendix B: PC-Polar Construction Steps [2]
Step 1: Information/Frozen/PC-Frozen set selection
The selection of the Information/Frozen/PC-Frozen sets is done under the constraint that:
N = length of (I + F + PF + P)
1.1 Generate the Ordered-Sequence Q
The reliability order of sub-channels is estimated through a weight sequence , calculated as follows
Assume with ,,
then,
 	
where n = log2(N).

Example:
Consider the example with maximum mother code length N = 16, n=log2(16) = 4 and for i=3 (), W3 can be calculated as:
W3 = 1*2 (0*(1/4)) + 1*2 (1*(1/4)) + 0*2(2*(1/4)) + 0*2 (3*(1/4)) = 2.1892
The full weight vector is =[0 1 1.1892 2.1892 1.4142 2.4142 2.6034 3.6034 1.6818 2.6818 2.8710 3.8710 3.0960 4.0960 4.2852 5.2852], where a larger value suggests a higher reliability.
Once is obtained, the next step is to sort it such that . , and save the corresponding index sequence as . The resulting sequence to be stored is
.

1.2 Generate Shortening/Puncturing Pattern P
P is obtained by bit-reversing the elements of [M, … , N-2, N-1] and collecting the bit-reversed value.

Example:
For Nmax=16, assume there are 4 bits (4 = N-M) to be shortened to obtain the code length M.
P =	[3, 11, 7, 15] = [BitRev(12), BitRev(13), BitRev(14),BitRev(15)]
Consider the number “12”, the operation bit-reverse gives
3(0011) = BitRev(12(1100))
Other way called “Rate-dependent puncture” used to choose the P can be found in [7].

1.3 Generate I, F and PF sets
Define the code configuration as (wmin, f1, f2) for the input (K,M)
1) Compute the number of the candidate PC-frozen sub-channels:
.[footnoteRef:1] [1: The total number of pre-flagged PC-frozen bits should not exceed N-K. In practice, Fp is upper bounded by (N-K)/2, and is set to a value larger than 1, e.g.,.]

Divide the sub channels into below subsets by Q, P, and Fp

Figure 1 	sub-channels division
2) Find the smallest row-weight wmin within the (K+Fp)-subset of sub-channels, and count the number of such sub-channels as n.
Calculate f1, f2:
· if Fp <= n, f1 = Fp, f2 = 0
· if Fp > n, f1 = n, f2 = (Fp-n)/2 + ((Fp+n)/2 – n)/2 = (Fp-n)*3/4
3) Select the candidate PF in the (K+Fp)-subset
· Select f1 sub-channels with a row-weight of wmin from right to left as PF
· Select f2 sub-channels with a row-weight of 2*wmin from right to left as PF.
4) Determine the I, F and PF
· Select I from the right to the left and skip the PF in 3).
· Select the remaining subchannels as the F.
· Select from the F that have a row-weight equal to wmin and 2*wmin as additional PF. [footnoteRef:2] [2: If a PC-frozen bit is before the 1st information bit, it is equivalent to a frozen bit. Also this step is optional for control channel design.]

Step 2: Encoding vector generation and PC-Function setup
In this stage we need to prepare the encoding vector u:
Assume [u0, u1, u2, … ,uN-1] is an empty encoding vector, then
1) Set the information bits according to the I
2) Set the frozen bits according to the F, P
3) Setup the PC-Functions according to I, PF
4) Set the PC-Frozen bits according to the PF and PC-Functions

In 3) and 4), while set the PC-Frozen bits, the PC-Functions can be setup at the same time by a prime length cyclic shift register operation like below:
1. initialize a p-length cyclic shift register, y[0],…,y[p-1], to 0
2. go through the elements in [u0, u1, u2, … ,uN-1],
· cyclic left shift the register
· if ui is an information bit: 	set y [0] = (ui XOR y[0])
· if ui is a PC-frozen bit: 		set ui =y [0]

The equivalent cycle shift register operation is shown in figure 2.

Figure 2 	Equivalent cycle shift register operations
Step 3: Arikan kernel encoding
Multiple the N-sized vector u by a Kronecker kernel matrix to obtain an N-sized code word x.

Step 4: Rate-matching
The N-sized code word x is shortened/punctured into M-sized code length by P.

Appendix C: PC-Polar Construction Example
C.1	Inputs and Notations
Let’s construct a PC polar code for an information block length (K) of 10 bit and code rate (R) of 1/3.
Code block length (M): 30 = K/R = 10 bit /(1/3)
Mother power-of-two code length (N): 32 = 2^ceil(log2(M))
Number of punctured bits (P): 2 = N – M = 32-30
Number of shortened sub-channels (P): 2 sub-channels = N – M = 2
ui is designed for the sub-channels, i = 0, 1,…, N-1
I is the set of information sub-channels
F is the set of frozen sub-channels
PF is the set of PC sub-channels
C.2	Ordered Sequence Q
Let’s check out a N(32)-sized ordered sequence Q from QNmax. It would be:
QN=32 = [0, 1, 2, 4, 8, 16, 3, 5, 6, 9, 10, 17, 12, 18, 20, 7, 24, 11, 13, 19, 14, 21, 22, 25, 26, 28, 15, 23, 27, 29, 30, 31]
QNmax can be generated by a polarization weight formula defined in [2].
Each entry of QN=32 is one sub-channel index from 0 to 31. They are ordered in an ascendant polarization weight. In other word, the polarization reliability of the sub-channel # 2 is less than sub-channel #4.
C.3	Punctured Bits
2(P) bits will be punctured from the coded block to obtain a 30-bit code length (M). Their positions are determined by [30 (11110) 31(11111)]
There are 2 bits (P) to be punctured to obtain the code length M =30, compute the length-4 puncturing pattern P by bit-reversing algorithm:
[30 (11110) 31(11111)] -> [15 (01111) 31(11111)]
Therefore, the coded bit # 15 and # 31 will be punctured.
C.4	Shortened Sub-channels
Accordingly, the sub-channels #15(u15) and # 31 (u31) are to be shortened as frozen sub-channels.
So far, we have:
I = {}
F = {u15, u31}
PF = {}
C.5	PC Sub-channels
Row-Weight
Let’s introduce a row weight metric of the sub-channels. In polar code, a row weight is 2-power of hamming weight of the sub-channel index.

So, a row weight is indicates how many bits one sub-channel is “distributed” on.
The row-weights of the sub-channels in QN=32 is below:
	Sub-channel
	u0
	u15
	u31
	u1
	u2
	u4
	u8
	u16

	Row Weight
	1
	16
	32
	2
	2
	2
	2
	2

	
	u3
	u5
	u6
	u9
	u10
	u17
	u12
	u18

	
	4
	4
	4
	4
	4
	4
	4
	4

	
	u20
	u7
	u24
	u11
	u13
	u19
	u14
	u21

	
	4
	8
	4
	8
	8
	8
	8
	8

	
	u22
	u25
	u26
	u28
	u23
	u27
	u29
	u30

	
	8
	8
	8
	8
	16
	16
	16
	16

Then we calculate the Fp = ceil((log2(N))*(1.5-abs(1.5*(K/30-1/2)).^2))=8 firstly, and find the wmin in the K+Fp = 18 sub-channels with highest polarization weight in QN=32, the gray part below
	Sub-channel
	u0
	u15
	u31
	u1
	u2
	u4
	u8
	u16

	Row Weight
	1
	16
	32
	2
	2
	2
	2
	2

	
	u3
	u5
	u6
	u9
	u10
	u17
	u12
	u18

	
	4
	4
	4
	4
	4
	4
	4
	4

	
	u20
	u7
	u24
	u11
	u13
	u19
	u14
	u21

	
	4
	8
	4
	8
	8
	8
	8
	8

	
	u22
	u25
	u26
	u28
	u23
	u27
	u29
	u30

	
	8
	8
	8
	8
	16
	16
	16
	16

Among these 18 (K+Fp = 18) sub-channels, the minimum row weight (wmin) is 4 and there are 4 (n) sub-channels (u12, u18, u20, u24) with this wmin. Then, we use the following equations to get f1 and f2.
· if Fp <= n, f1 = Fp, f2 = 0
· if Fp > n, f1 = n, f2 = (Fp-n)*3/4
In this example, f1=4, f2=3
The parameters f1 and f2 are used to limit the number of sub-channels to be selected for PC sub-channels. And wmin is a criteria to select the sub-channels.
C.6	Select PC sub-channels
Let’s select the candidate PC sub-channels in a descending order of polarization weights: to select f1 sub-channels with a row weight of wmin, and select f2 sub-channels with a row weight of 2*wmin. In this example, we start from u30, u29, u27, … to find 4(f1) sub-channels with a row weight of wmin(4), that is u24, u20, u18 and u12; and find 3(f2) sub-channels with a row weight of 2*wmin(8), that is, u28, u26 and u25. The selected sub-channels are in blue in the table below.
	Sub-channel
	u0
	u15
	u31
	u1
	u2
	u4
	u8
	u16

	Row Weight
	1
	16
	32
	2
	2
	2
	2
	2

	
	u3
	u5
	u6
	u9
	u10
	u17
	u12
	u18

	
	4
	4
	4
	4
	4
	4
	4
	4

	
	u20
	u7
	u24
	u11
	u13
	u19
	u14
	u21

	
	4
	8
	4
	8
	8
	8
	8
	8

	
	u22
	u25
	u26
	u28
	u23
	u27
	u29
	u30

	
	8
	8
	8
	8
	16
	16
	16
	16

I = {}
F = {u15, u31}
PF = {u12, u18, u20, u24, u25, u26, u28}

C.7	Select Information Sub-channels
Let’s select K information sub-channels from the higher polarization weights to lower ones but skipping PC sub-channels. In this example, we go from u30, u29, u27, … to find 10 (K) available sub-channels as information sub-channel, the green ones in the table below.
	Sub-channel
	u0
	u15
	u31
	u1
	u2
	u4
	u8
	u16

	Row Weight
	1
	16
	32
	2
	2
	2
	2
	2

	
	u3
	u5
	u6
	u9
	u10
	u17
	u12
	u18

	
	4
	4
	4
	4
	4
	4
	4
	4

	
	u20
	u7
	u24
	u11
	u13
	u19
	u14
	u21

	
	4
	8
	4
	8
	8
	8
	8
	8

	
	u22
	u25
	u26
	u28
	u23
	u27
	u29
	u30

	
	8
	8
	8
	8
	16
	16
	16
	16

I = {u11,u13, u14,u19 ,u21,u22, u23,u27,u29,u30}
F = {u15, u31}
PF = {u12, u18, u20, u24, u25, u26, u28}

C.8	Select Frozen sub-channels
Let’s select the rest unallocated sub-channels as the frozen sub-channels, as red ones in the table below (u15 and u31 are previously shorten sub-channels).
	Sub-channel
	u0
	u15
	u31
	u1
	u2
	u4
	u8
	u16

	Row Weight
	1
	16
	32
	2
	2
	2
	2
	2

	
	u3
	u5
	u6
	u9
	u10
	u17
	u12
	u18

	
	4
	4
	4
	4
	4
	4
	4
	4

	
	u20
	u7
	u24
	u11
	u13
	u19
	u14
	u21

	
	4
	8
	4
	8
	8
	8
	8
	8

	
	u22
	u25
	u26
	u28
	u23
	u27
	u29
	u30

	
	8
	8
	8
	8
	16
	16
	16
	16

I = {u11,u13, u14,u19 ,u21,u22, u23,u27,u29,u30}
F = {u0, u1, u2, u3, u4, u5, u6, u7,u8, u9, u10, u15, u16,u17, u31}
PF = {u12, u18, u20, u24, u25, u26, u28}

C.9	Change Some Frozen Sub-channels to PC ones (Optional)
Let’s convert those frozen sub-cannels with a row weight of wmin and 2*wmin into PC sub-channels. In this example, 7 frozen sub-channels are converted back to PC sub-channels. Because it doesn’t make sense to have any PC sub-channels before the first information sub-channel (u11 in the example), we will not change these frozen sub-channels.
In the end, we have
	Sub-channel
	u0
	u15
	u31
	u1
	u2
	u4
	u8
	u16

	Row Weight
	1
	16
	32
	2
	2
	2
	2
	2

	
	u3
	u5
	u6
	u9
	u10
	u17
	u12
	u18

	
	4
	4
	4
	4
	4
	4
	4
	4

	
	u20
	u7
	u24
	u11
	u13
	u19
	u14
	u21

	
	4
	8
	4
	8
	8
	8
	8
	8

	
	u22
	u25
	u26
	u28
	u23
	u27
	u29
	u30

	
	8
	8
	8
	8
	16
	16
	16
	16

I = {u11,u13, u14,u19 ,u21,u22, u23,u27,u29,u30}
F = {u0, u1, u2, u3, u4, u5, u6 u7, u8, u9, u10, u15, u16, u31}
PF = {u12 u17 u18 u20, u24, u25, u26, u28}
In the end, we decide the pattern of the sub-channels for this K=10 and R =1/3.

oleObject1.bin
M-K-Fp

K+Fp

 Ascending Order by Q exclude P

image2.emf
Information Bit

Left cyclic shift upon encoding each bit

PC Frozen Bit

0

Frozen Bit

oleObject2.bin
Information Bit

Left cyclic shift upon encoding each bit

PC Frozen Bit

0

Frozen Bit

image3.emf
























1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

Sub-Channel #0

Sub-Channel #3

0

1

1

Sub-Channel #1

Sub-Channel #2

2

Hamming Weight

1

2

2

4

Row Weight

oleObject3.bin
Sub-Channel #0

Sub-Channel #3

0

1

1

Sub-Channel #1

Sub-Channel #2

2

Hamming Weight

1

2

2

4

Row Weight

image4.emf
F F F F F F F F F F I

PC

I I F F

PCPC

I

PC

I I I

PCPC PC PC

I I I

Subchannel Pattern

oleObject4.bin
F

F

F

F

F

F

F

F

F

F

I

PC

I

I

F

F

PC

PC

I

PC

I

I

I

PC

PC

PC

PC

I

I

I

Subchannel Pattern

image1.emf
M-K-F

p

K+F

p

 Ascending Order by Q exclude P

