3GPP TSG RAN WG1 NR Ad Hoc Meeting	R1-1700076
Spokane, USA, 16th-20th January 2017

Agenda Item:	5.1.6
Source:	Huawei, HiSilicon
Title:	Signal shaping for QAM constellations
Document for:	Discussion and decision 

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In RAN1#86b meeting [1], the following agreements on modulation were achieved:
· The same constellation mapping as used in LTE (i.e. QPSK, 16QAM, 64QAM and 256QAM) is introduced, while not precluding other constellation mappings
· Note that there might be possibility to exclude some of above constellation mapping based on the further study
· Enhancement modulation schemes for further study include
· Higher order modulation in conjunction with MIMO
· Constellation mapping among subcarriers
· Other constellations (e.g., non-uniform QAM) 
· Coded modulations
· Spatial modulation
· Mappings of bits to symbol(s)
· Rotated-QAM up to BPSK, QPSK
· -QAM (0<k<=1)
· FFS k (e.g., k = 0.5 for BPSK, 0.25 for QPSK)
· Constellation Interpolation
· Note: Other modulation schemes or combinations of the above schemes are not precluded
· Note: Proponents should describe the details of the receivers
The proposed enhanced modulation schemes aim at different targets, e.g., achieving larger diversity or lower PAPR. In this contribution, we present a simple signal shaping scheme that allows to approach the AWGN channel capacity with standard QAM constellation mappings and binary channel codes.

Signal Shaping for QAM Constellations
In order to achieve the capacity of the AWGN channel, the transmit signal must be Gaussian distributed. The use of uniformly distributed QAM symbols with optimal coded modulation (CM) leads to a shaping loss of up to 1.53 dB for high order constellations. Bit-interleaved coded modulation (BICM) with parallel bit-wise demapping as currently employed in LTE leads to an additional loss. The achievable spectral efficiencies (SE) for 64QAM are illustrated in Figure 1.
Observation 1: BICM with 64QAM as used in LTE entails an SNR loss of more than 1 dB for the spectral efficiency range between 2 and 5 bit/use.
In the following, we discuss two methods to improve the performance of BICM based on geometric and probabilistic shaping.

Non-Uniform Constellations (NUC)
Non-uniform constellations have been recently adopted for the next-generation terrestrial broadcast standard ATSC 3.0 [2]. The QAM constellations are optimized for each target SNR by maximizing the BICM capacity for uniformly distributed bits. Two examples for different spectral efficiencies are shown in Figure 2, and the achievable SE with optimized NUCs is included in Figure 1.
[image: ]
[bookmark: _Ref465340993]Figure 1: Spectral efficiency (SE) for an AWGN channel with Gaussian transmit signal and 64QAM with coded modulation (CM), bit-interleaved coded modulation (BICM), non-uniform constellations (NUC), and probabilistically shaped coded modulation (PSCM)
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[bookmark: _Ref465945782]Figure 2: Non-uniform 64QAM constellations optimized for code rates 10/15 (left) and 13/15 (right)
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[bookmark: _Ref465947659]Figure 3: Probabilistic shaping of regular 64QAM

Observation 2: The performance of BICM can be improved by using non-uniform constellations (NUC), but there remains a gap to the capacity with Gaussian transmit signal.
Note that, in contrast to standard Gray-labeled QAM, the constellations in Figure 2 do not allow for a simple independent demapping of the real and imaginary part. Therefore, one-dimensional NUCs for each real dimension were also studied in [2], which provide a reduced shaping gain.
Probabilistically Shaped Coded Modulation (PSCM)
As an alternative to geometric shaping, it is also possible to adjust the probabilities of the constellation points such that they follow an approximate discrete Gaussian distribution, as illustrated in Figure 3. The achievable SE of this probabilistically shaped coded modulation is also shown in Figure 1.
Observation 3: Probabilistically shaped coded modulation (PSCM) enables BICM to close the gap to the capacity with Gaussian transmit signal.
[image: D:\Onebox\Documents\3GPP\Contributions\5G123_PSCM\PSCM block diagram.png]
[bookmark: _Ref465340999]Figure 4: Block diagram of PSCM transmitter and receiver
A general block diagram of a PSCM transmitter and receiver is shown in Figure 4. The main difference to conventional BICM is the shaping encoder (sometimes also called distribution matcher) that maps the uniformly distributed data bits to bit streams with a desired distribution, which determine the amplitudes of the transmitted QAM symbols. The forward error correction (FEC) encoder generates additional parity bits, which are uniformly distributed and determine the signs of the transmitted QAM symbols. This results in an approximately Gaussian distributed transmit signal using the same constellation mapping as in LTE.
At the receiver, the QAM demapper calculates bit-wise log-likelihood ratios (LLRs) based on the observed receive signal taking the non-uniform transmit symbol distribution into account. These LLRs are fed to the FEC decoder as in conventional BICM, and the decoder output is finally mapped back to data bits by the shaping decoder.

[bookmark: _Ref129681832]Conclusions
Observation 1: BICM with 64QAM as used in LTE entails an SNR loss of more than 1 dB for the spectral efficiency range between 2 and 5 bit/use.
Observation 2: The performance of BICM can be improved by using non-uniform constellations (NUC), but there remains a gap to the capacity with Gaussian transmit signal.
Observation 3: Probabilistically shaped coded modulation (PSCM) enables BICM to close the gap to the capacity with Gaussian transmit signal.
These observations lead to the following proposal:
Proposal 1: Study signal shaping methods for higher order modulation.
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Appendix
In the following, link level simulation results are presented for standard BICM, NUC, and PSCM in order to verify the theoretical gains shown in Figure 1. The simulation parameters are listed in Table 1. In case of BICM and NUC, the FEC code rate is chosen to obtain the desired spectral efficiency. For PSCM, the constant composition distribution matching (CCDM) of [4] is used as shaping code to approximate the Gaussian symbol distribution; punctured systematic bits are directly fed to the FEC encoder, and some of the systematic bits are used in addition to the parity bits as sign bits for the Gray-labeled QAM symbols.
[bookmark: _Ref471299361]Table 1: Link layer simulation setup
	Parameter
	Value

	Channel
	AWGN

	Modulation
	64QAM (6 bits/symbol)

	FEC code
	LDPC code from [3]

	FEC decoding
	Sum-product, flooding, 50 iterations

	Spectral efficiency
	2, 3, 4, 4.5 bit/use

	Message length
	400, 1000, 2000, 4000, 6000, 8000 bits

	NUC
	ATSC 3.0 constellations from [2]

	PSCM
	CCDM from [4] as shaping code



Further details are provided in the legends of the figures below. The structure is as follows:
· BICM/NUC/PSCM: Coded modulation type
· SE: Spectral efficiency in bit/use
· Rf: FEC code rate
· Rd: Rate of distribution matcher (only for PSCM)
· LDPC code parameters
· H/M/L: Code family (highest, middle, or lowest)
· K: Input length in bits
· N: Output length in bits
· Z: Lifting factor
· Shaping parameters (only for PSCM)
· D: Output length of CCDM in symbols
· V: Parameter of target distribution 
Note that there are different options to obtain a code with certain input and output lengths based on the three LDPC code families, and only the best results are shown for each case. In line with the theoretical results in Figure 1, PSCM performs best in all considered scenarios. The gains over BICM for the different spectral efficiencies and message lengths are summarized in Table 2.
[bookmark: _GoBack][bookmark: _Ref471306549]Table 2: SNR gain of PSCM over BICM at BLER 0.001
	 
	
	Spectral Efficiency in bit/use

	 
	
	2
	3
	4
	4.5

	Message Length
	400
	1.6997 dB
	1.2296 dB
	0.9555 dB
	0.6329 dB

	
	1000
	1.3539 dB
	1.1838 dB
	1.0770 dB
	0.8354 dB

	
	2000
	1.2621 dB
	1.1144 dB
	1.0293 dB
	0.8455 dB

	
	4000
	1.1352 dB
	1.1997 dB
	0.9707 dB
	0.8861 dB

	
	6000
	1.3083 dB
	1.2269 dB
	1.0825 dB
	1.0044 dB

	
	8000
	1.2018 dB
	1.1551 dB
	1.0110 dB
	0.9031 dB
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