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1 Introduction

OFDM with a rectangular shaping pulse has relatively large power spectral side lobes which fall off as 
[image: image1.wmf]2

f

-

. The  OFDM/OQAM technique with pulse shaping stated in Section 7.1.1.1.2 of the technical report TR25.814 [1] is a candidate for enhanced modulation scheme. The purpose of this contribution is to propose another effective scheme using precoding technique to improve capacity and/or performance.
Dispersive precoding can be used to shape the spectrum of OFDM signals with an attempt to achieve high spectral compactness [2]. The equivalent low-pass power spectral density (PSD) decays approximately with a rate 
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 at spectral band edges. The spectrum rolls off fast and the size of guard band, which is retained for prevent from interfering to neighbouring frequency, can be reduced to increase resource for data transmission. Moreover, the precoding matrix can be designed to satisfy the orthonormal condition, thus reduce the complexity of transmitter and receiver.
In addition to spectral shaping, various precoding schemes provide many benefits, such as diversity gain [3], for OFDM systems. Hence, Section 5 provides the text proposal to add a new subsection 7.1.1.1.3 to describe the precoding scheme which shall be one of the enhanced modulation schemes for OFDM system.
2 OFDM Transmission with Dispersive Coding
Figure 1 shows the OFDM transmission and reception diagram. 
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 is the source information bit. 
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 is the multi-level modulated symbol. After the operation of inversed fast Fourier transform (IFFT) and serial-to-parallel conversion, cyclic prefix (CP) is added. The resulting signal is discrete-to-analog converted for transmission as the following
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where p(t) is a rectangular pulse with amplitude 1 and duration 
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 for OFDM without guard interval, or 
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 OFDM with cyclic prefix. 
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 are useful OFDM symbol duration and guard interval, respectively. 
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 is the amplitude, and 
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 is the subcarrier spacing. The basis set of OFDM signal in (1) is defined as
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where 
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 is defined as the set of integers
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, the quadrature carriers are defined by 
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, respectively. The bases 
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 are not zero-valued at edges 
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. The OFDM signals based on the basis set are discontinuous in phase and exhibit relatively large power spectral side lobes which fall off as 
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Considering the cyclic prefix OFDM (CP-OFDM) signal, we need new basis sets which are continuous on 
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 and also zero-values at 
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Figure 1: OFDM with dispersive coding.

to the basis set 
[image: image26.wmf]Y

 and its transform output sequentially, orthonormal basis sets are obtained
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for 
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 represents the least significant bit in the binary representation of v.
Define 
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, be orthonormal basis sets containing zero-edged continuous basis signals on 
[image: image33.wmf]0

d

tT

££

. Obviously, the bases of 
[image: image34.wmf]L

V

 are still continuous on the extended interval 
[image: image35.wmf]2

q

dd

TtT

-

-££

, for 
[image: image36.wmf]2

{1,2,,log}

qNL

Î-

L

 and 
[image: image37.wmf]2

log

LN

<

. Therefore, if the guard interval is 
[image: image38.wmf]2

q

gd

TT

-

=

, the 
[image: image39.wmf]L

V

-based CP-OFDM is continuous for all t and forms a continuous-phase signal.
Using 
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 as the basis set for OFDM signal, the transmitted signal is as (1) in which the symbols 
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  are the encoded output
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, are the information-bearing symbol; the coefficients of the dispersive code are defined as
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However, for the guard interval 
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, to improve spectral compactness, phase-discontinuous CP-OFDM can be aided by the phase rotation mechanism with
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for 
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In general, for the guard interval 
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, the encoding process can be represented in vector-matrix form as the following
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for 
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, respectively. In the above expression, diag(x1, x2, …,  xN) represents a diagonal matrix with entries x1,  x2, …,  xN.
At the receiver, the k-th subcarrier at the FFT output is expressed as
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 are FFT of channel impulse response and additive channel noise on one block duration, respectively. Re-express (10) in vector-matrix form and substitute (8) into the equation below, we have
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where 
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 code is orthonormal, hence, the precoding matrix G satisfies the following property
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The estimation of the symbol vector D can be performed by zero-forcing technique as follows
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There is no inter-symbol interference. The performance is not degraded by the dispersive encoding.
3 Simulations
Consider an OFDM system with FFT size N = 2048. The cyclic prefix length is 
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. System bandwidth and sampling time are B = 30.72 MHz and 
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The spectral compactness is characterized by the fractional out-of-band power
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where 
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 and P are defined as power spectral density and total power of s(t), respectively. 
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 denotes the fraction of total power that is not captured within the frequency band 
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. The simulated result is shown in Figures 2 and 3. The case L = 0 is the conventional CP-OFDM system without spectral shaping. The case L = 3 represents the results of 
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 -based CP-OFDM. In Figure 2, no guard subcarriers is used. It is seen that the out-of-band power is significantly reduced by the dispersive coding. For many applications of OFDM systems, guard subcarriers are retained to prevent form interfering to neighbouring frequency due to out-of-band power, as shown in Figure 3(b) for the case L = 0. However, when the symbols are dispersively coded, the output-of-band power is reduced significantly. The guard subcarriers can be used for data transmission. Thus the throughput is increased.
4 Conclusion

It has been proven that various precoding schemes can bring benefits, such as diversity gain, coding gain, etc., to OFDM systems. In this contribution, we further present a dispersive coding scheme for OFDM system to suppress spectral side lobes. As a result, the traditional reserved guard band can therefore be used for data transmission. This either increases bit rate, or improve capacity of error correction.
5 Text Proposal

---------------------------------------------Start of Text Proposal--------------------------------------------
7.1.1.1.3
Precoding techniques for enhanced OFDM transmission
Precoding for OFDM systems, as illustrated in Figure 7.1.1.1.3-1, has proven to provide various benefit such as diversity gain, spectral efficiency, peak-to-average power reduction, etc. A properly design precoding matrix satisfying some properties, such as orthonormality, is not likely to increase complexity of implementation dramatically.
Dispersive coding disperses a symbol to several subcarriers. For diversity purpose, a symbol dispersed to different subcarriers experiences independent fading if the spacing between assigned subcarriers are larger than the coherent bandwidth of the channel. The receiver coherently collects the received signals to estimate the information-bearing symbol. Combining with the channel decoder, soft estimations of dispersive decoder and channel decoder are iteratively exchanged to improve estimation performance.
For the purpose of spectral shaping, a symbol is dispersed to subcarriers with different weights, which are designed such that the spectral side-lobes of the OFDM signal is suppressed. The goal is to reduce our-of-band power. The number of guard subcarriers is reduced, and hence, more suncarriers are available to data transmission.
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Figure 7.1.1.1.3-1. Enhanced OFDM transmission by precoding technique.
---------------------------------------------End of Text Proposal--------------------------------------------
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(a)                                                                                      (b)
Figure 2. (a) Fractional out-of-band power; (b) power spectral density for dispersive coding order L = 3 and 0 without guard band.
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(a)                                                                                      (b)
Figure 3. (a) Fractional out-of-band power; (b) power spectral density for dispersive coding order L = 3 without guard band, and L = 0 with guard band of left 424 subcarriers and right 423 subcarriers.
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