3GPP TSG RAN WG1 LTE Adhoc R1-060021
Helsinki, Finland. 23 Jan-25 Jan 2006
Agenda Item:

5.1.2.4
Souce:

Motorola

Title:
E-UTRA FEC Enhancement
Document for:
Discussion

1. Introduction
In [1], the channel coding techniques are defined for 3GPP. Two types of codes, convolutional codes (CC) and turbo codes (TC) are used to provide error control. In [2], possible areas of improvement are discussed, such as extending the turbo codes to longer code blocks and removing the tail bits. In the following sections, detailed enhancements for each type of codes are discussed to provide better error-correcting performance, spectrum efficiency, and implementation advantage. These enhancements are:

Convolutional codes:

(a) Eliminate the tail bits by using tail-biting convolutional codes.
(b) Reduce the maximum information block size to around 200 bits, above which turbo codes should be used instead.

(c) Use a simpler, more efficient rate matching algorithm.

Turbo codes:

(a) Increase the maximum information block size to improve performance for each packet and to reduce segmentation loss. Either 768 bytes or 1504 bytes should be used.

(b) Modify the code block segmentation rule to allow only a subset of code sizes, for each of which contention-free internal interleaver should be designed.

(c) Lower the mother code rate to 1/5 by adding a parity bit output to the constituent convolutional code. This allows more coding gain when incremental redundancy (IR) hybrid ARQ scheme is used.
(d) Remove the tail bits by using tail-biting constituent convolutional codes. This removes the overhead and simplifies the rate matching algorithm.

(e) Use a simpler, more efficient rate matching algorithm to provide the target code sizes.

This contribution presented several enhancements to the existing channel coding techniques. For convolutional codes, potential improvements include removing tail bits, using an improved rate matching algorithm and lowering the maximum information block size. For turbo codes, this includes increasing the maximum information block size, using a contention-free interleaver, etc.. Analysis and simulation results show that performance improvement and/or complexity reduction can be achieved with the suggested enhancements.
Although this contribution focuses on existing channel coding techniques in [1], other code types such as LDPC may be considered as an additional advanced coding option or a replacement of the turbo codes.

2. Convolutional Code Enhancement

2.1. Tail Bits Removal

For the 256-state convolutional codes defined in [1], 8 tail bits are attached to the end of an information block before encoding to bring the shift registers to all-zero state. This results in 16 extra bits in the coded block for rate 1/2, and 24 extra bits in the coded block for rate 1/3. These tail bits occupy resources that can be otherwise used for code bits corresponding to information bits. Tail bits take proportionally more space when the information block size is smaller. For example, when rate 1/3 convolutional coding is applied to K = 8 information block for HS-SCCH, 24 tail bits have to be added to make a total of N = 48 bits. In this example, tail bits occupy 50% of the space in the codeword [1].

To remove the overhead, it is proposed to eliminate the tail bits. Since simply discarding the tail bits would cause significant performance degradation, it is proposed to use tail-biting convolutional codes instead. Thus, N = 2(K for rate 1/2 code, N = 3(K for rate 1/3 code, where K is the information block size, N is the coded block size. This can be achieved by initializing the shift register state with the last 8 bits of the information block, [bK-7, bK-6, …, bK-1, bK].
In addition to providing good code performance, tail-biting convolutional codes achieves exact code rate which simplifies rate matching. Since the initial state of the encoder is unknown, making the convolutional codes tail-biting increases the decoding complexity. However, the complexity increase is manageable since very low complexity decoding algorithms exist to traverse the trellis, such as the Viterbi algorithm (see Annex A).
2.2. Rate Matching
Currently a complicated rate matching algorithm is used to repeat or puncture coded bits to match the available channel resources. In this rate-matching algorithm the re-transmissions may not be unique for the IR case which results in loss of performance. A more efficient scheme, which is modified from the bit selection scheme for TC [2], is described below.
Let the two parity bits of the rate 1/2 convolutional code be labeled P0 and P1, as shown in Figure 1.

[image: image1.emf]

Convolutional

Encoder

P

0

 (G

0

=561 octal)

P

1

 (G

1

=753 octal)

Figure 1.
Rate 1/2 convolutional encoder.

[image: image2.emf]

P

0

P

1

P’

0

P’

1

Subblock interleaver 1

N

c

Q

Subblock interleaver 0

Figure 2.
Rate matching for rate 1/2 convolutional code.

Let Nc be the number of bits needed. The rate matching is carried out in the following steps:

Step 1. Separate the two parity bit subblocks P0 and P1.

Step 2. Perform a different subblock interleaving on each subblock and obtain P(0and P(1.

Step 3. Group the interleaved subblocks by multiplex the P(0 and P(1 bit by bit, Q = [P(0(1), P(1(1), P(0(2), P(1(2), …, P(0(K), P(1(K)].

Step 4. Take the first Nc bits from sequence Q, wrap around to the beginning of sequence Q if Nc is greater than the length of Q.
The procedure above is also illustrated in Figure 2. Note that although this procedure has been illustrated using rate 1/2 convolutional code, similar scheme can be carried out for the rate 1/3 code, where three parity bit streams will be separately interleaved and then multiplexed.
The subblock interleaving for each subblock can be achieved in several ways. One example is described below. A subblock of bits to be interleaved is written into an array at addresses from 0 to the number of the bits minus 1, (L‑1), and the interleaved bits are read out in a permuted order with the i-th bit being read from an address ADi (i=0, …, L‑1), as follows:

1. Determine the subblock interleaver parameters, M and J.

2. Initialize i and j to 0.

3. Find the tentative output address

[image: image3.wmf](

)

ë

û

(

)

(

)

1

2

0

,

2

mod

mod

2

-

£

D

£

D

+

+

=

=

M

M

M

M

AS

j

j

J

j

BRO

J

j

T

T

,
(1)

where BROM(y) indicates the bit-reversed M-bit value of y. When the code rate is 1/2, for subblock 0, (= 0; for subblock 1, (= 2M‑1. When the code rate is 1/3, for subblock 0, (= 0; for subblock 1, (= (2M /3(; for subblock 2, (= (2M+1 /3(.
4. If Tj is less than L, then ADi = Tj, and increment i and j by 1. Otherwise discard Tj and increment j only.

5. Repeat steps 3 and 4 until all L interleaver output addresses are obtained.

Let L(=2M(J, the interleaving function in step 3 can be interpreted as (a) writing 0 to L(-1 to a table of 2M rows and J columns column-by-column, starting from the upper-left corner (row index = 0, column index = 0); (b) BROM reorder the rows of the table; (c) read out row-by-row starting from the (-th row, wrapping around to the first row if (> 0. The read-out sequence is the {Tj} sequence. These three steps are illustrated in Figure 3.

The parameters M and J can be determined using simple rules. For example,

J =1, M = (log2(K)(,
if K(64;

J =2, M = (log2(K/2)(,
otherwise.
By using a different (value for the bit streams, it guarantees that the adjacent bits in sequence Q, [P(0(i), P(1(i)] (or [P(0(i), P(1(i), P(2(i)] for rate 1/3), are from different trellis sections of the convolutional code. Thus this rate matching scheme avoids puncturing parity bits from the same trellis section as much as possible, and it spreads out the punctured bits on a given parity bit stream.
[image: image4.emf]

2

M

J

(a). Write in column-

by-column starting

from upper left corner

(b). BRO reorder the

rows

(c). read out row-by-

row starting from -th

row

0

1

2

M

-1

Figure 3.
Subblock interleaving.
In Figure 4, the performance of the proposed rate matching algorithm is compared with using a puncturing pattern (see Table 1) to achieve a target code rate. Tail-biting convolutional codes with code generators in Figure 1 are used. AWGN channel and BPSK modulation are assumed. Three iterations are used in the decoder. Figure 4 shows that the proposed rate matching algorithm provides good performance for all the cases. Compared to using a puncturing pattern, it has the advantage of flexibility and fine granularity in that any target size can be easily achieved. Compared to the existing rate matching algorithm, it has the advantage of simplicity.
Table 1. Puncture pattern used in Figure 4.
	
	Code Rates

	
	2/3
	3/4
	5/6

	P0
	10
	110
	10101

	P1
	11
	101
	11010

	Bit Sequence
	P0(0) P1(0) P1(1)
	P0(0) P1(0) P0(1) P1(2)
	P0(0) P1(0) P1(1) P0(2) P1(3) P0(4)

[image: image5.wmf][image: image6.wmf]
(a) K=6 bytes
(b) K=12 bytes

[image: image7.wmf][image: image8.wmf]

(c) K=24 bytes
(d) K=48 bytes

Figure 4.
Performance of proposed rate matching algorithm (“RM” in legend) vs. using puncturing patterns (“pattern” in legend) for information block size ({6, 12, 24, 48} bytes. The code rates 2/3, 3/4, and 5/6 are obtained by puncturing the rate 1/2 code. AWGN channel and BPSK modulation are assumed. The decoder uses 3 Viterbi decoding iterations.
2.3. Maximum Information Block Size
Currently, the maximum information block size of CC is 504 bits, while the minimum information block size of TC is 40 bits. However, to achieve the best system performance, these limits should be changed.

In Figure 4 the FER performance of CC and TC are shown for AWGN channel with rate R ({1/3, 1/2} and information block size K ({6, 9, 12 16, 24, 48} bytes. As expected, the slope of CC is roughly the same for different block lengths, and the performance gradually degrades as the block size increases. In contrast, the slope of TC becomes steeper as the block size increases, and the performance improves as the block size increases. In other words, CC tends to perform better for smaller frame sizes, but TC performs better for larger frame sizes. Thus to achieve the best system performance, the block size range where CC performance crosses TC needs to be found, so that the system uses CC below the cross point and TC above the cross point.

In Figure 5, the Eb/N0 (dB) difference between CC and TC for achieving FER({10-1, 10-3} is shown as a function of information block size K. In Figure 5, positive Eb/N0 (dB) difference indicates that TC performs better, whereas negative Eb/N0 (dB) difference indicates that CC performs better. Zero Eb/N0 (dB) difference indicates the cross points of CC and TC. Figure 5 shows that CC and TC crosses roughly between K=50 bits and K=200 bits. This shows that the maximum block sizes of 504 for CC should be lowered to around Kmax=200 bits in order to achieve better system performance. The final decision on Kmax should be decided based on both performance and complexity considerations.
[image: image9.wmf][image: image10.wmf]

(a) CC, R=1/3
(b) CC, R=1/2

[image: image11.wmf][image: image12.wmf]

(c) TC, R=1/3
(d) TC, R=1/2

Figure 4.
FER vs. Eb/N0 (dB) for CC and TC with rate R = {1/2, 1/3} and information block size K ({6, 9, 12, 16, 24, 48} bytes.

[image: image13.wmf]
Figure 5.
 Eb/N0 (dB) difference, Eb/N0 (CC) ‑ Eb/N0 (TC), between TC and CC at FER({10-1, 10-3}. Solid: FER = 10-1; dashed: FER = 10-3.

3. Turbo Code Enhancement

3.1. Maximum Information Block Size
In [2], it is mentioned that larger block size may be considered. Turbo codes performance improves as the block size increases. Larger block sizes also helps to simplify the scheduling algorithm, reduce segmentation penalty, and reduce layer 2 overhead [7]. Currently the maximum block size for TC is Kmax = 5114 bits.

In Figure 6 the Es/N0 (dB) needed to achieve FER = 10-3 is shown as a function of K for QPSK using turbo codes. The curves of K = 1504 bytes represent the performance assuming an entire IP packet is encoded as one block without segmentation. The curves of K = 768 bytes = 6144 bits is close to the current Kmax = 5114 of TC, and is representative of the performance of each block, assuming one IP packet is segmented into two blocks. The curves of K = 16 bytes is representative of the performance of small packets, such as those used for control channels.

Figure 6 illustrates that the differences between K = 1504 bytes and K = 768 bytes is on the order of a couple of tenths dB for all modulation and coding rate scheme, while significant difference exists between K = 1504 bytes and K = 16 bytes. This result shows that K = 768 bytes achieved almost all the coding gain available from the TC. The performance of K = 768 bytes is shown in Figure 7 for different modulation and coding rates. Since the FER curves are very steep for these large block sizes, the segmentation loss from using two blocks of K = 768 bytes is very small compared to using one block of K = 1504 bytes. Hence, the SNR difference for sending an entire IP packet (1500 bytes) with either K should be very small even considering both the coding gain loss and the segmentation loss of K = 768 bytes. Thus considering SNR only, it is acceptable to use Kmax (768 bytes (or a slightly different size but enough to carry half an IP packet plus overhead) instead of Kmax (1504 bytes.
However, the current Kmax = 5114 bits = 639.25 bytes is not enough to carry half of an IP packet. Thus an IP packet would have to be segmented into three FEC blocks, leading to more performance loss and more MAC overhead associated with three FEC blocks. Thus it is proposed that Kmax be increased at least to 768 bytes (=6144 bits) so that half an IP packet plus some overhead can be carried by one FEC block. To carry an entire IP packet with one code block, Kmax should be increased to around 1504 bytes (=12288 bits).
[image: image14.wmf]
Figure 6.
Es/N0 (dB) vs. information block size K (bits) for QPSK at FER = 10-3. Information block size K ({1504, 768, 384 192, 96, 48, 16} bytes. Code rates: {1/5, 1/4, 3/8, 1/2, 3/4}.

[image: image15.wmf]
Figure 7.
FER vs. Es/N0 (dB) for K = 768 bytes. Modulation: {QPSK, 16-QAM, 64-QAM}. Code rates: {1/5, 1/4, 3/8, 1/2, 3/4}.
3.2. Code Block Segmentation

Currently, the code block segmentation rule is defined such that TC must accommodate any information block size between Kmin = 40 and Kmax = 5114[1], leading to turbo interleaver that is defined for all sizes between Kmin and Kmax.

This is problematic because the turbo interleaver will not have the contention free property, making it very difficult to support the high throughput requirement, e.g., for 20 MHz operation. To allow contention-free interleaver, it is desirable to defined a fixed set of information block sizes, and define a contention-free interleaver for each K. For information block sizes not in the set, a number of filler bits can be added to the information block so that the padded information block size is equal to the next larger K in the set.
As an example, the set of information block size can be defined as below:

Ktable(i) = 32((i +1),
1(i(31;

Ktable(i) = 64((i ‑ 15),
32(i(111;

This gives a range of 64 to 6144 bits for the information block size of TC. This scheme uses a step size of 32 for 64 (Ktable (1024, and a step size of 64 for 1024 (Ktable (6144.
The code block segmentation rule can be changed as follows.

· Number of code blocks Ci = (Xi/Z(, where Xi is the total number of bits input to segmentation (i.e., after concatenation of transport blocks), and Z is the maximum size of a code block.

· Number of bits in each code block Ki = Ktable(1) if (Xi/Ci((Ktable(1); otherwise Ki = Ktable(j), where Ktable(j ‑ 1) < (Xi/Ci(((Ktable(j).

· Total number of filler bits Yi = Ci Ki ‑ Xi.

Use this segmentation rule, at most 64 filler bits are added to each code block. The filler bits may be simply padded to the end of an information block or evenly distributed to an information block. After encoding, the filler bits in the systematic bit stream are removed. The extra parity bits due to the filler bits will be removed through the rate matching process without significantly impact the performance.
Note that this segmentation rule is not needed for CC, since CC does not have an interleaver and can easily handle information block sizes with increment of 1.
3.3. Lower Mother Code Rate

Currently the constituent code of the turbo is defined by the rate 1/2 generator G(D) = [1, 1+D+D3/1+D2+D3], resulting in a mother code rate 1/3 for the turbo code [1]. Repetition is used when a lower code rate is needed, for example, retransmissions of IR. However, the mother code rate can be lowered to 1/5 by adding a parity bit output to each constituent code to achieve better performance than repetition. For example, generator G1(D) = [1, 1+D+D3/1+D2+D3, 1+D+D2+D3/1+D2+D3] may be used Simulations show that there is a 3 dB (QPSK) to 4 dB (64-QAM) difference between the rate 1/3 turbo code and the rate 1/5 turbo code in AWGN channel. For example, Figure 6 shows that a native rate 1/5 TC has about 3 dB advantage over a native rate 1/3 TC in AWGN channel, compared to 2.2 dB if repetition is used to lower the code rate from 1/3 to 1/5. The structure of the rate 1/5 turbo code with constituent code generator G1(D) is shown in Figure 7.

[image: image16.emf]DDD

S

P

2

P

1

DDD

P'

2

P'

1

turbo code

internal

interleaver

Figure 7.
Structure of rate 1/5 turbo code with generator G1(D) = [1, 1+D+D2+D3/1+D2+D3, 1+D+D3/1+D2+D3,].

3.4. Interleaver

In order to achieve good error-correcting performance, a random-like interleaver is needed to provide randomness to the turbo code. On the other hand, to facilitate decoder implementation, structure needs to be introduced to the interleaver design. During the iterative decoding process, extrinsic information is exchanged between the constituent decoders via the interleaver/deinterleaver. To achieve high decoding speed, the trellis of a constituent code is usually divided into several windows, each of size W, and all the windows are processed in parallel. It is desirable that all the windows of a constituent code access the memory in parallel without contention. This can be achieved by using a contention-free interleaver, which satisfies

[image: image17.wmf](

)

ë

û

(

)

ë

û

W

vW

j

W

tW

j

/

/

+

¹

+

p

p

Where 0 (j < W, 0 (t<v< N/W, and ((() is either the interleaver mapping or the deinterleaver mapping.
In [1] a turbo interleaver based on intra-row and inter-row permuations is used. This interleaver is not contention free and not algebraic. Moreover, it has been shown that the minimum distance for some code sizes are small, causeing high error floors for those cases [5]. Thus there is a need to define a new interleaver.
There are several types of algebraic contention-free interleaver designs [2]

 REF _Ref109118061 \r \h
[3] available, each providing good code performance, contention-free property, and ease of calculation. In particular, the design in [3] uses quadratic polynomials to define an interleaver f(x) = f1x +f2x2 mod N, which is contention free for all window sizes W that divides N [4]. This maximum contention-free property allows flexibility in choosing the window size W to satisfy the decoding speed requirement.
The final design of the interleaver is FFS.

3.5. Tail Bits Removal

As for CC, currently tail bits are added to terminate each constituent code of TC, resulting in 12 extra code bits in a coded block, N = 3(K + 12 [1]. This overhead can be removed by using tail-biting convolutional codes as constituent codes. Removing the tail bits would provide a small performance benefit and simplify the rate matching scheme.
Since the constituent codes are recursive, the initial state of the first constituent encoder may be determined in two steps:
Step 1. Initialize the encoder with state 0. Encode the information block in the natural order and denote the final state of the encoder as S0N.
Step 2. Look up a table to determine the initial state of the encoder based on N and S0N.

Table 1 contains the initial state to make the constituent codes of Figure 7 tail-biting. Note that the initial state of the second constituent encoder can be determined similarly except that the information block is in an interleaved order.

Table 1. Tailbiting recursive convolutional code initial state lookup table.
	N mod 7
	S0N

	
	0
	1
	2
	3
	4
	5
	6
	7

	1
	0
	6
	3
	5
	7
	1
	4
	2

	2
	0
	4
	5
	1
	2
	6
	7
	3

	3
	0
	3
	4
	7
	1
	2
	5
	6

	4
	0
	2
	6
	4
	5
	7
	3
	1

	5
	0
	5
	7
	2
	6
	3
	1
	4

	6
	0
	7
	1
	6
	3
	4
	2
	5

By using a tail-biting constituent code, the natural code rate of TC will be maintained, N = 3(K for code rate 1/3 or N = 5(K for code rate 1/5. In addition, no special bit ordering has to be considered as is needed for tail bits in [1].
3.6. Rate Matching

Instead of the rate matching algorithm in [1] where several parameters such as Xi, eini, eplus, eminus have to be defined, a simpler but effective bit selection is the automatic bit selection algorithm adopted in [2][8]. The automatic bit selection scheme interleaves each bit streams out of the turbo encoder separately (called subblock interleaving), alternates parity bits from constituent code 1 with corresponding parity bits from constituent code 2, and groups all the bits into a bit sequence Q. The subblock interleaving and bit grouping steps are illustrated in Figure 9 for a rate 1/5 TC illustrated in Figure 8. A length-N block of consecutive bits from sequence Q (wrapped around to the beginning if reaching the last bit of Q) is then selected for a rate K/N FEC or a length-N retransmission of IR. Different starting points in Q result in different redundancy versions for IR. The block starting from bit-0 of Q is always selected first (FEC or first transmission of Chase combining and IR) so that all the systematic bits are always sent. After that, different redundancy versions of Q may be selected similar to [9]. The automatic bit selection procedure is simple and has the advantage of selecting approximately evenly distributed parity bits regardless of the code rate, which is desirable for turbo codes.

[image: image18.emf]

Constituent

Encoder 1

Constituent

Encoder 2

Interleaver

P

1

P

2

P’

1

P’

2

S

S

Figure 8.
A binary turbo encoder with native code rate 1/5.

[image: image19.wmf]

…

…

S

subblock

P

1

subblock

P

1

¢

subblock

P

2

subblock

P

2

¢

subblock

S

subblock

1

P

subblock

'

1

P

subblock

'

2

P

subblock

…

…

…

…

…

…

interleave

interleave

interleave

interleave

interleave

bit grouping output sequence

Q

2

P

subblock

Figure 9.
Subblock interleaving and bit grouping of the automatic bit selection scheme.
To ensure good TC performance when punctured, a subblock interleaver is needed such that the first l (1 ≤ l ≤ L) bits of the subblock interleaved sequence are always approximately evenly distributed in the uninterleaved subblock regardless of l. This ensures that the code bits selected by the automatic bit selection scheme are approximately evenly distributed in both constituent code trellises, regardless of the code rate. Several subblock interleaving schemes can be used to achieve this purpose. As an example, the scheme in expressed in (1) and illustrated in Figure 3 may be used.
References

[1]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[2]. 3GPP TR 25.814 V1.0.1 (2005-11): “Physical layer aspects for evolved UTRA (Release 7)”.

[3]. IEEE Std 802.16-2004, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” Oct. 2004.

[4]. Jing Sun and O.Y. Takeshita, “Interleavers for turbo codes using permutation polynomials over integer rings,” IEEE Transactions on Information Theory, vol 51, Issue 1, pp. 101 – 119, Jan. 2005.

[5]. O.Y. Takeshita,, “On maximum contention-free interleavers and permutation polynomials over integer rings,” April 2005, submitted to Transactions on Information Theory.

[6]. E. Rosnes and O. Ytrehus, “Improved algorithms for the determination of turbo-code weight distributions,” IEEE Transactions on Communications, Vol 53, No. 1, pp. 20 – 26, Jan. 2005.

[7]. R2-052993, “Native Packet Transmission,” Motorola.

[8]. cdma2000 rel. C, C.S0002-C, May 28, 2002.
[9]. A. Ghosh, K. Stewart, R. Ratasuk, E. Buckley, and R. Bachu, “Incremental redundancy (IR) schemes for W-CDMA HS-DSCH,” PIMRC 2002.

ANNEX A – Tail Biting Algorithm using Viterbi Decoder

1. Initialization: Set the initial state metrics [image: image20.wmf]]

0

,

,

0

,

0

[

1

K

=

x

.

2. Viterbi iterations: Run the Viterbi algorithm on the sequence of K soft symbols [image: image21.wmf]v

N

times. Let the final state metrics for the [image: image22.wmf]th

i

)

1

(

-

 iteration be denoted as [image: image23.wmf]1

-

i

y

 and set the initial metrics for the next iteration as [image: image24.wmf]1

-

=

i

i

y

x

.

3. Traceback to determine initial state: Determine [image: image25.wmf])

min(

arg

ˆ

v

N

y

T

=

 and traceback from state[image: image26.wmf]T

ˆ

 to determine the most likely starting state which is the state at the first node from the traceback. Denote this state as [image: image27.wmf]S

ˆ

.
4. Traceback to obtain information symbols: Obtain the information symbol by tracing back from [image: image28.wmf]S

ˆ

.

_1195559040.doc

Convolutional Encoder

P0 (G0=561 octal)

P1 (G1=753 octal)

_1195638319.doc

Nc

Subblock interleaver 1

P’1

P’0

P1

P0

Q

Subblock interleaver 0

_1195647449.vsd

_1195628939.unknown

_1182883456.unknown

_1182881890.doc

Constituent Encoder 1

Constituent Encoder 2

Interleaver

P1

P2

P’2

P’1

S

S

