[bookmark: OLE_LINK6][bookmark: OLE_LINK3]3GPP TSG RAN WG1 Meeting #99 R1-1912896
[bookmark: _GoBack]Reno, USA, 18th – 22nd November 2019

Source:	NTT DOCOMO
Title:	Huffman Coding based Bitmap Compression Scheme for Type II CSI
[bookmark: Source]Agenda Item:	7.2.8.5
[bookmark: DocumentFor]Document for: 	Discussion
As per the current agreement, Type II CSI in Rel. 16 introduces frequency domain (FD) compression to achieve feedback overhead reduction [1]. In particular, the Type II CSI precoder generation for layer with FD compression can be expressed as,

where, captures precoding vectors of th layer for sub-bands (SB) while and () consist of spatial-domain (SD) 2D-DFT vectors and M DFT basis vectors for FD compression, respectively. Note that, denotes number of available ports. Further, () captures non-zero linear combination (LC) coefficients and as agreed in [2], maximum size-K0 subset of 2LM coefficients in should be reported. Note also that total number of LC coefficients across all layers should not exceed 2K0 as well [2]. Here K0 = with as defined in [3].
1. An Efficient Coding Scheme for Bitmap Reporting
1.1 Reporting
The matrix () which captures LC coefficients, is used for combining SD 2D-DFT basis vectors with FD DFT vectors. As per the current agreements, is included in the CSI part 2 [4]. In particular, there are two parts to be included in CSI part 2 when reporting . They are,
· a bitmap indicating the locations of non-zero coefficients (NZC)
· amplitudes and phases (quantized) of NZC.
The bitmap consists of ‘1’s and ‘0’s as shown in Fig. 1. In fact, reporting this bitmap in its original format occupies large overhead. Information theoretic perspective, this type of a reporting assumes ‘1’s and ‘0’s in the bitmap are equally likely (highest uncertainty for a given bit). But this is not the case all the time and in fact, by looking at number of NZC (NNZC) and RI in CSI part 1 [4] (Note that and are already known to the gNB), gNB knows how many ‘1’s and ‘0’s (and hence their respective probabilities) in the bitmap prior to decoding CSI part 2. These probabilities can then be used to design efficient Huffman coding schemes for bitmap reporting. The proposed coding schemes achieve near-optimal compressed bitmap representation with low processing/memory requirements. Next, we will discuss an example scenario considering some realistic values to clarify this idea.
Observation 1
· Reporting bitmap in its original format occupies large feedback overhead
Proposal 1
· Since respective probabilities of ‘1’s and ‘0’s in the bitmap are known both at the UE and gNB before decoding CSI part 2, an efficient coding scheme can be designed to compress bitmap information

[image:]

Fig.1: A joint bitmap across-layers

1.2 Huffman Coding for Bitmap Compression
Let us assume a scenario where , RI = 4 and 2K0 = 28. With that, the size of the joint bitmap, = 112 bits. Note that, and with when number of ‘1’s in the bitmap equals to 2K0. For these probabilities and considering a bit group of size 4 bits as a message (see Fig. 1), in Fig. 2, we show the generation of Huffman codewords. Note here that the codeword generation is done as discussed in [5] following standard Huffman code generation procedure. Table 1 shows a set of codewords generated following the procedure shown in Fig. 2.
[image:]

Fig.2: Huffman code generation

	Bit group
	Codeword

	0000
	01

	0001
	000

	0010
	100

	0100
	010

	1000
	110

	0011
	00011

	0101
	10011

	0110
	01011

	1001
	11011

	1010
	00111

	1100
	10111

	0111
	001111

	1011
	101111

	1101
	011111

	1110
	0111111

	1111
	1111111

Table 1: Bit group-Codeword mapping table

Given this table (needs to capture in the specification), UE can encode the bitmap information and at the gNB the same table is used for decoding the compressed bitmap. It is worth remarking here that, Huffman codes are uniquely decodable [5] and hence gNB can decode the compressed bitmap while reading it sequentially. Next, we provide a simple example to understand how bitmap can be encoded and decoded using Table 1.
1.2.1 Bitmap Compression with Huffman Coding
Let us consider a bitmap of size 40 bits. The uncompressed version of the bitmap can be given as,
[image:]

[image:]Now, rather than sending the bitmap in its original format, using Table 1, UE can generate the compressed version of the bitmap as follows:

This compressed bitmap can then be captured in CSI part 2 and fed back to the gNB. At the gNB, the decoding can be done while reading the compressed bitmap sequentially as follows:
[image:]

1.2.2 Bit Group Size
We have considered here a bit group of size 4 bits as a message. This bit group size seems to provide a better balance between overhead savings and bit group-codeword mapping table size. However, one can even consider other bit group sizes when designing Huffman coding scheme. For an instance, if bit group size is 8, more overhead savings can be expected. However, the bit group-codeword mapping table will have 256 entries which is not that efficient in terms of memory requirements.
Observation 2
· With larger bit group sizes, more overhead savings can be expected. However, larger bit-group size corresponds to more entries in the bit group-codeword mapping table. Bit groups with 4 bits seems to provide a better balance between overhead and size of the bit group-codeword mapping table

1.2.3 Huffman Coding Vs Combinatorial Signaling
It is also worth remarking here that the combinatorial signaling of the bitmap can provide more overhead savings. However, it requires large memory foot print to keep its look up table. For an instance, when = 112 bits and 2K0 = 28 bits, the lookup table will have approximately entries. This is not memory efficient at all. Further, look up table size will vary based on NNZC. On the other hand, the proposed Huffman coding will only require bit group-codeword mapping table with 16 entries and can provide near-optimal overhead reduction performance.
Observation 3
· Even though combinatorial signaling can provide more overhead savings, it requires large memory foot print which may not be practically feasible. On the other hand, Huffman coding can provide near-optimal overhead reduction performance with very small memory requirements

1.3 Feedback Overhead Reduction with Huffman Coding
In this section, we study achievable overhead reduction performance with proposed Huffman coding scheme for bitmap compression. In Fig. 3, we have shown feedback overhead for different NNZC in the bitmap with and without Huffman encoding. Note here that, the Huffman codeword set is generated considering NNZC = 2K0 = 28 bits. The same codeword set is used for encoding bitmaps with different NNZC (varying from 8 – 28 bits). Further, the required feedback bits for a given NNZC is calculated by averaging over realizations.
As can be observed from Fig. 3, when NNZC = 8 bits, with Huffman encoding feedback overhead reduces by 47 bits compared to without encoding case (approx. 42% overhead saving). On the other hand, when NNZC = 2K0 = 28 bits, with Huffman encoding 20 bits can be saved compared to no encoding case (approx. 18% overhead saving) (Further, by analyzing CDF of the feedback overhead bits, it could be understood that, max. size of compressed bitmap does not exceed 95 bits when NNZC=28 bits). Note also that, the overhead scales with NNZC in the bitmap when compressed with Huffman coding whereas this is independent of NNZC for no encoding case and always requires 112 bits.

47 bits
20 bits

Fig.3: Variation of Feedback overhead for different NNZC (= 112 bits and 2K0 = 28 bits)

In Fig. 4, we capture feedback overhead variation with multiple Huffman codeword sets. In particular, we have generated a separate codeword set for each NNZC from 8 bits to 28 bits following the procedure described in Section 2.2. The curve ‘Optimized’ in Fig. 4 shows achievable overhead reduction when a separate codeword set is designed for each NNZC. In addition, we have shown 3 other curves, ‘NNZC=8’, ‘NNZC=16’ and ‘NNZC=28’ in Fig. 4 which correspond to 3 different codeword sets designed considering NNZC= {8, 16, 28} bits and following the procedure described in Section 2.2.47 bits
18 bits
NNZC=8
NNZC=16
NNZC=28

Fig.4: Feedback overhead with multiple codeword sets (= 112 bits and 2K0 = 28 bits)

As can be observed from Fig. 4, highest overhead reduction can be achieved by designing a separate codeword set for each NNZC (for NNZC = 8 bits, feedback overhead is reduced by 65 bits when using a separate codeword set designed for NNZC = 8 bits). Note here that, the 3 other codeword sets, designed for NNZC = {8, 16, 28} performs almost similar to ‘Optimized’ curve in different NNZC ranges. In particular, within the NNZC range 8-14 bits, codeword set designed for NNZC=8 bits achieves near-optimized performance while for NNZC range 15-23 bits and 24-28 bits, codeword sets designed for NNZC=16 bits and NNZC=28 bits, respectively, achieves near-optimized performance. This is an important observation which tells us that, by designing few codeword sets covering different NNZC ranges, it is possible to achieve optimized performance which is obtained by designing a codeword set for each NNZC in the range.
Note that, even though the discussion here is based on NNZC in the bitmap, in fact, this is directly related to the in the bitmap. To clarify this further, when we tell a codeword set is designed for NNZC=8 bits while = 112 bits, the codeword set corresponds to . As discussed previously, this codeword set is suitable for the range, 0.07 – 0.12. Hence, all these codeword sets are corresponding to a particular in the bitmap and not depend either on NNZC or individually.
Note also that, one of the main advantages of this type of a compression scheme is that it can drastically reduce the CSI omission when allocated resources are not enough to carry both data and CSI.
Observation 4
· By using few codeword sets which cover different NNZC ranges (or), it is possible to achieve near-optimized performance. Here, optimized performance is achieved when a separate codeword set is designed for each NNZC in the range
Observation 5
· Compared to feedback overhead for bitmap reporting in its original format, the compressed bitmap reporting using Huffman coding can reduce feedback overhead drastically with low processing/memory requirements
Proposal 2
· Support Huffman coding based compressed bitmap reporting to achieve higher overhead savings

 [1] 3GPP RAN#96, R1-1902811, “Type II CSI feedback enhancement”, Feb. 2019
[2] 3GPP RAN1#97, “RAN1 Chairman’s Notes”, May 2019
[3] 3GPP RAN1#98, “RAN1 Chairman’s Notes”, Aug. 2019
[4] 3GPP RAN1#96b, R1-1905629 “Feature lead summary for MU-MIMO CSI – revision on selected issues”, Apr. 2019
 [5] T. M. Cover, J. A. Thomas, “Elements of Information Theory”, John Wiley & Sons, Inc.

- 1/4 -
image3.emf

0000010000010000000100000010000100001000

Uncompressed bitmap (40 bits)

image4.emf

01 010 000 01 000 01 100 000 01 110

Compressed bitmap (26 bits)

image5.emf

Possible to uniquely decode the compressed bitmap

01 010 000 01 		000 01 100 000 01 110
0000	0100	0001	0000	0001	0000	0010	0001	0000	1000

image6.png

image7.png

image8.png

image9.png

image1.emf

0

1

1

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

1

1

0 0 0 0

0

0 0
4-bit group

1 ……………...

…
…

.

0

1

1

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

00

0

0

0

0

0

4-bit group

1

……………...

…

…

.

image2.emf

0000
0001
0010
0100
1000

0
1
2

4
8

0011
0101
0110
1001
1010

3
5
6
9

10
1100
0111
1011
1101

12
7

11
13

1110
1111

14
15

81
27
27
27
27

9
9
9
9
9

9
3
3
3
3
1

4
7

6

13

18

All probability values need to be divided by 256

18

18

54

54

31

36

67

108

148

1
1

1

1

1

1

1

1

1

1

1

1

1

0
0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

2
3

3
3
3

5

5
5
5
5

5
6

6
6
7
7

Codeword length
𝐶𝑊# (bits) Bit group

