[bookmark: OLE_LINK6][bookmark: OLE_LINK3]3GPP TSG RAN WG1 Meeting #98 R1-1909200
Prague, CZ, 26th – 30th August 2019

Source:	NTT DOCOMO
Title:	Type II CSI Enhancement for MU-MIMO Support
[bookmark: Source]Agenda Item:	7.2.8.1
[bookmark: DocumentFor]Document for: 	Discussion
1. Introduction
[bookmark: _GoBack]In RAN1#97 meeting, Type II CSI feedback overhead reduction schemes were discussed along with Type II CSI feedback extension to RI=3, 4. Based on the discussions, following agreements were made for Type II CSI enhancements for MU-MIMO support [1].

Agreement
Alt3C (illustrated in the table below) is supported where the parameter p=v0 for RI=3-4 is higher-layer configured in conjunction with the parameter p=y0 for RI=1-2.
·
The parameters (y0, v0) take value from
	RI
	Layer
	L
	p

	1
	0
	x0
	y0

	2
	0
	
	

	
	1
	
	

	3
	0
	
	v0

	
	1
	
	

	
	2
	
	

	4
	0
	
	

	
	1
	
	

	
	2
	
	

	
	3
	
	

· FFS: Possible down-selection on the FD combination parameters in RAN1#98

Agreement
For RI=3-4, given the value of K0, the number of non-zero coefficients per layer shall be less than or equal to K0
· No further restriction on the maximum number of non-zero coefficients per layer

Conclusion
On the candidate UCI parameters listed in Table 2 of R1-1905629:
· The following parameters are not supported as a consequence of the previous agreements in RAN1#96bis:
· Indication of zero polarization reference amplitude values
· FD oversampling (rotation) Q3,
· (N1’ N2’)
· The following parameters are not supported due to lack of consensus:
· M’ as an independent parameter
· Does not preclude the support of M’ for the purpose of CSI omission (if supported)
· Basis sufficiency indicator (BSI)

Agreement
For further details on the agreed UCI parameters in Table 1 of R1-1905629:
· RI ({1,…, RIMAX}) and KNZ,TOT (the total number of non-zero coefficients summed across all the layers, where KNZ,TOT {1,2,…, 2K0} are reported in UCI part 1
· FFS: If the total number of non-zero coefficients are jointly encoded with M’ (if supported) or independently encoded
· For RI=3-4, bitmaps, each with size-2LMi (i=0,1,…, RI-1, where i denotes the i-th layer) are reported in UCI part 2
· FFS: If alt 3-4 is supported, size-2LMi-1 (i=0,1,…, RI-1, where i denotes the i-th layer) are reported in UCI part 2
· The following FD basis subset selection scheme is supported:
· For N3≤19, one-step free selection (cf. Alt5.1 in RAN1#96bis) is used
·
For N3>19, IntS is window-based and fully parameterized with Minitial, indicating that the intermediate set consists of FD bases mod(Minitial + n, N3), n=0,1, …,
·
The value where is higher-layer configured from two possible values
· FFS (to be finalized in RAN1#98 Prague): the supported parameter combinations for (L, p, β,)
· The 2nd step subset selection is indicated by an X2-bit combinatorial indicator (for each layer) in UCI part 2

Agreement
In RAN1#98, finalize the values of based on the following aspects
· Candidate values for to be down selected/evaluated: at least {1.5, 2, 2.5}
· The set of values is to be finalized via offline email discussion prior to RAN1#98
· Configuration of :
· Whether it is independent of other FD compression parameters, or dependent on at least one of the other FD compression parameters, i.e. p (=y0, and/or v0 for RI=3-4), L, β, and/or R
· Whether is rank-specific or rank-common
· Note: This is to be discussed along with the supported parameter combinations for (L, p, β,)

Agreement
In RAN1#98, decide if the specification will restrict the UE from reporting all “zero” in the bitmap for a polarization for each layer

Agreement
On SCI (RI>1) and FD basis subset selection indicator, support Alt B described in the following table.
· FFS: details on bitwidth and possible values for Minitial reporting in UCI part 2
· FFS: whether the possible value(s) for Minitial can depend on configured FD compression parameters
· Up to the editor to capture this agreement

	
	Alt B

	SCI for RI>1
	

Alt3.4: Per-layer SCI, where SCIi is a –bit (i=0,1,…(RI - 1)). The location (index) of the strongest LC coefficient for layer i before index remapping is , , and is not reported

	Index remapping
	

[bookmark: MTBlankEqn]For layer i, the index mi of each nonzero LC coefficient is remapped with respect to to such that . The FD basis index associated to each nonzero LC coefficient is remapped with respect to to such that . The sets and are reported.
Informative note (for the purpose of reference procedure):

The index of nonzero LC coefficients is remapped as . The codebook index associated with nonzero LC coefficient index is remapped as

	Combinatorial indicator for N3 ≤ 19
	
 bits

	Combinatorial indicator for N3 > 19
	
 bits

	Minitial
	Reported in UCI part 2, details on bitwidth and possible values are FFS

2. An Efficient Coding Scheme for Bitmap Reporting
As per the current agreements, Type II CSI in Rel. 16 introduces frequency domain (FD) compression to achieve feedback overhead reduction [2]. In particular, the Type II CSI precoder generation for layer with FD compression can be expressed as,

where, captures precoding vectors of th layer for sub-bands (SB) while and () consist of spatial-domain (SD) 2D-DFT vectors and M DFT basis vectors for FD compression, respectively. Note that, denotes number of available ports. Further, () captures non-zero linear combination (LC) coefficients and as agreed in [1], maximum size-K0 subset of 2LM coefficients in should be reported. Note also that total number of LC coefficients across all layers should not exceed 2K0 as well. Here K0 = with .
2.1 Reporting
The matrix () which captures LC coefficients, is used for combining SD 2D-DFT basis vectors with FD DFT vectors. As per the current agreements, is included in the CSI part 2 [3]. In particular, there are two parts to be included in CSI part 2 when reporting . They are,
· a bitmap indicating the locations of non-zero coefficients (NZC)
· amplitudes and phases (quantized) of NZC.
The bitmap consists of ‘1’s and ‘0’s as shown in Fig. 1. In fact, reporting this bitmap in its original format occupies large overhead. Information theoretic perspective, this type of a reporting assumes ‘1’s and ‘0’s in the bitmap are equally likely (highest uncertainty for a given bit). But this is not the case all the time and in fact, by looking at number of NZC (NNZC) and RI in CSI part 1 [3] (Note that and are already known to the gNB), gNB knows how many ‘1’s and ‘0’s (and hence their respective probabilities) in the bitmap prior to decoding CSI part 2. These probabilities can then be used to design efficient Huffman coding schemes for bitmap reporting. The proposed coding schemes achieve near-optimal compressed bitmap representation with low processing/memory requirements. Next, we will discuss an example scenario considering some realistic values to clarify this idea.
Observation 1
· Reporting bitmap in its original format occupies large feedback overhead

Proposal 1
· Since respective probabilities of ‘1’s and ‘0’s in the bitmap are known both at the UE and the gNB prior to decoding CSI part 2, an efficient coding schemes can be designed to compress bitmap information using those probabilities
[image:]

Fig.1: A joint bitmap across-layers

2.2 Huffman Coding for Bitmap Compression
[image:]Let us assume a scenario where , RI = 4 and 2K0 = 28. With that, the size of the joint bitmap, = 112 bits. Note that, and with when number of ‘1’s in the bitmap equals to 2K0. For these probabilities and considering a bit group of size 4 bits as a message (see Fig. 1), in Fig. 2, we show the generation of Huffman codewords. Note here that the codeword generation is done as discussed in [4] following standard Huffman code generation procedure. Table 1 shows a set of codewords generated following the procedure shown in Fig. 2.

Fig.2: Huffman code generation

	Bit group
	Codeword

	0000
	01

	0001
	000

	0010
	100

	0100
	010

	1000
	110

	0011
	00011

	0101
	10011

	0110
	01011

	1001
	11011

	1010
	00111

	1100
	10111

	0111
	001111

	1011
	101111

	1101
	011111

	1110
	0111111

	1111
	1111111

Table 1: Bit group-Codeword mapping table

Given this table (needs to capture in the specification), UE can encode the bitmap information and at the gNB the same table is used for decoding the compressed bitmap. It is worth remarking here that, Huffman codes are uniquely decodable [4] and hence gNB can decode the compressed bitmap while reading it sequentially. Next, we provide a simple example to understand how bitmap can be encoded and decoded using Table 1.
2.2.1 Bitmap Compression with Huffman Coding
[image:]Let us consider a bitmap of size 40 bits. The uncompressed version of the bitmap can be given as,

[image:]Now, rather than sending the bitmap in its original format, using Table 1, UE can generate the compressed version of the bitmap as follows:

This compressed bitmap can then be captured in CSI part 2 and fed back to the gNB. At the gNB, the decoding can be done while reading the compressed bitmap sequentially as follows:
[image:]

2.2.2 Bit Group Size
We have considered here a bit group of size 4 bits as a message. This bit group size seems to provide a better balance between overhead savings and bit group-codeword mapping table size. However, one can even consider other bit group sizes when designing Huffman coding scheme. For an instance, if bit group size is 8, more overhead savings can be expected. However, the bit group-codeword mapping table will have 256 entries which is not that efficient in terms of memory requirements.
Observation 2
· With larger bit group sizes, more overhead savings can be expected. However, larger bit-group size corresponds to more entries in the bit group-codeword mapping table. Bit groups with 4 bits seems to provide a better balance between overhead and size of the bit group-codeword mapping table

2.2.3 Huffman Coding Vs Combinatorial Signaling
It is also worth remarking here that the combinatorial signaling of the bitmap can provide more overhead savings. However, it requires large memory foot print to keep its look up table. For an instance, when = 112 bits and 2K0 = 28 bits, the lookup table will have approximately entries. This is not memory efficient at all. Further, look up table size will vary based on NNZC. On the other hand, the proposed Huffman coding will only require bit group-codeword mapping table with 16 entries and can provide near-optimal overhead reduction performance.
Observation 3
· Even though combinatorial signaling can provide more overhead savings, it requires large memory foot print which may not be practically feasible. On the other hand, Huffman coding can provide near-optimal overhead reduction performance with very small memory requirements

2.3 Feedback Overhead Reduction with Huffman Coding
In this section, we study achievable overhead reduction performance with proposed Huffman coding scheme for bitmap compression. In Fig. 3, we have shown feedback overhead for different NNZC in the bitmap with and without Huffman encoding. Note here that, the Huffman codeword set is generated considering NNZC = 2K0 = 28 bits. The same codeword set is used for encoding bitmaps with different NNZC (varying from 8 – 28 bits). Further, the required feedback bits for a given NNZC is calculated by averaging over realizations.
As can be observed from Fig. 3, when NNZC = 8 bits, with Huffman encoding feedback overhead reduces by 47 bits compared to without encoding case (approx. 42% overhead saving). On the other hand, when NNZC = 2K0 = 28 bits, with Huffman encoding 20 bits can be saved compared to no encoding case (approx. 18% overhead saving) (Further, by analyzing CDF of the feedback overhead bits, it could be understood that, max. size of compressed bitmap does not exceed 95 bits when NNZC=28 bits). Note also that, the overhead scales with NNZC in the bitmap when compressed with Huffman coding whereas this is independent of NNZC for no encoding case and always requires 112 bits.

47 bits
20 bits

Fig.3: Variation of Feedback overhead for different NNZC (= 112 bits and 2K0 = 28 bits)

In Fig. 4, we capture feedback overhead variation with multiple Huffman codeword sets. In particular, we have generated a separate codeword set for each NNZC from 8 bits to 28 bits following the procedure described in Section 2.2. The curve ‘Optimized’ in Fig. 4 shows achievable overhead reduction when a separate codeword set is designed for each NNZC. In addition, we have shown 3 other curves, ‘NNZC=8’, ‘NNZC=16’ and ‘NNZC=28’ in Fig. 4 which correspond to 3 different codeword sets designed considering NNZC= {8, 16, 28} bits and following the procedure described in Section 2.2.47 bits
18 bits
NNZC=8
NNZC=16
NNZC=28

Fig.4: Feedback overhead with multiple codeword sets (= 112 bits and 2K0 = 28 bits)

As can be observed from Fig. 4, highest overhead reduction can be achieved by designing a separate codeword set for each NNZC (for NNZC = 8 bits, feedback overhead is reduced by 65 bits when using a separate codeword set designed for NNZC = 8 bits). Note here that, the 3 other codeword sets, designed for NNZC = {8, 16, 28} performs almost similar to ‘Optimized’ curve in different NNZC ranges. In particular, within the NNZC range 8-14 bits, codeword set designed for NNZC=8 bits achieves near-optimized performance while for NNZC range 15-23 bits and 24-28 bits, codeword sets designed for NNZC=16 bits and NNZC=28 bits, respectively, achieves near-optimized performance. This is an important observation which tells us that, by designing few codeword sets covering different NNZC ranges, it is possible to achieve optimized performance which is obtained by designing a codeword set for each NNZC in the range.
Note that, even though the discussion here is based on NNZC in the bitmap, in fact, this is directly related to the in the bitmap. To clarify this further, when we tell a codeword set is designed for NNZC=8 bits while = 112 bits, the codeword set corresponds to . As discussed previously, this codeword set is suitable for the range, 0.07 – 0.12. Hence, all these codeword sets are corresponding to a particular in the bitmap and not depend either on NNZC or individually.
Note also that, one of the main advantages of this type of a compression scheme is that it can drastically reduce the CSI omission when allocated resources are not enough to carry both data and CSI.
Observation 4
· By using few codeword sets which cover different NNZC ranges (or), it is possible to achieve near-optimized performance. Here, optimized performance is achieved when a separate codeword set is designed for each NNZC in the range
Observation 5
· Compared to feedback overhead for bitmap reporting in its original format, the compressed bitmap reporting using Huffman coding can reduce feedback overhead drastically with low processing/memory requirements
Proposal 2
· Support Huffman coding based compressed bitmap reporting to achieve higher overhead savings
3. CSI Omission Procedure for Rel. 16 Type II CSI
Due to FD compression, Rel. 16 Type II CSI does not capture SB based CSI. Hence, it is not possible to reuse CSI omission procedure defined in [5] Section 5.2.3. This necessitates defining a new CSI omission rule for Rel. 16 Type II CSI. As per the current agreements, CSI part 1 consists of RI, CQI and NNZC whereas CSI part 2 consists of SD/FD basis indicators, bitmaps and strongest coefficient indicator (SCIs) of each layer, reference amplitude for weaker polarization and quantized NZCs among others [3]. As per our view, the new CSI omission rule first consider omitting CSI part 2 followed by CSI part 1. This is because CSI part 1 carries RI, CQI values which provide some useful insight on underlying propagation channel characteristics.
Proposal 3
· Support omission of CSI part 2 first followed by CSI part 1 until CSI fits in to allocated resources and satisfy max. code rate requirements
Since there is no SB based CSI in Rel. 16 Type II CSI, omission of NZCs can be considered. However, as per our view, when CSI omission is required, it is better to drop NZCs across layers rather than dropping NZCs (and corresponding bitmap(s)) belong to a particular layer(s). This is because, achievable multiplexing gains for users with well-conditioned channels will diminish if NZCs of an entire layer is dropped.

3.1 Arranging NZC within CSI part 2
Let us look at an example scenario to understand how NZCs can be arranged such that during CSI omission NZCs belong to different layers get dropped not from a single layer. Here, we assume and . With that, the bitmaps and NZCs belong to 4 layers can be given as follows. Note here that, corresponds to a non-zero coefficient of -th layer, -th SD 2D DFT beam, -th DFT beam.

[image:]

Fig.5: Selected NZC to be reported from 4-layers

Now, let us assume, NZC are read in the following priority order:
layer index -> FD-beam index -> SD-beam index.
The sequence generated for 4-layers in Fig. 5 can then be given as follows:
[image:]

As can be seen, NZC belong to a particular layer are grouped together in the sequence. Hence, in case if CSI omission needs to be done, there is a high possibility that NZC belongs to a particular layer is completely dropped. As discussed, this can be badly affected to achievable multiplexing gains.
Next, let us consider reading NZC in 4-layers captured in Fig.5 in the following priority order:
FD-beam index -> SD-beam index -> layer index.
The resulting sequence can then be given as follows:
[image:]

It can be observed that, NZC belongs to a particular layer are not consecutive and in fact they are well-mixed within the sequence. Hence, in case if CSI omission needs to be done by dropping set of NZC, there is a less probability that NZC belong to a particular layer entirely gets dropped. Similarly, if NZC are read in the following priority order,
SD-beam index -> FD-beam index -> layer index
[image:]the resulting NZC sequence can be given as,

where it can clearly be seen that NZC belong to different layers are well mixed. Hence, when CSI omission is done by dropping part of NZC, it is highly unlikely to drop NZC of a particular layer entirely.
Proposal 4
· Support arranging NZC within CSI part 2 such that NZC of different layers are well mixed. During CSI omission, this can ensure NZC across layers will be dropped, not from a specific layer

3.2 Grouping of NZC
In Section 3.1, we discussed how to arrange NZC with CSI part 2 such that when CSI omission is done (by dropping one coefficient at a time) NZC across layers be dropped, not from a specific layer. In this Section, we discuss how to create group of NZC with each group having a different priority. The CSI omission can then be done by dropping these NZC groups at a time.
Let us look at an example to clarify this. In particular, assuming that NZC are arranged in the following priority order: FD-beam index -> SD-beam index -> layer index, we can generate two or more groups having set of NZC (In fact, the discussion in Section 3.1 is a special case of NZC grouping with single NZC in each group). Let us consider we generated two NZC groups with different priorities as follows:
[image:]

[image:]Assuming there are multiple CSI reports to be fed back, different CSI priority rules can then be defined as follows:
[image:]

Priority decreases

(b)
(a)

Fig.6: Different CSI priority rules

In Fig. 6, we capture two different approaches for defining CSI priority rules. In particular, Fig. 6 (a) shows arranging NZC groups of the same CSI report next to each other. With this type of a priority rule, there is a higher chance of omitting CSI belongs to a particular CSI report completely.
On the other hand, in Fig. 6 (b) we capture another CSI priority rule. As can be observed, in that, NZC groups having the same priority from different CSI reports are arranged next to each other. Hence, during CSI omission, it is highly unlikely that CSI of a particular CSI report is dropped entirely.
It is worth remarking here that, one can arrange NZC in other priority orders as well as discussed in Section 3.1 and then generate NZC groups.
Observation 6
· Grouping of NZC after arranging them in a particular priority order is efficient for defining CSI omission procedures
Proposal 5
· Support grouping NZC within CSI part 2 after arranging them in a particular priority order. Different CSI priority rules can be defined for grouped NZC

4. PUCCH Resource Determination for Rel. 16 Type II CSI
There are situations where UE has to determine PUCCH resource based on the UCI bits. In particular, when multiplexing CSI, HARQ-ACK and SR, PUCCH resource is determined based on UCI payload size. In fact, UCI payload size depends on both CSI part 1 and part 2. Due to this reason, it is not possible for the gNB to decode UCI on PUCCH because PUCCH resource is unknown to gNB initially. Hence, it is important to clarify how to assume payload size of CSI part 2 to determine PUCCH resource.
As discussed in [6] Section 9.2.5.2, in Rel. 15, if a UE transmits periodic/semi-persistent CSI reports that include Part 2 CSI reports, the UE determines a PUCCH resource and a number of PRBs in the PUCCH resource assuming that each of the periodic/semi-persistent CSI reports indicates rank 1 (common understanding between UE and gNB). However, this may not be an appropriate approach to determine PUCCH resources in Rel. 16 Type II CSI. This is because, Rel. 16 Type II CSI supports rank up to 4 and there is an upper bound on NNZC (2K0) to be reported.
As per our view, both rank and NNZC should be considered when determining PUCCH resources. The reason is, specifying only rank may result in over determination of resources since matrix in (1) can be sparse due to the upper bound on NNZC. One way to achieve this is, UE can assume each of the periodic/semi-persistent CSI reports indicates rank and NNZC = . Possible values for are 1, 2, 3 or 4 where as can be , etc.
Observation 7
· Since Rel. 16 Type II CSI supports rank up to 4 and there is an upper bound on NNZC (2K0) to be reported, both these factors affect when determining PUCCH resources
Proposal 6
· Specify values for rank and NNZC to determine PUCCH resources for Rel. 16 Type II CSI
5. Summary
In this contribution, we discuss Huffman coding based bitmap compression scheme for Rel. 16 Type II CSI. The evaluation results show promising gains with proposed scheme. Next, we discuss in detail, a CSI omission procedure for Rel. 16 Type II CSI. Finally, we show the importance of considering both rank and as well as NNZC when determining PUCCH resources for Rel. 16 Type II CSI.
Observation 1
· Reporting bitmap in its original format occupies large feedback overhead
Proposal 1
· Since respective probabilities of ‘1’s and ‘0’s in the bitmap are known both at the UE and the gNB prior to decoding CSI part 2, an efficient coding schemes can be designed to compress bitmap information using those probabilities
Observation 2
· With larger bit group sizes, more overhead savings can be expected. However, larger bit-group size corresponds to more entries in the bit group-codeword mapping table. Bit groups with 4 bits seems to provide a better balance between overhead and size of the bit group-codeword mapping table
Observation 3
· Even though combinatorial signaling can provide more overhead savings, it requires large memory foot print which may not be practically feasible. On the other hand, Huffman coding can provide near-optimal overhead reduction performance with very small memory requirements

Observation 4
· By using few codeword sets which cover different NNZC ranges (or), it is possible to achieve near-optimized performance. Here, optimized performance is achieved when a separate codeword set is designed for each NNZC in the range
Observation 5
· Compared to feedback overhead for bitmap reporting in its original format, the compressed bitmap reporting using Huffman coding can reduce feedback overhead drastically with low processing/memory requirements
Proposal 2
· Support Huffman coding based compressed bitmap reporting to achieve higher overhead savings
Proposal 3
· Support omission of CSI part 2 first followed by CSI part 1 until CSI fits in to allocated resources and satisfy max. code rate requirements
Proposal 4
· Support arranging NZC within CSI part 2 such that NZC of different layers are well mixed. During CSI omission, this can ensure NZC across layers will get dropped not from a specific layer
Observation 6
· Grouping of NZC after arranging them in a given particular priority order is efficient for defining CSI omission procedures
Proposal 5
· Support grouping NZC within CSI part 2 after arranging them in a particular priority order. Different CSI priority rules can be defined for grouped NZC
Observation 7
· Since Rel. 16 Type II CSI supports rank up to 4 and there is an upper bound on NNZC (2K0) to be reported, both these factors affect when determining PUCCH resources
Proposal 6
· Specify values for rank and NNZC to determine PUCCH resources for Rel. 16 Type II CSI

[1] 3GPP RAN1#97, “RAN1 Chairman’s Notes”, May., 2019
 [2] 3GPP RAN#96, R1-1902811, “Type II CSI feedback enhancement”, Feb. 2019
[3] 3GPP RAN1#96b, R1-1905629 “Feature lead summary for MU-MIMO CSI – revision on selected issues”, Apr. 2019
 [4] T. M. Cover, J. A. Thomas, “Elements of Information Theory”, John Wiley & Sons, Inc.
[5] 3GPP TS 38.214, “NR; Physical layer procedures for data”, Sep. 2018
 [6] 3GPP TS 38.213 (v15.3.0), “NR; Physical layer procedures for control”, Oct. 2018

- 1/4 -
image3.png

image4.png
€ {1, ... Ry}

image5.png
Kyzror

image6.png
Kyzror € {L.2,....2K;}

image7.png
2LM;

image8.png
RI -1

image9.png

image10.png

image11.png
Minicial

image12.wmf
3

1

N

¢

-

oleObject2.bin

image13.png
mod(Mjpiricr + 1. N3)n

image14.wmf
3

NM

a

¢

=

éù

êú

oleObject3.bin

image15.png
Nz = [aM]

image16.png
(L.p.B.a)

image17.png
(L.p.B.a)

image18.png
SCI;

image19.wmf
2

log2

L

éù

êú

oleObject4.bin

image20.wmf
(

)

**

,

ii

lm

oleObject5.bin

image21.png
(I;.m])

image22.wmf
*

ii

SCIl

=

oleObject6.bin

image23.png
SCI;

image24.wmf
*

i

m

oleObject7.bin

image25.png

image26.png

image27.wmf
,

ii

lm

c

oleObject8.bin

image28.png
Clom;

oleObject9.bin

image29.png

image30.png

image31.png

image32.wmf
i

m

k

oleObject10.bin

image33.png

image34.wmf
ii

lm

c

oleObject11.bin

image35.wmf
*

i

m

k

oleObject12.bin

image36.png

image37.png

image38.png

image39.png

image40.png
(K, = 0]

image41.wmf
(

)

,

ii

lm

oleObject13.bin

image42.png

image43.wmf
(

)

(

)

(

)

*

,,mod

iiiiii

lmlmmM

®-

oleObject14.bin

image44.png
(1;,m;) = (1;,(m; — m] JmodM;)

oleObject15.bin

image45.wmf
(

)

*

3

mod

ii

i

mm

m

kkkN

®-

oleObject16.bin

image46.png
K, = (K, — ki JmodN,

image47.wmf
3

2

1

log

1

i

N

M

é-ù

æö

êú

ç÷

-

èø

êú

image1.png
(¥ ¥p)

oleObject17.bin

image48.png

image49.png
N, > 19

image50.png

image51.wmf
3

2

1

log

1

i

N

M

éù

æö

¢

-

êú

ç÷

ç÷

-

êú

èø

êú

oleObject18.bin

image52.emf

0

1

1

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

1

1

0 0 0 0

0

0 0
4-bit group

1 ……………...

…
…

.

0

1

1

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0 0

0

0

0

0

0

4-bit group

1

……………...

…

…

.

image53.emf

0000
0001
0010
0100
1000

0
1
2

4
8

0011
0101
0110
1001
1010

3
5
6
9

10
1100
0111
1011
1101

12
7

11
13

1110
1111

14
15

81
27
27
27
27

9
9
9
9
9

9
3
3
3
3
1

4
7

6

13

18

All probability values need to be divided by 256

18

18

54

54

31

36

67

108

148

1
1

1

1

1

1

1

1

1

1

1

1

1

0
0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

2
3

3
3
3

5

5
5
5
5

5
6

6
6
7
7

Codeword length
𝐶𝑊# (bits) Bit group

image54.emf

0000010000010000000100000010000100001000

Uncompressed bitmap (40 bits)

image55.emf

01 010 000 01 000 01 100 000 01 110

Compressed bitmap (26 bits)

image2.wmf
111111

,,,,,

244448

ìü

æöæöæö

íý

ç÷ç÷ç÷

èøèøèø

îþ

image56.emf

Possible to uniquely decode the compressed bitmap

01 010 000 01 		000 01 100 000 01 110
0000	0100	0001	0000	0001	0000	0010	0001	0000	1000

image57.png
Required feedback bits

20

10

00

70

60

1

1 1 1

with encoding
————— w/o encoding

1 1

1

14

16 18 20
NNZC in bitmap

22 24

26

28

image58.png
Required feedback bits

20

10

00

70

60

1

1 1 1

with encoding
————— w/o encoding

1 1

1

14

16 18 20
NNZC in bitmap

22 24

26

28

image59.png
Required feedback bits

120

110

100

©
=]

©
S

~
=]

60

50

40

NNZC=8
NNZC=16
NNZC=28

— % Optimized
— — w/o encoding

16 18 20
NNZC in bitmap

22

24

26

28

image60.png
Required feedback bits

120

110

100

©
=]

©
S

~
=]

60

50

40

NNZC=8
NNZC=16
NNZC=28

— % Optimized
— — w/o encoding

16 18 20
NNZC in bitmap

22

24

26

28

image60.emf

𝒄","
(") 0

𝒄',"
(") 0

0 𝒄(,'
(")

0 𝒄),'
(")

Layer 0 Layer 1 Layer 2 Layer 3

0 0

𝒄',"
(') 0

0 𝒄(,'
(')

𝒄),"
(') 0

0 0

𝒄',"
(() 0

0 𝒄(,'
(()

0 𝒄),'
(()

𝒄","
()) 0

0 0

0 𝒄(,'
())

0 0

image61.emf

𝒄","
(")𝒄&,"

(")𝒄',&
(")𝒄(,&

(")𝒄&,"
(&)𝒄(,"

(&)𝒄',&
(&)𝒄&,"

(')𝒄',&
(')𝒄(,&

(')𝒄","
(()𝒄',&

(()

image62.emf

𝒄","
(")𝒄","

(&)𝒄',"
(")𝒄',"

(')𝒄',"
(()𝒄&,"

(')𝒄(,'
(")𝒄(,'

(')𝒄(,'
(()𝒄(,'

(&)𝒄&,'
(")𝒄&,'

(()

FD 0 FD 1

image63.emf

SD 0 SD 1

𝒄","
(")𝒄","

(&)𝒄',"
(")𝒄',"

(')𝒄',"
(()𝒄(,'

(")𝒄(,'
(')𝒄(,'

(()𝒄(,'
(&)𝒄&,"

(')𝒄&,'
(")𝒄&,'

(()

SD 2 SD 3

image64.emf

𝒄","
(")𝒄","

(&)𝒄',"
(")𝒄',"

(')𝒄',"
(()𝒄&,"

(')

𝒄(,'
(")𝒄(,'

(')𝒄(,'
(()𝒄(,'

(&)𝒄&,'
(")𝒄&,'

(()

Priority 1

Priority 2

NZC group 1:

NZC group 2:

oleObject1.bin

image65.emf

Priority 1
NZC group 1: CSI report 1

Priority 2
NZC group 1 : CSI report 2

Priority N
NZC group 1: CSI report N

Priority 2N
NZC group 2 : CSI report N

Priority N+1
NZC group 2: CSI report 1

Priority 1

NZC group 1: CSI report 1

Priority 2

NZCgroup 1 : CSI report 2

Priority N

NZCgroup 1: CSI report

N

Priority 2N

NZC group

2

: CSI report

N

Priority N+1

NZC group 2: CSI report 1

image66.emf

Priority 1
NZC group 1: CSI report 1

Priority 2
NZC group 2 : CSI report 1

Priority 2N-1
NZC group 1: CSI report N

Priority 2N
NZC group 2 : CSI report N

Priority 1

NZC group 1: CSI report 1

Priority 2

NZCgroup 2 : CSI report 1

Priority 2N-1

NZCgroup 1: CSI report

N

Priority 2N

NZCgroup 2 : CSI report

N

