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[bookmark: _Ref124589705][bookmark: _Ref129681862]`Introduction
[bookmark: _Ref129681832]A general NOMA receiver has been agreed in RAN1#92b [1]. As shown in Figure 1, it is adopted as the general block diagram of multi-user receiver for UL data transmissions. 
· The algorithms for the detector block (for data) can be e.g. MMSE, MF, ESE, MAP, MPA, and EPA. 
· The interference cancellation can be hard, soft, or hybrid, and can be implemented in serial, parallel, or hybrid.
· Note: the IC block may consist of an input of the received signal for some types of IC implementations
· The interference cancellation block may or may not be used. 
· Note: if not used, an input of interference estimation to the decoder may be required for some cases.
· The input to interference cancellation may come directly from the Detector for some cases
[image: ]
[bookmark: Figure_high_levelRx]Figure 1: A high-level block diagram of multi-user receiver
RAN1#93 agrees that the performance results will be presented with a discussion about the complexity of the receiver including the details FFS.
RAN1#94 agrees to break a receiver into the modules, collect the number of the usages and order-wise computational complexity for each module into the tables, and then discuss their impact on the implementations.   
In this contribution, we discuss about several receivers with the combination of different multi-user detectors (MUD) and interference cancelation (IC) methods proposed along the agreed high-level diagram in Figure 1. Design principles and preliminary performance/complexity analysis are given. 
1 Design Principles for a NOMA Receiver 
Advanced receiver such as ML-like receiver, CWIC receiver had been proposed in LTE since several years ago, e.g. in Rel-12 NAICS. Reasons that it has not being adopted/implemented in real network could be the lack of cost-efficiency and scalability, as hardware upgrade at gNB benefiting only a specific feature/scenario is not desirable, from both market and network performance perspective. 
As a potential new feature, NOMA would be added onto the Rel-15 NR that will have included important features as MU-MIMO, Configured Grant and different waveforms, which are the enablers of all use cases such as eMBB, uRLLC and mMTC. Similarly, envisioned also as the key enabler of NOMA gain together with transmitter side enhancement, a modified/advanced receiver motivated by NOMA study but also beneficial to legacy UEs and potential future UEs operating MU-MIMO, would be highly desirable.
Consequently, for efficiently supporting especially the mandatory features, e.g. both CP-OFDM and DFT-s-OFDM in uplink, a NOMA receiver should be applicable to the uplink signals with both of the UL waveforms. 
Proposal 1: A NOMA receiver shall follow the design principles below:
· To be able to benefit non-NOMA UEs, e.g. legacy or future UEs operating MU-MIMO
· To be able to operate with CP-OFDM and DFT-s-OFDM waveforms while achieving the intended performance enhancement originated from the NOMA receiver 
2 Chip-wise vs. Block-wise MUDs
The proposed MUDs can be classified into two families: chip-wise receiver and block-wise receiver, as summarized in Table 1. 
Table 1 Classification of NOMA Receiver Algorithms
	Chip-wise MU receiver
	Block-wise MU receiver

	MPA
	
Block-MMSE


	EPA
	

	ESE
	

	Chip-MMSE (i.e. MMSE-IRC)
	


In a chip-wise receiver, MUD operations are performed over each RE independently with high parallelism, and can be applied to all NOMA transmission schemes. Block-wise receiver is only applicable to NOMA schemes with spreading. In a block-wise receiver, it is performed once on a group of REs, i.e., for the REs within a spreading block [14], wherein the complexity increase due to a larger spreading block would be much faster than in a chip-wise one. 
In the following, we will discuss about the chip-wise and block-wise MUDs proposed so far in NOMA SI.
2.1 Chip-wise MUDs
In a chip-wise MUD, certain process iteratively refines the estimate of multi-user signals. One family includes an iterative message passing or belief propagation, a mature receiver architecture used by LDPC decoder. In this family, we have MPA (message-passing-algorithm) [8] and EPA (expectation propagation algorithm). Both are simple with similar performance.  Another approach is using the soft information from FEC to refine the approximation of inter-user interference, which is done in ESE. We also include the chip-MMSE (i.e. MMSE-IRC) into this family.  
MPA 
It can reach a near-ML (Maximum likelihood) detection performance. It passes the conditional probability back and forth between every FN (function node, representing RE) and VN (variable node, representing data layer) edge in the factor graph of a NOMA scheme. During each iteration, the values (probabilities) on FNs and VNs are updated respectively. After a number of iterations (inner loops), the LLRs for the coded bits are calculated based on the current probabilities and then input to the channel decoder [2]. 
Its arithmetic complexity order is O(MPdf) per iteration, where Mp denotes the number of the points on one RE constellation corresponding to a log2M-bit mapping.  M≥Mp, e.g., M=8, Mp =4; M=16, Mp =9; M=64, Mp =16.  df   denotes the number of the (data) layers colliding over each RE.  This complexity order can be further reduced by restricting the maximum number of layers for each round of iteration ds<=df from O(MPdf)  to O(MPds. This MPA with grouping and SIC operations is called SIC-MPA in [2] and [9]. 
Its major advantages are: 
· Nearly-ML performance 
· numeric stability 
· intrinsic  divider-and-conquer scheme 
· Common message-passing architecture 
Observation 1: MPA receiver reaches a near-ML performance with numeric stability. Its intrinsic divider-and-conquer scheme allows a high parallelism message-passing architecture. 
EPA 
To alleviate the high computational complexity of MPA on higher modulation (Mp), we propose an EPA receiver that employs the classic approximate Bayesian inference technique][11][12][13]. EPA is also a mature algorithm widely used in machine learning area. It projects the true posterior distribution of the transmitted symbols into a family of Gaussian distributions by iteratively matching the means and variances with the true posterior distribution. The fundamental principles and detailed algorithms of EPA receiver are provided in the Appendix.
In one sense, EPA is a Gaussian approximation to MPA but with consideration of the non-Gaussian nature of the transmitted symbols as well. The direct benefit of this approximation is a linear complexity with respect to M (Mp if low projection mapping is used) and df (ds if SIC-EPA is used in the same way as SIC-MPA) with nearly the same performance as MPA in most scenarios of interest [4][10]. 
Observation 2: EPA can achieve similar performance as MPA in many cases of interest with much lower complexity which grows linear with the number of UEs multiplexed together.
ESE  
ESE (elementary signal estimator) simply approximates the ISI plus Gaussian noise. An ESE detector has to rely on the outer-loop iterations (feedbacks from channel decoder) to achieve an acceptable detection performance. In case of high spectrum efficiency and high overloading, the number of outer-loop iterations can be very large. 
ESE can also be viewed as a simplification of EPA without iteratively refining the Gaussian approximation of the prior distribution (VNs). More descriptions can be found in [5].
Chip-MMSE 
It approximates the prior distribution of the signal as Gaussian whose mean and variance are computed from either soft LLRs fed back by the channel, or a Gaussian approximation with zero mean and variance scaled by the signal power (if the soft feedback is unavailable) [6]. Thus, chip-MMSE can be equivalent to the traditional receiver MMSE-IRC, which inverses an Nr-by-Nr complex-valued covariance matrix on each RE. On the other hand, Chip-MMSE can be regarded as a special case of EPA without inner iteration between FN and VN nodes but only computation on FNs.
Observation 3: Chip MMSE is equivalent to the traditional MMSE-IRC if without outer-loop and it is a special case of EPA with inner iteration equals to one.
Tandem Solution  
If we consider a common message passing architecture to accommodate both EPA and MPA simultaneously, this tandem solution allows more flexibility and adaptability. For example, if the modulation order is small, this tandem platform could run MPA receiver to have the best detection. If the modulation order is great, it could adopt EPA for lower complexity. 
Besides, the iterations of EPA/MPA can be adaptive in terms of factors such as the number of UEs, the payload size, and the number of receive antennas, which makes the message-passing architecture flexible enough to achieve the tradeoff between performance and complexity. At the same time, ESE and chip-MMSE can be also be realized by this tandem solution by modifying EPA.  
Observation 4: chip-wise MUDs can be implemented using a flexible Tandem solution within one common architecture and be used in an adaptive way.
Summary and Comparison  
A chip-wise MUD is able to work for any NOMA configuration or a mixture of the configurations. Chip-MMSE receiver is identical to the MMSE-IRC receiver for MU-MIMO and the performance can be further improved by EPA. 
Figure 2 shows that EPA outperforms the chip-MMSE (or MMSE-IRC) receiver, whose parameters are listed in the Appendix Table A-1. It means that the chip-wise MUD built for NOMA UEs can improve the performance of the legacy UEs operating MU-MIMO based on Rel-15 PUSCH transmission scheme as well, for both waveforms. 
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	CP-OFDM, 4UE, OL=0 
	CP-OFDM, 10UE, OL=3
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	DFT-s-OFDM, 4UE, OL=0
	DFT-s-OFDM,10UE, OL=3


Figure 2: Performance comparison between chip-wise MUDs.

If sparsity is introduced to codewords or RE mapping of NOMA schemes, the number of colliding data layers per RE (df) is less than the number of multiplexed UEs (Nu), i.e., df  < Nu. The chip-wise MUD schemes can be beneficial from the sparsity. For MPA, the complexity is reduced from O(Mdf)  to O(MNu). For EPA and Chip-MMSE, the scale of the channel matrix and symbol vector is lower, thus the complexity of matrix inversion and multiplication can also be reduced.
Figure 3 shows the complexity of chip-wise MUD with respect to the increase of receiver antennas and spreading factor. It is seen that the complexity for chip-wise MUD does not change with respect to the increase of spreading factor.
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	Complexity scaling with # Rx antennas
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Figure 3: Scaling of chip-wise MUDs complexity with # Rx antennas and spreading length.
Observation 5: Sparsity can reduce the complexity of the chip-wise MUD.
Observation 6: The inner-loop iterations in EPA helps to enhance the BLER performance compared with chip-MMSE without inner-loop iterations.
Observation 7: Chip-wise MUDs have the following properties
· Chip-wise MUD can be applied for all proposed NOMA transmission schemes
· Chip-wise MUD can improve the performance of legacy UEs and potential future UEs operating MU-MIMO
· Chip-wise MUD can be common for both CP-OFDM and DFT-s-OFDM waveforms 
· The complexity of chip-wise MUD grows moderately with the increasing of number of receiving antennas and spreading block length.
2.2 Block-wise MUDs
A block-wise MUD operates on a set of REs (spreading block) to exploit the symbol structure provided by some specific type of NOMA operation such as linear spreading. 
A block-MMSE that is performed jointly on the spreading block of size L REs inverses Nr×L-by-Nr×L complex-valued covariance matrix. Compared to the chip-MMSE, a block-MMSE has much higher complexity, i.e.,  vs. , especially when the spreading factor L is large. 
When the matrix size (Nr·L by Nr·L) is beyond certain level, numeric stability becomes a priority in reality and parallelization would suffer exponentially. Occurrence of numeric instability may not get detected or verified due to extra latency and complexity penalty. It would continue to propagate through the following receiving blocks and eventually result into an unpredictable failure.           
Observation 8: A block-MMSE has higher complexity than a chip-MMSE and is less stable from numeric implementation aspect.
Furthermore, a block-MMSE receiver heavily relies on certain particular signal structure (i.e. linear spreading) of a particular NOMA transmitter signal processing over a block of REs. If there’s no such particular structure in the signals, the implementation (die area and static and leakage power) becomes useless and even harmful. This would happen to Rel-15 UEs’ signals, which does use block spreading: the application of a block-MMSE on the signals wouldn’t improve any baseline performance as MMSE-IRC but waste much higher complexity and die area in a higher risk of an ill-conditioned matrix (matrix inversion dimension from  to ).
Moreover, block-MMSE could not be applied to the linear spreading schemes that perform the spreading before the transform precoding in the DFT-s-OFDM waveform case. 
Also, from the complexity scaling aspect, since the block-wise MUDs are operating over the whole spreading block jointly, the increase in the complexity due to the increasing number of receiving antennas and spreading length is much larger compared to chip-wise MUD. 
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Figure 4: Scaling law of block-wise MUDs complexity with # Rx antennas and spreading length.
Observation 9: Block-MMSE has the following properties 
· Block-MMSE cannot be used to improve the MU-MIMO performance of legacy UEs and UEs not supporting NOMA.
· Block-MMSE cannot be used even for linear spreading schemes in the DFT-s-OFDM case.
· The complexity of block-MMSE increases sharply with the increasing of number of receiving antennas and the extending of spreading block length.
To reduce the complexity of block-MMSE, it is proposed [14] to compute the covariance matrix over the averaged on one RB. The logic is, when the channel gains of neighbor REs are similar, the same weight matrix can be applied for equalization on these REs and complexity can be reduced. However, it may cause severe performance degradation depending on time/frequency selectivity of the channel. In the sequel, we will show some performance comparison of block MMSE, with and without the averaging, to demonstrate the gap between these two in real application scenarios. 
As shown in Figure 5-a) and b), when there are 8 UEs and TBS=75 bytes, the performance degradation is more than 1.5dB when speed is 3 km/h, and more than 3dB when speed is 120 km/h, even for UL synchronized operation. The results for asynchronous operation are also shown in c) and d), which show even more severe performance degradation. This demonstrates that sharing the weight matrix within each RB can result in large performance degradation. The evaluation assumptions are given in Table A-3 in the Appendix.
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	a) Sync with 3km/h
	b) Sync with 120km/h
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	c) Async with timing offset = 0.5CP and 3km/h
	d) Async with timing offset = 1.5CP and 3km/h


Figure 5: Performance of block-MMSE with averaging operation. 
Observation 10: The averaging operations to reduce the complexity of block-MMSE will degrade its BLER performance by several dBs. 
3 Comparison of IC methods
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	(a) SU detector + SIC
	(b) MU detector +  PIC


[bookmark: Fig_NOMA_MUD]Figure 6: General iterative receiver structure for NOMA.
In one dimension, the interference cancellation (IC) can be hard, soft, or hybrid.  
· Hard IC: a channel decoder feeds back the correctly decoded (i.e., passed CRC check) binary bits to the detector for the interference reconstruction. It feeds back only correctly decoded data streams.  
· Soft IC: a channel decoder feeds back the LLR (log likelihood ratios) to the detector for the interference reconstruction, no matter whether the data stream can be correctly decoded or not. However, it is a waste to use LLR values rather than hard IC for those correctly decoded code-words.  
· Hybrid IC: a channel decoder feeds back binary bits of the correctly decoded codewords and LLRs of the incorrectly decoded ones, as shown in Figure 6. For those correctly decoded users, the interferences are hard canceled (the blue dashed line); for those undecoded users, the soft information is fed back by the decoder (the orange dashed line). In this way, we can lower the implementation complexity of a soft-IC and improve the performance of hard IC.  
Observation 11: Hybrid IC can take advantages of both pure soft and pure hard IC schemes and achieves the best performance with low-complexity implementations.
In another dimension, IC can be implemented in serial, parallel, or hybrid.
· SIC (Serial IC, also known as successive IC) decodes only one user at a time, as shown in Figure 4(a). Although the order of SIC depends on SINR values to take advantage of near-far effect among users, such an ordered SIC may bring about a well-known error propagation. To overcome it, in enhanced SIC, the order of SIC is revised each time a UE is successfully decoded.
· PIC (parallel IC) decodes all the active users simultaneously, thereby avoiding the order-related error propagation of SIC and improving the performance, as shown in Figure 6(b) and Figure 7. In addition, it has low decoding latency due to higher parallelism. Note that one can also decode a subset of users at a time, which is called group PIC and may acquire additional operations for group selection.    
Observation 12: Compared with SIC, PIC has much lower decoding latency and can avoid the impact of error propagation problem caused by inaccurate SINR sorting.  
We evaluate and compare the performances of the MMSE detector combined with four different IC methods, as shown in Figure 7, namely hard ordered SIC, hard enhanced SIC, hard PIC, soft PIC, and hybrid PIC. The simulation assumption is listed in Table A-3. For hard-PIC, soft-PIC and hybrid-PIC, the number of outer-loop iterations is.
As Figure 7 illustrated, the hard ordered SIC has the worst performance in the case of interest. Although the hard enhanced SIC outperforms hard ordered SIC, it still has an apparent performance loss to PIC. Within the family of PIC, the hybrid-PIC has slightly better performance than the soft-PIC, which has an apparent gain over the hard-PIC.      
[image: ]
[bookmark: Fig_IC]Figure 7: BLER performance of CB-OFDMA with MMSE Detector and different IC.
Observation 13: Hybrid PIC archives the best performances among different combinations of IC implementations.
A Hybrid PIC may be early terminated before reaching the maximum times of the outer-loops in reality. Statistically speaking, a hybrid PIC runs the similar average times of a FEC decoder per UE as a hard PIC or enhanced hard SIC, when more than one UE decoding are allowed in each round. Figure 8 shows some proof in some typical simulation cases. 
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	a) 20 bytes, 10 UE
	b) 40 bytes, 10 UE
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	c) 60 bytes, 6 UE
	d) 75 bytes, 6 UE


Figure 8: Average number of FEC decoding per UE needed for different IC methods. 
Observation 14: For a given NOMA scheme, the number of FEC decoding needed per UE with hybrid PIC is similar to that of the Hard PIC and also that of enhanced SIC case. 
4 Complexity Analysis 
Implementation cost depends on its method and architecture, neither of which can be surveyed exhaustively. At a very initial stage, an arithmetic complexity could be a rough indicator of the implementation cost better than nothing at all. However, it fails to reflect the true cost without the consideration of other factors such as re-usage, numerical stability and compatibility. 
Table 3 to Table 4 list the complexity order of different MU receivers. The number of usages for each cell is summarized in Table 2. For a fair comparison, we separate different IC types for receiver complexity analysis. The dominant cells such as covariance matrix calculation, matrix inversion, equalization weight computation, equalization and UE ordering related operations should account for a much higher impact factor compared with other cells. Note that the following supporting variables should be reported together with the below tables.
· : number of outer-loop iterations,
· : number of average outer-loop iterations for receivers, 
· the scale factor to cover the potential additional decoding operations for the unsuccessfully decoded UEs for the first time in terms of enhanced Block-MMSE Hard-SIC, ,
· : number of inner-loop iterations for MU-detector, 
· : number of iterations for LDPC decoder,
· : spreading factor,
· : number of receive antennas,
· : number of PRBs,
· : number of subcarriers for each PRB,
· : number of DMRS symbols,
· : number of data symbols,
· : number of potential UEs,
· : number of active UEs, 
· : number of code blocks, 
· Message passing related variables, 
· : the number of VN connected to one FN. Note that for NOMA with sparsity,   
· : the number of FN/RE connected to one VN/user
· : modulation order/number of constellation for modulator
Table 2	Receiver Computation Complexity breakup with number of usage
	Receiver component
	Detailed component
	Computation in parametric number of usages

	
	
	Chip-wise MUD
	Block-wise MUD

	
	
	EPA 
	Chip MMSE 
	ESE 
	MPA 
	B-MMSE

	
	
	Hybrid IC
	Hard IC
	Hybrid IC
	Hard IC
	Hybrid IC
	Hard IC
	Hybrid IC
	Hard IC
	Hybrid IC
	Hard IC

	Detector

	UE detection
	
	
	
	
	

	
	Channel estimation
	
	
	
	
	

	
	Rx combining, if any
	
	
	
	
	

	
	Covariance matrix calculation, if any
	
	
	
	
	
	

	
	Matrix inversion
	
	
	
	
	
	

	
	Equalization
weight computation, if any
	
	
	
	
	
	

	
	SINR computation, if any
	
	
	
	
	
	

	
	UE ordering, if any
	
	
	
	
	
	

	
	 Equalization, if any
	
	
	
	
	
	

	
	Soft information generation, if any
	
	
	
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	
	
	

	
	Message passing, if any
	
	
	
	
	
	

	
	Others
	
	
	
	
	

	Decoder
	LDPC decoding
	
	
	
	
	
	

	
	Symbol reconstruction(Including FFT operations for DFT-S-OFDM waveform), if any
	
	
	
	

	
	

	
	LLR to probability conversion, if any
	
	
	
	
	
	
	
	
	
	

	
	Interference cancellation
	
	
	
	
	
	

	
	LDPC encoding, if any
	
	
	
	
	


	
	Others
	
	
	
	
	




Table 3	Receiver Computation Complexity breakup with Hybrid-IC
	Receiver component
	Detailed component
	Computation in O(.) analysis

	
	
	Chip-wise MUD
	Block-wise MUD

	
	
	EPA 
	Chip MMSE 
	ESE 
	MPA
	B-MMSE

	Detector

	UE detection
	
	
	
	
	

	
	Channel estimation
	
	
	
	
	

	
	Rx combining, if any
	
	
	
	
	

	
	Covariance matrix calculation, if any
	
	
	
	
	

	
	Matrix inversion
	
	
	
	
	

	
	Equalization
weight computation, if any
	
	
	
	
	

	
	UE ordering, if any
	
	
	
	
	

	
	 Equalization, if any
	
	
	
	
	

	
	Soft information generation, if any
	
	
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	
	
	

	
	Message passing, if any
	
	
	
	
	

	
	Others
	
	
	
	

	Decoder
	LDPC decoding
	
	
	
	
	

	Interference cancellation
	Symbol reconstruction(Including FFT operations for DFT-S-OFDM waveform), if any
	
	
	
	
	

	
	LLR to probability conversion, if any
	
	
	
	
	

	
	Interference cancellation
	
	
	
	
	

	
	LDPC encoding, if any
	
	
	
	
	

	
	Others
	
	
	
	
	



Table 4	Receiver Computation Complexity breakup with Hard-IC
	Receiver component
	Detailed component
	Computation in O(.) analysis

	
	
	Chip-wise MUD
	Block-wise MUD

	
	
	EPA 
(Hard PIC)
	Chip MMSE 
(Hard PIC)
	ESE 
(Hard PIC)
	MPA
(Hard PIC) 
	B-MMSE
(Hard SIC)

	Detector

	UE detection
	
	
	
	
	

	
	Channel estimation
	
	
	
	
	

	
	Rx combining, if any
	
	
	
	
	

	
	Covariance matrix calculation, if any

	
	
	
	
	

	
	Matrix inversion
	
	
	
	
	

	
	Equalization
weight computation, if any
	
	
	
	
	

	
	SINR computation, if any
	
	
	
	
	

	
	UE ordering, if any
	
	
	
	
	

	
	 Equalization, if any
	
	
	
	
	

	
	Soft information generation, if any
	
	
	
	
	

	
	Soft symbol reconstruction, if any
	
	
	
	
	

	
	Message passing, if any
	
	
	
	
	

	
	Others
	
	
	
	
	

	Decoder
	LDPC decoding
	
	
	
	
	

	Interference cancellation
	Symbol reconstruction(Including FFT operations for DFT-S-OFDM waveform), if any
	
	
	
	
	

	
	LLR to probability conversion, if any
	
	
	
	
	

	
	Interference cancellation
	
	
	
	
	

	
	LDPC encoding, if any
	
	
	
	
	

	
	Others
	
	
	
	
	



Different MUD may benefit from different architecture. For example, a MPA detector adopts a famous message-passing architecture for a high T/P, implementation efficiency, and short latency. During each iteration of an EPA detector, every FN inverses a -by- covariance matrix by a common classic systolic array.  A pipeline is formed for a high-T/P, constant latency, stable and exception-free operation. An EPA detector requires relatively small computational resources and shows good compatibility with current hardware design. ESE and baseline chip-MMSE detectors can also be realized using the same architecture.  
For block-wise MMSE, the matrix inversion dimension  introduces heavy arithmetic complexity. Some methods such as Sherman-Morrison have been introduced to decrease the arithmetic complexity. However, this method has some problems on an implementation level; the precision of a Sherman-Morrison implementation depends on the worst case, i.e,  which means data bus, memory ports, buffer size, etc. should be designed according to the worst case too. It will waste significant physical resource when the average operating point is far less than the worst one. Furthermore, any scaling  would request a new optimization of the implementation, which could be costly. A typical value of  may request a pseudo-floating-point division (<32 bit but with mantissa and exponent) to ensure a sufficient precision and the complexity of such operation can be very high. Besides, the latency of a MMSE receiver is determined by that of matrix inversion. The Sherman-Morrison method is successive and hard to be parallelized for high T/P and short latency. 
Observation 15: Chip-wise MU detectors, including chip MMSE, MPA, EPA and ESE provide better tradeoff between flexibility, hardware resource efficiency, processing latency and numerical stability compared to block wise MU detectors like block MMSE. 
[bookmark: _GoBack]Proposal 2: Chip-wise multi-user detector family should be adopted for performing and comparing NOMA transmission schemes.
5 Conclusions 
In this contribution, we discussed the common iterative receiver structure for NOMA transmissions consisting of the MU detectors and the IC methods. From the discussions, we obtained the following observations and proposals. 
Observation 1: MPA receiver reaches a near-ML performance with numeric stability. Its intrinsic divider-and-conquer scheme allows a high parallelism message-passing architecture. 
Observation 2: EPA can achieve similar performance as MPA in many cases of interest with much lower complexity which grows linear with the number of UEs multiplexed together.
Observation 3: Chip MMSE is equivalent to the traditional MMSE-IRC if without outer-loop and it is a special case of EPA with inner iteration equals to one.
Observation 4: chip-wise MUDs can be implemented using a flexible Tandem solution within one common architecture and be used in an adaptive way.
Observation 5: Sparsity can reduce the complexity of the chip-wise MUD.
Observation 6: The inner-loop iterations in EPA helps to enhance the BLER performance compared with chip-MMSE without inner-loop iterations.
Observation 7: Chip-wise MUDs have the following properties
· Chip-wise MUD can be applied for all proposed NOMA transmission schemes
· Chip-wise MUD can improve the performance of legacy UEs and potential future UEs operating MU-MIMO
· Chip-wise MUD can be common for both CP-OFDM and DFT-s-OFDM waveforms 
· The complexity of chip-wise MUD grows moderately with the increasing of number of receiving antennas and spreading block length.
Observation 8: A block-MMSE has higher complexity than a chip-MMSE and is less stable from numeric implementation aspect.
Observation 9: Block-MMSE has the following properties 
· Block-MMSE cannot be used to improve the MU-MIMO performance of legacy UEs and UEs not supporting NOMA.
· Block-MMSE cannot be used even for linear spreading schemes in the DFT-s-OFDM case.
· The complexity of block-MMSE increases sharply with the increasing of number of receiving antennas and the extending of spreading block length.
Observation 10: The averaging operations to reduce the complexity of block-MMSE will degrade its BLER performance by several dBs. 
Observation 11: Hybrid IC can take advantages of both pure soft and pure hard IC schemes and achieves the best performance with low-complexity implementations.
Observation 12: Compared with SIC, PIC has much lower decoding latency and can avoid the impact of error propagation problem caused by inaccurate SINR sorting.  
Observation 13: Hybrid PIC archives the best performances among different combinations of IC implementations.
Observation 14: For a given NOMA scheme, the number of FEC decoding needed per UE with hybrid PIC is similar to that of the Hard PIC and also that of enhanced SIC case. 
Observation 15: Chip-wise MU detectors, including chip MMSE, MPA, EPA and ESE provide better tradeoff between flexibility, hardware resource efficiency, processing latency and numerical stability compared to block wise MU detectors like block MMSE. 

Proposal 1: A NOMA receiver shall follow the design principles below:
· To be able to benefit non-NOMA UEs, e.g. legacy or future UEs operating MU-MIMO
· To be able to operate with CP-OFDM and DFT-s-OFDM waveforms while achieving the intended performance enhancement originated from the NOMA receiver
Proposal 2: Chip-wise multi-user detector family should be adopted for performing and comparing NOMA transmission schemes.
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Appendix A – Parameters
Table A-2: Evaluation parameters for Figure 2.
	Parameters 
	Values or assumptions 

	NOMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	40 bytes

	Channel coding
	NR LDPC

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	4, 10

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receivers
	EPA and chip-MMSE



Table A-3: Evaluation parameters for Figure 5- a) and b).
	Parameters 
	Values or assumptions 

	NOMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	75 bytes

	Channel coding
	NR LDPC

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	8

	Propagation channel & UE velocity 
	TDL-C 300ns, 3km/h or 120km/h

	Advanced receivers
	block-MMSE

	Timing/Frequency Offset
	0

	Channel estimation
	Ideal



Evaluation parameters for Figure 5- c) and d).
	Parameters 
	Values or assumptions 

	NOMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	20 bytes

	Channel coding
	NR LDPC

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Unequal SNR

	Number of Multiplexed UEs
	6, 12

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receivers
	block-MMSE

	Timing/Frequency Offset
	TO=0.5CP, 1.5CP;  FO=70Hz

	Channel estimation
	Realistic



Table A-4: Evaluation parameters for Figure 6.
	Parameters 
	Values or assumptions 

	NOMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	60 bytes

	Channel coding
	NR LDPC 

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	4, 6

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receiver
	EPA with PIC




Appendix B - EPA algorithm
B.1 Design Principle 
EPA is a well-known approximate Bayesian inference technique which approximates the target distribution  with a simpler exponential family distribution, where the Kullback-Leibler divergence  is minimized [11]. It has already been widely used in the field of machine learning [12][13]. Conceptually, as shown in Figure , EPA can be viewed as an operation to project the target distribution  into the exponential family distribution set Φ, i.e.,  
[bookmark: Projection]  		     					(1)
If , then the projection reduces to an identity mapping. However, in general,  and hence such a projection is nontrivial. 
[image: ]
[bookmark: fig3][bookmark: figure4]Figure B-1: Basic principle of EPA.
It has been proved that the optimal solution to (1) can precisely match the sufficient statistics of target distribution. For example, if  is Gaussian distribution, then the mean and covariance of  will equal to the mean and covariance of the true distribution, respectively. 
For the problem of MU detection, the target distribution usually comprises a product of factors in the form of
[bookmark: p_product]  									(2)
where  is normalization constant. EPA approximates (2) by a product of factors 
   									(3)
where each factor   corresponds to one of the factors  in the target distribution , and  is a normalizing constant.  If each factor   comes from the exponential family, the product of factors will be also from exponential family and thus can be described by a set of sufficient statistics.  Since direct solving (1) is usually intractable, EPA optimizes each factor iteratively. Specifically, it starts by initializing all the factors, and then cycles through the factors by refining one factor at a time. For example, suppose  is to be refined, we first remove it from  and obtain. Then, the new approximate distribution  is calculated by minimizing. As a result, the refined factor   can be calculated as . After a number of iterations, the approximate distribution  is obtained as the product of the refined factors.
B.2 Factor Graph Model 
The system model of NOMA can be represented with a factor graph as shown in Figure B-2. From the perspective of factor graph, EPA can be iteratively realized in a message passing way as MPA. 
Assume that K UEs transmit on a group of L resource elements (RE), and each UE has single transmit antenna. For spreading-based NOMA schemes, L is referred to as spreading factor. For NOMA schemes without spreading, . Assume gNB has   receive antennas. The received signal of the -th antenna can be written as
[bookmark: y_nr],                                                            (4)
where  is the received symbol vector,  is the channel coefficient vector between user  and -th antenna,  is the transmitted symbol vector of user , is the associated additive white Gaussian noise with the power of . Suppose the modulation size is  and the codebook is , then  and the cardinality of the codebook is . 
For linear spreading schemes, the effective channel  takes into account both the channel response of -th receive antenna  and the user-specific spreading sequence , i.e., , where  denotes component-wise multiplication, while  is a  times repetition of transmitted symbol , i.e., . For schemes based on bits-to-symbols mapping, the effective channel  is the channel response of -th receive antenna and  is a -dimentional transmitted symbol vector selected from a predefined codebook. If sparse pattern is applied, some elements of   are fixed to be zero all the time. In matrix form, the overall observations from  receive antennas can be written as 
[bookmark: y_mat][bookmark: SLM_Block][bookmark: Overall_model]    		                                                        (5)
where, ,  and is the overall effective channel matrix. 
The general factor graph representation for NOMA is shown in Figure B-1, which contains  variable nodes (VNs)  and  likelihood factor nodes (FNs) , and  prior FN . The VNs represent the transmitted symbols ,  and the prior FN represents the prior distribution  of , which can be computed via the feedback LLRs from the FEC decoder. The likelihood FN  represents the likelihood probability distribution, where  is the observation vector at the -th RE.  Note that the FN  has connection with  if and only if the th element of , . For ease of notation, let  denote the neighboring FNs of VN , and  denote the neighboring VNs of the FN  for each receive antenna. The cardinalities of   and  are assumed to be ， respectively. As a result, the variables nodes connected with FN  can be represented as a vector   . The linear observation equation corresponding to FN  is 
[bookmark: chip_observation_model](6)
where   and  are the corresponding channel matrix and additive Gaussian noise vector, respectively. Then the likelihood probability distribution  can be written as 
[bookmark: chip_model](7)

[bookmark: fig4][bookmark: figure5]Figure B-2: A general Factor Graph of NOMA.
B.3 EPA Procedure
In this subsection, the basic procedure of EPA is briefly described. There are two steps for each round of iteration: FN update and VN update, respectively. For the VN update at the -th iteration, the message  from VN  to FN  is computed, and for the FN update, the message   of the opposite direction is computed. According to the principle of EPA, the messages are updated as follows 
[bookmark: v2f_def]			(8)
[bookmark: I_l2k_def]	 		(9)
where 
[bookmark: pt_xk]			(10)
[bookmark: post_prb_def][bookmark: qt_xk]			(11)
If the projection set is chosen to be Gaussian distribution, then the messages  and  reduce to Gaussian distribution which can be fully characterized by its mean and covariance. That is why this algorithm called expectation propagation.  As a result, the computational complexity is significantly reduced. Moreover, from (5) and (7), since the -th likelihood factor node is only related to , the messages of  and  can be further simplified to scalar complex Gaussian distributions, i.e., , and , respectively. 
Specifically, at the -th iteration, if the message , i.e., , from the likelihood FN   to VN  is circularly complex Gaussian with mean  and variance , i.e.,
 	                                                       (12)
With (10), we can compute  as  
[bookmark: post_prb_approx]  			(13)
Then, to compute the message from VN  to FN , the  is projected to a Gaussian distribution  by matching the mean  and the variance  with respect to (w.r.t.) . That is, the mean  and the variance  are computed w.r.t the approximated posterior probability  in (13).
To compute the mean  and variance, normalization of  is needed to obtain the discrete probability for  from the hybrid discrete and continuous density function in (13). Suppose that the modulation size is  and the codebook is of size, then  

Where  is an -dimensional vector and  is the th element of -dimensional vector . In practice, the multiplications of Gaussian density functions in  can be computed in log domain and thus simplified. As a result, the mean  and the variance  are computed as


From (8), we can compute the message  as
[bookmark: I_l2k_GA]	 		(17)
where
[bookmark: var_v2f][bookmark: V2F_mean]	 		 (18)
[bookmark: mean_v2f][bookmark: V2F_var]	 		(19)
Next, the message computation from FN to VN is described. Given the Gaussian messages  from VN to FN in (17), it can be easily shown that  in (11) is also Gaussian which is denoted by
[bookmark: q_x_kl_t_function](20)
Moreover, the mean and variance  are precisely the linear MMSE estimates of  over a linear observation equation (6), where the message  can be viewed as the prior Gaussian distribution of. Specifically, at the -th RE, the prior mean and covariance matrix of  can be denoted as  and , respectively, then the posterior mean  and covariance  of   can be calculated as 


The diagonal elements of  are the posterior variances of : . As only the diagonal elements of   are needed, the above operations can be rearranged to reduce the overall complexity. Let , which can be reused in (21) and (22). Let  which is a  matrix, and  be the diagonal element of corresponding to the VN , then it can be verified that . As only the diagonal elements of   are needed, the calculation of  can also be simplified.
Given the posterior mean  and variance  of, from (9) and (20), the messages  are also Gaussian, i.e., , whose mean and variance are given by
[bookmark: F2V_mean]	    		(23)
[bookmark: F2V_var]	                     	 	 (24)	
Till now, the -th iteration is completed. In practice, after multiple iterations, the log-likelihood-ratio (LLR) for coded bits can be calculated based on the approximated posterior probability  in 	(13). After subtracting the prior LLRs, the extrinsic LLRs serve as the input to the FEC thereafter. 
For DFT-s-OFDM waveform, the EPA algorithm can also be applied. The difference is after FN update and VN update, IDFT and DFT operation is applied to transform the mean and variance between time and frequency domain.
B.4 EPA Algorithm Summary
The EPA for NOMA detection is summarized in Algorithm1, where the number of iterations is . 
-------------------------------------------------------------------------------------------------------------------------------
Algorithm1 – EPA Detector
-------------------------------------------------------------------------------------------------------------------------------
1. Initialization
(1) Initialize the mean and variance from FN to VN as , . 
2. Iterations
Start with, and .
While, Do
(1) VN Update: For :
For  :
· Compute  and  as 


where  is the -th element of -dimensional vector .
· Compute the mean  and variance  as
	  		 (27)
	 		(28)
(2) FN Update: For :
a. Perform chip-by-chip MMSE as


where  and .
b. For : Given the posterior mean and variances  of , compute the mean  and variance  as
	    		(31)
	                                	 	 (32)	
(3) Update ：
	   (33) 
3. LLR Calculations: 
Compute the extrinsic LLRs. 

Note that in practical implementations, some numerical protection can be used, e.g., variance below a threshold is set to be the threshold. If the variance is negative, the VN does not update and use the previous value, i.e.,  and . In addition, damping operation can be used in the inner iterations to further improve the convergence performance. For example, when , the equation (27) and (28) can be revised as 



where  is the damping factor. The damping factor can be adapted for each iteration. One heuristic way is  and . 
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