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1 [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
[bookmark: _Ref129681832]A general NoMA receiver has been agreed in RAN1#92b [1]. As shown in Figure 1, it is adopted as the general block diagram of multi-user receiver for UL data transmissions. 
· The algorithms for the detector block (for data) can be e.g. MMSE, MF, ESE, MAP, MPA, and EPA. 
· The interference cancellation can be hard, soft, or hybrid, and can be implemented in serial, parallel, or hybrid.
· Note: the IC block may consist of an input of the received signal for some types of IC implementations
· The interference cancellation block may or may not be used. 
· Note: if not used, an input of interference estimation to the decoder may be required for some cases.
· The input to interference cancellation may come directly from the Detector for some cases
[image: ]
[bookmark: Figure_high_levelRx]Figure 1: A high-level block diagram of multi-user receiver
In this contribution, we discuss about several multi-user (MU) receivers based on the agreed high-level diagram in Figure 1: MPA, ESE, MMSE, and EPA.  Different ways of interference cancellation that iterates information between the (multi-)user detector and decoder are also discussed. 
2 MU Detector Algorithms
2.1 MPA 
MPA (Message passing algorithm) [7] is an iterative MU detector with near-ML (Maximum likelihood) detection performance. It passes the conditional probability back and forth between every FN (function node, representing RE) and VN (variable node, representing data layer) edge in the factor graph of a NoMA scheme. The iterative message passing is called inner-loop iteration. In each iteration, the values (probabilities) on FNs and VNs are updated respectively. After a number of inner loops, the LLRs for the coded bits are calculated based on the current probabilities and then input to the channel decoder [2]. 
Its arithmetic complexity order is O(MPdf) per iteration, where Mp denotes the number of the points on one RE constellation corresponding to a log2M-bit mapping.  M≥Mp, e.g., M=8, Mp =4; M=16, Mp =9; M=64, Mp =16.  df   denotes the number of the (data) layers colliding over each RE.  This complexity order can be further reduced by restricting the maximum number of layers: ds<=df , from O(MPdf)  to O(MPds. This MPA with SIC is called SIC-MPA in [2] and [8]. 
In spite of its high complexity with big Mp, one of its advantages is the numeric stability, which is crucial for a base station implementation. It is by nature divider-and-conquer scheme that divides a heavy computation task into a number of sub-tasks, which supports full parallelism. 
Observation 1: The implementation of MPA supports full parallelism and its complexity can be greatly reduced by low projection in constellation design and ordered group SIC decoding.
2.2 ESE  
ESE (elementary signal estimator) [5] simply approximates the ISI (inter-user interference) plus Gaussian noise. Such a Gaussian approximation can be implemented in different ways for multiple receiving antennas: If a base-station performs matched filtering (MF) in the spatial domain, the approximation is a scalar Gaussian variable. If a base-station treats all receiving antennas jointly, the approximation is a joint Gaussian vector, i.e., multivariate Gaussian. 
Moreover, an ESE detector has to rely on the outer-loop iterations (feedbacks from channel decoder) to achieve an acceptable detection performance. In case of high spectrum efficiency and high overloading, the number of outer-loop iterations may be too large for base station to reach short latency. 
Observation 2: ESE heavily relies on the coding gain from the FEC and thus may have slower convergence, especially at high spectral efficiency and high overloading. 
2.3 MMSE 
MMSE approximates the prior distribution of the signal as Gaussian whose mean and variance are computed from either soft LLRs fed back by the channel, or a Gaussian approximation with zero mean and variance scaled by the signal power (if the soft feedback is unavailable) [6]. A NoMA scheme with a SF (spreading factor) of L can have two alternatives: a chip-by-chip MMSE that is performed on each RE independently, or a block-wise MMSE that is performed jointly on the L REs. 
A matrix inversion dominates the MMSE detector’s complexity. A chip-by-chip MMSE inverses Nr-by-Nr complex-valued covariance matrix. A block-wise MMSE inverses Nr×L-by-Nr×L complex-valued covariance matrix. As result, a block-wise MMSE has much higher complexity, i.e.,  than chip-by-chip MMSE, i.e., , especially when the spreading factor L is large. Nevertheless, for a base station implementation, a larger size of matrix inversion means less numeric stability and difficulty to carry on parallelization.  
Observation 3: A block-wise MMSE has much higher complexity than a chip-by-chip MMSE.
2.4 EPA 
EPA (expectation propagation algorithm) employs the classic approximate Bayesian inference technique that has long been used in machine learning [10][11][12]. It projects the true posterior distribution of the transmitted symbols into a family of Gaussian distributions by iteratively matching the means and variances with the true posterior distribution. 
EPA can be regarded as a type of Gaussian approximation to MPA but with consideration of the non-Gaussian nature of the transmitted symbols as well. It can also be viewed as an enhancement to ESE by iteratively refining the Gaussian approximation of the prior distribution. It has linear complexity with respect to M (Mp if low projection mapping is used) and df (ds if SIC-EPA is used), while it provides nearly the same performance as MPA in most scenarios of interest [4][9]. The implementation of EPA can also employ the divider-and-conquer method and supports full parallelism.
The fundamental principles and detailed algorithms of EPA receiver are provided in the Appendix. We compare the performances of different receivers under the general iterative NoMA receiver structure. Specifically, we set up CB-OFDMA[footnoteRef:1] (contention-based OFDMA) as an example for transmitter processing and adopt iterative hybrid PIC shown in Figure 3(b), which will be discussed later. We investigate MPA, EPA, and ESE in a chip-by-chip manner. Details of simulation parameters are listed in the Appendix. As shown in Figure 2, EPA can achieve similar performances as MPA in many scenarios, while ESE has some performance loss and slower convergence rate compared with MPA, especially when the load gets higher. [1:  CB-OFDMA here refers to the contention based OFDMA where all the UEs fully share the same time and frequency resource and may transmit simultaneously without any change from the current NR OFDMA transmitter side design. ] 

[image: ][image: ]
(a) 4UE, CB-OFDMA, SE=0.2			                (b) 6UE, CB-OFDMA, SE=0.2
[bookmark: Figure_EPA]Figure 2: BLER performances with different receivers
Observation 4: EPA can achieve similar performance as MPA in many cases of interest with lower complexity and has better convergence performance compared with ESE. 
2.5 Summary
We summarize the MU detector discussion in Table 1.  
[bookmark: table_MU_summary]Table 1: Brief Summary of various MU detectors
	MU Detector
	Basic Principle
	Properties

	MPA
	SP (Sum-product) message passing performed on the factor graph of NoMA transmission
	· Near ML detection performance
· Comparatively high complexity at high overload
· SIC-MPA as a low-complexity variant

	ESE
	Interference plus noise is approximated as Gaussian
	· Comparatively low convergence rate at high overload and high SE

	MMSE
	The prior distribution is directly approximated as Gaussian
	· Block-wise MMSE has much higher complexity than chip-by-chip MMSE

	EPA
	Gaussian approximation of MPA
	· Fast convergence
· Nearly the same performance as MPA



Proposal 1: Capture the proposed candidates of the MU detectors into TR and further evaluate the performance and implementation limits. 

3 Interference Cancelation
	[image: ]
	[image: ]

	(a) SU detector + SIC
	(b) MU detector +  PIC


[bookmark: Fig_NOMA_MUD]Figure 3: General iterative receiver structure for NoMA.
In one dimension, the interference cancellation (IC) can be hard, soft, or hybrid.  
· Hard IC: a channel decoder feedbacks the correctly decoded (i.e., passed CRC check) binary bits to the detector for the interference reconstruction. It feedbacks only correctly decoded data streams.  
· Soft IC: a channel decoder feedbacks the LLR (log likelihood ratios) to the detector for the interference reconstruction, no matter whether the data stream can be correctly decoded or not. However, it is a waste to use LLR values rather than hard IC for those correctly decoded code-words.  
· Hybrid IC: a channel decoder feedbacks binary bits of the correctly decoded codewords and LLRs of the incorrectly decoded ones, as shown in Figure 3.  For those correctly decoded users, the interferences are hard canceled (the blue dashed line); for those undecoded users, the soft information is fed back by the decoder (the orange dashed line). In this way, we can lower the implementation complexity of a soft-IC and improve the performance of hard IC.  
Observation 5: Hybrid IC can take advantages of both pure soft and pure hard IC schemes and achieves the best performance with low-complexity implementations.   
In another dimension, IC can be implemented in serial, parallel, or hybrid.
· SIC (Serial IC, also known as successive IC) decodes only one user at a time, as shown in Figure 3(a). Although the order of SIC depends on SINR values to take advantage of near-far effect among users, such an ordered SIC may bring about a well-known error propagation. To overcome it, in enhanced SIC, the order of SIC is revised each time a UE is successfully decoded.
· PIC (parallel IC) decodes all the active users simultaneously, thereby avoiding the order-related error propagation of SIC and improving the performance, as shown in Figure 3(b) and Figure 4. In addition, it has low decoding latency due to higher parallelism. Note that one can also decode a subset of users at a time, which is called group PIC and may acquire additional operations for group selection.    
Observation 6: Compared with SIC, PIC has much lower decoding latency and can avoid the impact of error propagation problem caused by inaccurate SINR sorting. 
We evaluate and compare the performances of the MMSE detector combined with four different IC methods, as shown in Figure 4, namely hard ordered SIC, hard enhanced SIC, hard PIC, soft PIC, and hybrid PIC. The simulation assumption is listed in Table A-2. For hard-PIC, soft-PIC and hybrid-PIC, the number of outer-loop iterations is.
As Figure 4 illustrates, the hard ordered SIC has the worst performance in the case of interest. Although the hard enhanced SIC outperforms hard ordered SIC, it still has an apparent performance loss to PIC. Within the family of PIC, the hybrid-PIC has slightly better performance than the soft-PIC, which has an apparent gain over the hard-PIC.      
[image: ]
[bookmark: Fig_IC]Figure 4: BLER performance of CB-OFDMA with MMSE Detector and different IC.
Observation 7: Hybrid PIC archives the best performances among different combinations of IC implementation.
Proposal 2: Hybrid PIC should be supported for IC implementation.
	[image: ]
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	a) 4UEs, 6RBs, 60bytes, 2Rx, OL 0, 1, 2, 3
	b) 6UEs, 6RBs, 60bytes, 2Rx, OL 0, 1, 2, 3


[bookmark: Figure_5_BLER]Figure 5: BLER performance of CB-OFDMA with different number of outer-loops.
No matter which type of IC is applied, the performance of the iterative NoMA receiver can be closely related to the number of iterations between the channel decoder (backend) and the MU detectors (frontend), also known as outer-loop iterations. To show the necessity of an iterative receiver, we apply an advanced receiver to CB-OFDMA. In Figure 5, the BLER performance improves along with the increased number of outer-loop iterations until the performance is converged. Moreover, the more the multiplexed users/layers are, the larger the number of iterations is needed for convergence. The detailed parameters to generate the figure are listed in the Appendix Table A-3.
Observation 8: An iterative receiver can improve the BLER performance of the NoMA transmissions. The higher the number of users, the more iterations may be needed.
Proposal 3: Iterative advanced receiver with configurable number of outer-loop iterations between MU detector and channel decoders is supported for NoMA transmissions.
Together with the discussion of the MU detectors and the IC methods, we have the following proposals.
Proposal 4: Further study the performance limits, application scenarios, and the implementation costs of the iterative NoMA receivers with different MU detectors and different IC methods.

4 Conclusions 
In this contribution, we discussed the common iterative receiver structure for NoMA transmissions consisting of the MU detectors and the IC methods. From the discussions, we obtained the following observations and proposals. 
Observation 1: The implementation of MPA supports full parallelism and its complexity can be greatly reduced by low projection in constellation design and ordered group SIC decoding.
Observation 2: ESE heavily relies on the coding gain from the FEC and thus may have slower convergence, especially at high spectral efficiency and high overloading. 
Observation 3: A Block-wise MMSE has much higher complexity than a chip-by-chip MMSE.
Observation 4: EPA can achieve similar performance as MPA in many cases of interest with lower complexity and has better convergence performance compared with ESE. 
Observation 5: Hybrid IC can take advantages of both pure soft and pure hard IC schemes and achieves the best performance with low-complexity implementations.   
Observation 6: Compared with SIC, PIC has much lower decoding latency and can avoid the impact of error propagation problem caused by inaccurate SINR sorting. 
[bookmark: _GoBack]Observation 7: Hybrid PIC archives the best performances among different combinations of IC implementation.
Observation 8: An iterative receiver can improve the BLER performance of the NoMA transmissions. The higher the number of users, the more iterations may be needed.
Proposal 1: Capture the proposed candidates of the MU detectors into TR and further evaluate the performance and implementation limits. 
Proposal 2: Hybrid PIC should be supported for IC implementation.
Proposal 3: Iterative advanced receiver with configurable number of outer-loop iterations between MU detector and channel decoders is supported for NoMA transmissions.
Proposal 4: Further study the performance limits, application scenarios, and the implementation costs of the iterative NoMA receivers with different MU detectors and different IC methods.

References
[bookmark: _Ref167612875][bookmark: _Ref513557721] “RAN1 Chairman’s Notes,” RAN1#92, Sanya, China, Mar 16-20, 2018.
[bookmark: Ref_Transeiver][bookmark: _Ref501443122]R1-164390, “Transceiver implementation and complexity analysis for SCMA,” Huawei, HiSilicon, RAN1#85, Nanjing, China, May 16-20, 2016.
[bookmark: OLE_LINK189][bookmark: OLE_LINK190]R1-166098, “Discussion on the feasibility of advanced MU-detector,” Huawei, HiSilicon, RAN1#86, Gothenburg, Sweden, Aug 22-26, 2016.
[bookmark: _Ref501443332]R1-1608855, “Advanced multi-user detectors for grant-free transmissions,” Huawei, HiSilicon, RAN1#86, Lisbon, Portugal, Oct 10-14, 2016.
[bookmark: _Ref501456080]L. Ping, L. Liu, K. Wu and W.K. Leung, “Interleave-Division Multiple-Access,” IEEE Trans. Wireless Communications, Vol. 5, No. 4, pp. 938–947, Apr. 2006.
[bookmark: _Ref501527093]X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Communications, vol. 47, pp. 1046–1061, July 1999. 
[bookmark: _Ref501462197]F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001. 
[bookmark: _Ref501462762]A. Bayesteh, H. Nikopour, M. Taherzadeh, H. Baligh, and J. Ma, “Low Complexity Techniques for SCMA Detection”, in IEEE GLOBECOM 2015, San Diego, CA, Dec. 2015. 
[bookmark: _Ref501653346]X. Meng, Y. Wu, Y. Chen and M. Cheng, “Low complexity receiver for uplink SCMA system via expectation propagation,” in Proc. IEEE WCNC, San Francisco, USA, 2017. 
[bookmark: _Ref510814489] T. P. Minka, "Expectation propagation for approximate Bayesian inference." in Proc. of the Seventeenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2001.
[bookmark: _Ref510814555] Murphy, Kevin P. "Machine learning: a probabilistic perspective." MIT press, 2012.
[bookmark: _Ref510814567] C.M. Bishop, Pattern Recognition and Machine Learning. Springer, Aug. 2006.

Appendix A – Parameters
Table A-1: Evaluation parameters for Figure 2.
	Parameters 
	Values or assumptions 

	NoMA scheme
	Contention based OFDMA

	Carrier frequency
	2 GHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	4RB

	Target spectral efficiency 
	Per UE spectral efficiency: 0.2 bps/Hz 

	Channel coding
	LTE Turbo

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	4, 6

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receivers
	MPA, EPA, ESE, all with PIC


Table A-2: Evaluation parameters for Figure 4.
	Parameters 
	Values or assumptions 

	NoMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	60 bytes

	Channel coding
	NR LDPC

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	6

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receivers
	MMSE with different IC methods


Table A-3: Evaluation parameters for Figure 5.
	Parameters 
	Values or assumptions 

	NoMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	60 bytes

	Channel coding
	NR LDPC 

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	4, 6

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receiver
	EPA with PIC




Appendix B - EPA algorithm
B.1 Design Principle 
EPA is a well-known approximate Bayesian inference technique which approximates the target distribution  with a simpler exponential family distribution, where the Kullback-Leibler divergence  is minimized [10]. It has already been widely used in the field of machine learning [11][12]. Conceptually, as shown in Figure , EPA can be viewed as an operation to project the target distribution  into the exponential family distribution set Φ, i.e.,  
[bookmark: Projection]  		     					()
If , then the projection reduces to an identity mapping. However, in general,  and hence such a projection is nontrivial. 
[image: ]
[bookmark: fig3][bookmark: figure4]Figure B-1: Basic principle of EPA.
It has been proved that the optimal solution to (1) can precisely match the sufficient statistics of target distribution. For example, if  is Gaussian distribution, then the mean and covariance of  will equal to the mean and covariance of the true distribution, respectively. 
For the problem of MU detection, the target distribution usually comprises a product of factors in the form of
[bookmark: p_product]  									()
where  is normalization constant. EPA approximates (2) by a product of factors 
   									()
where each factor   corresponds to one of the factors  in the target distribution , and  is a normalizing constant.  If each factor   comes from the exponential family, the product of factors will be also from exponential family and thus can be described by a set of sufficient statistics.  Since direct solving (1) is usually intractable, EPA optimizes each factor iteratively. Specifically, it starts by initializing all the factors, and then cycles through the factors by refining one factor at a time. For example, suppose  is to be refined, we first remove it from  and obtain. Then, the new approximate distribution  is calculated by minimizing. As a result, the refined factor   can be calculated as . After a number of iterations, the approximate distribution  is obtained as the product of the refined factors.
B.2 Factor Graph Model 
The system model of NoMA can be represented with a factor graph as shown in Figure B-2. From the perspective of factor graph, EPA can be iteratively realized in a message passing way as MPA. 
Assume that K UEs transmit on a group of L resource elements (RE), and each UE has single transmit antenna. For spreading-based NoMA schemes, L is referred to as spreading factor. For NoMA schemes without spreading, . Assume gNB has   receive antennas. The received signal of the -th antenna can be written as
[bookmark: y_nr],                                                            ()
where  is the received symbol vector,  is the channel coefficient vector between user  and -th antenna,  is the transmitted symbol vector of user , is the associated additive white Gaussian noise with the power of . Suppose the modulation size is  and the codebook is , then  and the cardinality of the codebook is . 
For linear spreading schemes, the effective channel  takes into account both the channel response of -th receive antenna  and the user-specific spreading sequence , i.e., , where  denotes component-wise multiplication, while  is a  times repetition of transmitted symbol , i.e., . For schemes based on bits-to-symbols mapping, the effective channel  is the channel response of -th receive antenna and  is a -dimentional transmitted symbol vector selected from a predefined codebook. If sparse pattern is applied, some elements of   are fixed to be zero all the time. In matrix form, the overall observations from  receive antennas can be written as 
[bookmark: y_mat][bookmark: SLM_Block][bookmark: Overall_model]    		                                                        ()
where, ,  and is the overall effective channel matrix. 
The general factor graph representation for NoMA is shown in Figure B-1, which contains  variable nodes (VNs)  and  likelihood factor nodes (FNs) , and  prior FN . The VNs represent the transmitted symbols ,  and the prior FN represents the prior distribution  of , which can be computed via the feedback LLRs from the FEC decoder. The likelihood FN  represents the likelihood probability distribution, where  is the observation vector at the -th RE.  Note that the FN  has connection with  if and only if the th element of , . For ease of notation, let  denote the neighboring FNs of VN , and  denote the neighboring VNs of the FN  for each receive antenna. The cardinalities of   and  are assumed to be ， respectively. As a result, the variables nodes connected with FN  can be represented as a vector   . The linear observation equation corresponding to FN  is 
[bookmark: chip_observation_model]()
where   and  are the corresponding channel matrix and additive Gaussian noise vector, respectively. Then the likelihood probability distribution  can be written as 
[bookmark: chip_model]()


[bookmark: fig4][bookmark: figure5]Figure B-2: A general Factor Graph of NoMA.
B.3 EPA Procedure
In this subsection, the basic procedure of EPA is briefly described. There are two steps for each round of iteration: FN update and VN update, respectively. For the VN update at the -th iteration, the message  from VN  to FN  is computed, and for the FN update, the message   of the opposite direction is computed. According to the principle of EPA, the messages are updated as follows 
[bookmark: v2f_def]			()
[bookmark: I_l2k_def]	 		()
where 
[bookmark: pt_xk]			()
[bookmark: post_prb_def][bookmark: qt_xk]			()
If the projection set is chosen to be Gaussian distribution, then the messages  and  reduce to Gaussian distribution which can be fully characterized by its mean and covariance. That is why this algorithm called expectation propagation.  As a result, the computational complexity is significantly reduced. Moreover, from (5) and (7), since the -th likelihood factor node is only related to , the messages of  and  can be further simplified to scalar complex Gaussian distributions, i.e., , and , respectively. 
Specifically, at the -th iteration, if the message , i.e., , from the likelihood FN   to VN  is circularly complex Gaussian with mean  and variance , i.e.,
 	                                                       ()
With (10), we can compute  as  
[bookmark: post_prb_approx]  			()
Then, to compute the message from VN  to FN , the  is projected to a Gaussian distribution  by matching the mean  and the variance  with respect to (w.r.t.) . That is, the mean  and the variance  are computed w.r.t the approximated posterior probability  in (13).
To compute the mean  and variance, normalization of  is needed to obtain the discrete probability for  from the hybrid discrete and continuous density function in (13). Suppose that the modulation size is  and the codebook is of size, then  

Where  is an -dimensional vector and  is the th element of -dimensional vector . In practice, the multiplications of Gaussian density functions in  can be computed in log domain and thus simplified. As a result, the mean  and the variance  are computed as


From (8), we can compute the message  as
[bookmark: I_l2k_GA]	 		()
where
[bookmark: var_v2f][bookmark: V2F_mean]	 		 ()
[bookmark: mean_v2f][bookmark: V2F_var]	 		()
Next, the message computation from FN to VN is described. Given the Gaussian messages  from VN to FN in (17), it can be easily shown that  in (11) is also Gaussian which is denoted by
[bookmark: q_x_kl_t_function]()
Moreover, the mean and variance  are precisely the linear MMSE estimates of  over a linear observation equation (6), where the message  can be viewed as the prior Gaussian distribution of. Specifically, at the -th RE, the prior mean and covariance matrix of  can be denoted as  and , respectively, then the posterior mean  and covariance  of   can be calculated as 


The diagonal elements of  are the posterior variances of : . 
Given the posterior mean  and variance  of, from (9) and (20), the messages  are also Gaussian, i.e., , whose mean and variance are given by
[bookmark: F2V_mean]	    		()
[bookmark: F2V_var]	                                	 	 ()	
Till now, the -th iteration is completed. In practice, after multiple iterations, the log-likelihood-ratio (LLR) for coded bits can be calculated based on the approximated posterior probability  in 	(13). After subtracting the prior LLRs, the extrinsic LLRs serve as the input to the FEC thereafter. 
B.4 EPA Algorithm Summary
The EPA for NoMA detection is summarized in Algorithm1, where the number of iterations is . 
-------------------------------------------------------------------------------------------------------------------------------
Algorithm1 – EPA Detector
-------------------------------------------------------------------------------------------------------------------------------
1. Initialization
(1) Initialize the mean and variance from FN to VN as , . 
2. Iterations
Start with. While, Do
(1) VN Update: For :
a. compute  as  
        	   () 
b. For  :
· Compute  and  as 


where  is the -th element of -dimensional vector .
· Compute the mean  and variance  as
	  		 ()
	 		()
(2) FN Update: For :
a. Perform chip-by-chip MMSE as


where  and .
b. For : Given the posterior mean and variances  of , compute the mean  and variance  as
	    		()
	                                	 	 ()	
3. LLR Calculations: 
Compute the extrinsic LLRs. 

Note that in practical implementations, some numerical protection can be used, e.g., variance below a threshold is set to be the threshold. In addition, damping operation can be used in the inner iterations to further improve the convergence performance.
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