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In RAN #76 meeting, a revision of study on 5G Non-Orthogonal Multiple Access (NOMA) was approved [1], in which receivers for NOMA is listed as one of the study objectives:
1.2 Receivers for non-orthogonal multiple access: [RAN1, RAN4]
· MMSE receiver, successive/parallel interference cancellation (SIC/PIC) receiver, joint detection (JD) type receiver, combination of SIC and JD receiver, or other receivers.
· The study should consider performance, receiver complexity, etc.
In this contribution, major types of multi-user receivers for NOMA are further discussed and some receiver implementations based on MMSE-SIC are further presented on the basis of our contribution for last meeting [2], together with some preliminary link level simulations by using the parameters agreed in [3].
Major types of multi-user receivers
Multi-user receivers can have many kinds. In this section, a block diagram of multi-user receivers is discussed first followed by three typical types of advanced receivers for NOMA.
Fig. 1 shows a high-level block diagram of multi-user receivers, which comprises three basic processing modules: detection, decoding and interference cancellation (IC). The detection algorithm can be matched-filter (MF), minimum mean square error (MMSE) estimation, elementary signal estimator (ESE), message passing algorithm (MPA) and expectation propagation algorithm (EPA), etc. As for IC, hard bits or soft bits can be input to implement hard IC or soft IC respectively, and symbol reconstruction is needed before interference subtraction. The IC block can be removed for some joint detection methods, such as MPA.
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Figure 1 A high-level block diagram of multi-user receiver
With different combinations of detection and IC, multiple types of receivers can be derived, some of which are typical and suitable for certain NOMA schemes, while some do not have much merit. In the following, three typical types of advanced receivers for NOMA are discussed. These three can be considered as the basic, each having its unique characteristics, suitable for certain transmit side processing. Hybrid implementation is possible by mixing the basic flavors of the three. 
Note that in NOMA study for uplink, normally only one transmit antenna is assumed, e.g., no multi-spatial-layer transmission. At gNB, usually more than one receive antennas would be implemented. Hence, potentially spatial MMSE receiver can be implemented to suppress the cross-user interference. Spatial MMSE usually resides in the detection module in Fig. 1 and can be used in conjunction of MMSE receiver in spreading code domain, or with ESE, to further improve the performance.

MMSE + Hard IC receiver
Hard IC receiver is a typical code-word level interference cancellation (IC) receiver, where the IC is done by reconstructing a user’s signal from the decoded bits. Hard IC receiver family includes successive IC (SIC) receiver, hybrid IC (HIC) receiver, and parallel IC (PIC) receiver, depending on whether the process of decoding and IC is carried out successively or in parallel, or both. The advantage of hard IC receiver is that once the information bits of a user are decoded correctly, the interference caused by the user can be canceled (almost completely if channel estimation is precise), and the user can be removed out from the SIC chain, resulting in reduced complexity. And further, SINR sorting can be performed to accelerate SIC and improve the performance by taking advantage of near-far effect among users.
In a more general sense, the task of separating different users’ data is quite evenly distributed between demodulator (MMSE de-spreading is a form of generic demodulation) and the channel decoder in hard IC type of receiver. The relatively low correlation between spreading sequences reduces the interference between users. Hence, the hard decision of channel decoder is typically enough, no need for iterations between MMSE de-spreading and soft-input-soft-output (SISO) decoder.
Fig. 2 shows a basic procedure of MMSE-SIC receiver [4], where MMSE equalization and channel decoding are carried out for all streams one by one, with the interference of decoded streams being subtracted successively. When the spreading is used in the transmitter side, joint equalization and de-spreading can be implemented in the “MMSE receiver” operating in spatial and spreading code domain. Such MMSE detector can optionally be replaced by much simpler matched-filter (MF) receiver if the spreading code is long and/or the number of Rx antennas is large.
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Figure 2 A basic MMSE-SIC receiver
In traditional MMSE-SIC receiver, the complexity is mainly on matrix inversion in MMSE detection, with the complexity order being O(x3), where x represents the matrix dimension. Assuming K UEs transmitting in a non-orthogonal manner, each UE transmitting symbols by using a spreading code of length L and base station having N receive antennas, if the receiver carries out MMSE detection per each modulation symbol for all S symbols in a code block, the complexity order would be O(K*S*(N*L)3), linearly growing with the number of UEs. Multiple ways can be used to reduce the number of matrix inversion or the dimension of matrix inversion, or even avoid direct inversion of matrix, which will be elaborated in Section 3.2. In addition, as mentioned above, MF receiver could be considered by giving up the interference suppression capability of MMSE if N and/or L are large, which has low complexity and could also achieve a good performance.
ESE + Soft IC receiver
Elementary signal estimator (ESE) is one kind of iterative detector where soft-input soft-output (SISO) decoder is applied. When the process converges, the soft information after channel decoding has higher reliability than the soft information before decoding. The updated soft information is applied in the calculation for the mean and variance of the interference which is carried out in ESE [5]. Then the new soft information is input to the decoder to be refined. After several iterative detections, user signals can be successfully decoded.
Fig. 3 shows the ESE based receiver where user-specific bit interleaver πk is employed to randomize the interference, which facilitates iterative detection. The interleaver can be replaced with a scrambler to have a simpler implementation while they may have different performances in some scenarios.
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Figure 3 An ESE based receiver
For the ESE based receiver, the burden of separating different users’ data lies more on the channel decoder, e.g., SISO decoder with multiple iterations with ESE, whereas the demodulator (ESE) is relatively simple. Since SISO is used in the iteration, the impact of realistic channel estimation should be carefully investigated, especially on the weak user. In addition, as mentioned before, ESE can be implemented in conjunction with spatial MMSE equalizer to reduce the interference from other users, albeit with increased complexity.
Joint detection receiver
Multi-user joint detection can be considered for NOMA receiver. Currently in some NOMA schemes with sparse resource mapping pattern, multi-user joint detection based receiver are applied, e.g. MPA or EPA receiver. The task of separating users’ data is evenly distributed between the MPA/EPA and channel decoder. Although SISO decoder is used here, similar to the case of ESE, MPA/EPA is a more powerful multi-user detector than ESE. Hence the burden does not too lean on SISO decoder, e.g, less number of iterations between MPA/EPA and SISO decoder may be needed. MPA/EPA also has the capability of detecting the signals with multi-dimensional modulation, which would be difficult for MMSE equalizer/de-spreader and ESE detector.
In this type of receiver, multiple users and their occupied subcarriers can be represented by a factor graph G(J, K), where J is the number of multiplexed users and K is the number of subcarriers. An typical example of J = 6 and K =                4 is shown in Fig. 4, where transmitted symbol per user is denoted by x1, ..., x6 and the received signal per subcarrier is denoted by y1, ..., y4.
[image: ]
Figure 4 Factor graph of a typical G(6, 4) mapping
For a generic message-passing algorithm (MPA), the sum-product algorithm operating in a factor graph can be used to find the estimated codeword with maximum a posteriori probability (MAP) in an iterative manner. During multiple inner iterations, connected users and subcarriers exchange messages, where message is the probability of a given codeword for a given user. Upon the completion of inner iterations, a codeword transmitted by a given user is chosen with the maximum probability. After all codewords in a data block are determined, a decoder is used to verify the data block. If outer iteration is enabled, the soft output of decoder will be used to reconstruct a soft input as the a prior information. To reduce the number of multiplications, the product of probability can be replaced by sum of logarithm likelihood ratio (LLR). As a side effect, accuracy loss is inevitable due to appropriate approximation needed for logarithm and exponentiation calculations.





Considering only multiplication involved in K subcarriers’ calculation, MPA receiver has a complexity of , where  is the number of connected users on each subcarrier (e.g. in Fig.4), M is the number of possible constellation points. Apparently,  is proportional to the user number J, which means the complexity of MPA receiver grows exponentially with the increment of user number. The number constellation points  points, as the base of power, is also an important factor in complexity.
To further reduce the receiver complexity, a message-passing algorithm via expectation and variance (e.g., EPA) has been investigated. As the name goes, during inner iterations, message exchanged between connected users and subcarriers is just the mean and variance, rather than probability density. This can reduce the exponential complexity to linear complexity. The underlying assumption of EPA is that the transmitted signal of a given user follows Gaussian distribution.


With an assumption of Gaussian distribution, EPA receiver has a complexity of , where exponent  in MPA receiver has been removed. However, the assumption of continuous Gaussian distribution brings inaccuracy in the estimation, since the distribution of codeword on any user is a discrete uniform distribution and may not follow Gaussian distribution closely. The impact of this approximation should be well studied, especially for high order modulation.
Furthermore, joint detection receiver processes all users in parallel (i.e., no sorting based on received SNR), which may not fully exploit the benefit of near-far effect. The decoding of weaker users may fail due to strong interference, where even a larger number of iterations may not help much.
Observation 1: Hard IC receiver can balance the burden on demodulator and channel decoder, without iterative soft information exchange in between.
Receiver implementations based on MMSE-SIC
MMSE-SIC receiver shown in Section 2.1 is just a “text-book” like classic version which is seldom used in practical systems. In the following, more practical and robust MMSE-SIC implementations are discussed. Section 3.1 addresses some general enhancements for MMSE-SIC receiver which can be applied to various situations. These enhancements, although slightly increasing the complexity, make MMSE-SIC more robust to various fading and near-far environments. Then in Section 3.2 some methods are described which can significantly reduce the computation complexity of matrix inversion for MMSE. These can be generally applied to MMSE-SIC based schemes.
NOMA operation can have DMRS/preamble, or without DMRS. In Section 3.3, receiver implementation for DMRS/ preamble based design is discussed. In Section 3.4, the NOMA receiver operates in more “blind” fashion, without any priori information from DMRS/preamble detection. In both these two designs, random collision of sequences is allowed so that NOMA can operate in “true” grant-free settings.
Enhancements for MMSE-SIC
· Enhanced MMSE-SIC
Fig. 5 shows the procedure of a MMSE-SIC receiver, which is classic or textbook like. In this implementation, the SIC process would be terminated if a UE is not decoded correctly. This kind of MMSE-SIC receiver would not perform best for NOMA with the following reasons. When sorting the users, average SINR is often used which is over multiple subcarriers or subframes. For frequency-selective or time-varying channel, from the long-term perspective, UEs with higher average SINR have more chance to be decoded successfully than UEs with lower average SINR. However in short term, there is a possibility that UE with slightly lower average SINR can be successfully decoded, whereas a UE with slightly higher average SINR cannot. Hence, average SINR of a UE over its transmission resources cannot fully predict at each time whether the UE would pass the decoding, which may cause premature termination of SIC process when the user of higher (average) SINR is not decoded correctly.
Therefore, as shown in Fig. 6, an enhanced MMSE-SIC receiver can be considered where the decoding of UE with the next highest SINR would be performed, instead of terminating the SIC process when the decoding of UE with the highest SINR fails in the first time. Since there is no need to update the matrix inversion, the complexity is only slightly increased, yet with significant performance improvement, especially for higher user loading as shown in Fig. 7. From the figure it is observed that ~0.7 dB, ~1.5 dB and ~4dB improvement at BLER = 10% can be achieved for the cases with 16 UEs, 20 UEs and 24 UEs respectively. The simulation assumptions are listed in Table A1 in the Appendix 1. Note that SNR in the figure is measured before the de-spreading.
To reduce the computation complexity of matrix inversion for MMSE and the processing latency of SIC, HIC which tries to decode multiple UEs per iteration can also be considered. Similar procedure as shown in Fig. 5 and Fig. 6 can be used to implement HIC too, of which the performances with 4 UEs in parallel per iteration are also presented in the Fig. 7. From the results it is observed that performance improvement can still be achieved by enhanced HIC relative to classic HIC for the case with 24 UEs, and similar performances are obtained for enhanced HIC and enhanced SIC, due to that both of them can achieve the similar effect of PIC by the non-blocking characteristic, and with low implementation complexity and of course some loss on processing delay.
There would be many ways to enhance MMSE-SIC implementation, regarding whether and how to sort UEs, whether to terminate the receiver process when a UE is not decoded correctly, and whether to have a second chance for UEs that are not decoded correctly, etc. Based on the enhanced MMSE-SIC/HIC receiver discussed above, we propose to consider the version in Fig. 6 to streamline the various implementations and ease the simulation results comparison and complexity analysis.
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Figure 5 A classic MMSE-SIC receiver                                        Figure 6 An enhanced MMSE-SIC receiver
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Figure 7 Performance comparison between classic SIC/HIC and enhanced MMSE-SIC/HIC receivers (per UE spectral efficiency = 0.2 bits/data RE)
· Data-aided channel estimation refinement
Error propagation can be a potential issue for MMSE-SIC receiver, i.e. the imperfect channel estimation would lead to imperfect interference cancellation, and the residual signal of the high power UE can pose strong interference to the weak power UEs. To alleviate this problem, the data of successfully decoded users can be utilized to refine channel estimation, as follows.

Assuming that the first user has been correctly decoded, and let  be the reconstruction of the transmitted spread symbols of the first user, the channel estimation can be refined by using Least Squares (LS) algorithm:

                                                                        (1)


where  is the received signal on the specific spread symbols. When the second user is successfully decoded, the vector of its transmitted symbols is denoted as. Then the channel estimation of the first user and second user can be refined by:

                                                                        (2)


where , .
As more users’ data are successfully decoded, more data symbols can be used for channel estimation refinement. The refined channel coefficients are used for interference cancellation, so as to minimize the error propagation of SIC. Therefore, we think that data-aided channel estimation refinement is a method worthy of consideration for NOMA, and it can be applied to various cases.
Proposal 1: Enhanced MMSE-SIC/HIC receiver with non-blocking characteristic can be considered in NOMA study.
Proposal 2: User sorting based on e.g. SINR should be considered for NOMA to accelerate IC processes and improve the performance.
Proposal 3: Data-aided channel estimation refinement can be considered in the receiver for NOMA.

Complexity reduction for MMSE-SIC
As discussed in Section 2.1, S times of matrix inversion are needed if MMSE weight calculation is per modulation symbol. In this section, several complexity reduction methods are discussed which apply to any MMSE based receiver operating in either spatial domain or spreading code domain or jointly:
· Reducing the number of matrix inversions per code block:
In theory, MMSE-SIC requires the calculation of covariance matrix and the corresponding matrix inversion per each modulation symbol when there is channel fading. However, in most of NOMA scenarios, channel variation in time domain is not very fast, the covariance matrix (or the channel coefficients) can be averaged across multiple OFDM symbols on each subcarrier or each L subcarriers, or the whole resource block if the channel response is nearly flat in frequency domain, and thus the number of matrix inversions can be reduced significantly with marginal loss of performance.
· Incremental matrix inversion based on Sherman-Morrison Formula:
Sherman-Morrison Formula is shown in equation (3), where “A” could be set to σ2I and “x” could be set to the channel coefficient hi of one user for initialization, thus matrix inversion can be avoided. In the first detection, the calculation would be looped for all users, but then for the subsequent detections, “A” can be set to the matrix inversion results of the last detection, and “x” can be set to the channel coefficient of the user decoded correctly in the last round. In this way, the computation complexity can be kept very low.

                                                   (3)
· Incremental matrix inversion based on block matrix inversion:
In this method, a matrix Z can be partitioned into multiple sub-blocks, and then the inversion of matrix Z can be calculated based on the sub-blocks, as shown in equation (4). From the equation, it is seen that only matrix inversions for matrix B and T are needed, and these two matrices have reduced dimension relative to matrix Z, so complexity reduction can be achieved. This method can be also used to calculate the inversion of a matrix with increased dimension e.g. the case of matrix inversion in LS algorithm for data-aided channel estimation refinement described above.



, ,                             (4)
Besides the methods above, some other dimension-reduction algorithms can also be considered, such as spatial domain de-correlation followed by code domain de-correlation, or vice versa.
Table 1 shows the complexity difference between several matrix inversion methods under the same assumptions as described in Section 2.1, and Nsc representing the number of subcarriers for transmission. Significant complexity reduction can be observed from this table.
In addition, as discussed above, MMSE-HIC can be considered to reduce the computation complexity of matrix inversion and the processing latency. The complexity is also shown in the Table 1, where I is the number of iterations, which would be smaller than the number of users K, as shown in Fig. 8(b). Fig. 8 shows the comparison of average decoding times and average number of iterations for enhanced MMSE-SIC receiver and enhanced MMSE-HIC receiver. From the figure, it is observed that processing latency can be reduced by HIC receiver with small number of iterations at the cost of a few more decoding times.
Table 1 Differences in the complexity of some matrix inversion methods
	Matrix inversion method
	Complexity

	(1) Matrix inversion per symbol
	O(K*S*(N*L)3)

	(2) Matrix inversion per L subcarriers
	O(K*Nsc/L*(N*L)3)

	(3) Incremental matrix inversion based on Sherman-Morrison Formula
	O(K*S*(N*L)2)

	(2) + (3)
	O(K*Nsc/L*(N*L)2)

	(4) Matrix inversion in MMSE-HIC receiver
	O(I*S*(N*L)3)
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(a) Average decoding times
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(b) Average number of iterations


Figure 8 Comparison of average decoding times and average number of iterations for different receivers
Observation 2: The complexity of matrix inversion can be significantly reduced by some methods, which can be considered at least for MMSE based receiver.

MMSE-SIC receiver for preamble/DMRS based NOMA
Compared with MMSE-SIC receiver in ideal channel estimation, the receiver for preamble/DMRS based NOMA should include additionally the realistic UE identification and detection. Some considerations on transmitter of preamble/DMRS based NOMA are described in [6][7].
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Figure 9 A MMSE-SIC receiver for preamble based NOMA
Fig. 9 shows a MMSE-SIC receiver for preamble based NOMA, where blind detection of preamble sequences is done in the first step based on the pre-defined preamble sequence pool to identify transmission UEs. For example if ZC sequence is adopted, the parameters such as root index, cyclic shift and OCC or FDM pattern can be used as the preamble ID to differentiate UEs. Correlation peak detection of the sequences can be performed, based on sliding window correlation at a given false alarm rate. Once the preamble ID is identified, the spreading sequence of this UE would be determined, according to a pre-defined mapping rule. The number of detected UEs, channel estimation based on each user’s preamble sequence, and sequence ID will be input to data processing module with MMSE-SIC procedure.
For “true” grant-free transmission, the following realistic issues should be considered:
· False alarm:
Since the actual sequences selected by the UEs are unknown to gNB, the number of detected UEs based on preamble may be larger than the actual number of UEs in transmission. In this case, gNB would attempt to decode the fictitious UEs in the MMSE-SIC procedure, which introduces additional complexity. However, since the channel estimation and SINR of the fictitious UEs are usually quite low, the impact on the covariance matrix and the equalization of the actual transmission UEs can be neglected, and therefore the performance will not be severely affected.
· Miss detection:
Miss detection due to low SNR: In this case, the number of detected UEs based on preamble may be smaller than the actual number of UEs in transmission. Then the missed UEs would not be treated for data decoding. The impact on the decoding of other UEs is negligible since the SINRs of the missed UEs are usually quite low.
Miss detection due to collision: If two or more UEs select the same preamble sequence, there will be at most one preamble ID detected, which means that only one UE has the chance to be detected. Furthermore, the corresponding channel estimation will be the combination of multiple UEs, which leads to significantly performance degradation due to the non-resolvable interferences.
Based on the above analysis, preamble collision has the most significant impact on the performance of grant-free transmission. Preamble SIC can be considered to alleviate this issue. When collision occurs (gNB can always assume a preamble is shared by multiple UEs although gNB does not know whether it indeed happens) and if one of the conflicting UEs can be successfully decoded, the channel estimation can be refined as shown in Section 3.2, and then the contribution of this UE can be reconstructed and subtracted from the received preamble signal. After that, gNB can update the channel estimation for the same preamble sequence from the residual preamble signal and then try to decode the hidden UEs from the residual data signal, or gNB can do preamble detection again to identify the hidden or missed UEs.
Observation 3: For preamble/DMRS based NOMA to support true grant-free transmission, preamble/DMRS SIC can be considered to alleviate user collision issue.

Blind MMSE-SIC receiver for data-only based NOMA
Due to the limited number of preamble/DMRS, preamble/DMRS collision is a challenging issue for “true” grant free transmission. In this regards, data-only based NOMA is worthy of consideration, in which sequence collision is solved by exploiting the randomness nature of user data. Some considerations on transmitter of data-only based NOMA can be found in [6][7].
Fig. 10 shows a receiver of data-only based NOMA, where user and symbol stream detection is carried out blindly based on the spreading code set and the received signal. Then the blind channel estimation or equalization is carried out, in the absence of reference signal. The details of the blind detection procedure are briefly described as below:


Figure 10 A receiver for data-only based NOMA
(1) 
The received signal can be expressed as , where K is the number of users, hik is the channel coefficient of user k on the i-th Rx antenna, ck is the spreading code randomly selected by user k, xk is the modulation symbols transmitted by user k, n is the AWGN.
(2) Combining the received signals across multiple Rx antennas with predefined combination factors to obtain the combined signals r, which can exploit the interference rejection capability in spatial domain effectively. For 2 Rx antennas, the following 6 predefined combination factors can be considered: {(1, 0), (0, 1), (1/, 1/), (1/, -1/), (1/, j/), (1/, -j/)}.
(3) 
Put the received signal r into an L*S matrix Y, where L is the length of spreading code, S is the number of modulation symbols transmitted by each UE, then calculate the covariance matrix by: .
(4) 
Perform blind activity detection by using the following metric calculation principle to identify D spreading codes with lowest metrics from the spreading code set with M codes: .
(5) 
Perform MMSE-like de-spreading by using an identified spreading code to obtain a symbol stream: , where cm is one of the identified spreading codes. The scaling and phase rotation caused by the channel still remain in the derived symbol stream, which would be compensated by blind equalization.
(6) If a spreading code matches one of the transmitting UEs, the obtained symbol stream after the above blind detection with the spreading code is usually a scaled and phase rotated version of the original constellation symbols, symbol clusters can be observed, an example is shown in Fig. 11. Based on the characteristic of the symbol stream, the scaling and phase rotation can be derived by a partition-based matching method which partitions the constellation plane to multiple areas along various boundaries, e.g. x-axis, y-axis, y = x, and y = -x. Then the scaling and phase rotation can be compensated to restore the estimated signals around the original constellation [8][9].
(7) 

Calculate the EVM and the equivalent SINR for each symbol stream, then sort the SINRs and select multiple candidate symbol streams with higher SINR for demodulation and decoding. For each candidate symbol stream, multiple hypotheses (e.g.  and  for BPSK modulation) would be tried for decoding because of the possibility of phase ambiguity, which would be resolved by CRC check.
The other processes of the receiver are the same as regular MMSE-SIC receiver, and data-aided channel estimation and refinement would be used for interference cancellation.
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Figure 11 Symbol clusters of a symbol steam after blind detection with a spreading code
Fig. 12 shows some preliminary simulation results on BLER vs SNR performance for data-only based NOMA, more results can be found in Appendix 2, the simulation assumptions are listed in Table A2 in Appendix 1. From these simulation results we can observe that high loading of users and sum throughput performance can be achieved with CP-OFDM in the case of simulation of 6 RBs, and with CP-OFDM or DFT-S-OFDM in the case of simulation of 1 RB, where spreading on OFDM symbol level is utilized for DFT-S-OFDM transmission. And note that the absence of DMRS overhead is translated into reduced spectral efficiency (thus the reduced effective code rate) as more resources can be utilized for data transmission, but the actual TBS is the same as in the case of with DMRS.
The complexity of the blind MMSE-SIC receiver is mainly on the block of “Blind activity detection and MMSE de-spreading”. The complexity is about O(I*C*(L3 + S*L2 + S*L*D)), where I is the number of iterations in the whole receiver procedure, which is related to the number of users, C is the number of predefined combination factors for received signals on multiple Rx antennas, which is related to the number of Rx antennas, and C = 1 if one Rx antenna is used, S is the number of data symbols transmitted by each UE, L is the length of spreading code, D is the number of identified spreading codes from the spreading code set. The complexity of channel estimation refinement based on the data of decoded users can be kept low via incremental matrix inverse techniques. Another process that has significant contribution to the receiver complexity is the “decoding” block, because that multiple streams would be decoded per iteration and multiple iterations required in the receiver.
Observation 4: Data-only based receiver can be considered to solve sequence collision issue and therefore to achieve true grant-free transmission with moderate complexity.
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(a) CP-OFDM, (6 RBs, 1ms), TBS = 10bytes, TDL-A 30ns
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(b) CP-OFDM, (6 RBs, 1ms), TBS = 10bytes, TDL-C 300ns
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(c) CP-OFDM, (1 RB, 6ms), TBS = 10bytes, TDL-C 300ns
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(d) DFT-S-OFDM, (1 RB, 6ms), TBS = 10bytes, TDL-C 300ns


Figure 12 BLER vs SNR for data-only based NOMA in mMTC scenario (per UE spectral efficiency = 0.095 bits/data RE)
Conclusions
In this contribution, major types of multi-user receivers for NOMA are further discussed, and some receiver implementations based on MMSE-SIC are further presented, together with some preliminary link level simulations by using the parameters agreed.
Based on this contribution, we make the following observations and proposals:
Observation 1: Hard IC receiver can balance the burden on demodulator and channel decoder, without iterative soft information exchange in between.
Observation 2: The complexity of matrix inversion can be significantly reduced by some methods, which can be considered at least for MMSE based receiver.
Observation 3: For preamble/DMRS based NOMA to support true grant-free transmission, preamble/DMRS SIC can be considered to alleviate user collision issue.
Observation 4: Data-only based receiver can be considered to solve sequence collision issue and therefore to achieve true grant-free transmission with moderate complexity.
Proposal 1: Enhanced MMSE-SIC/HIC receiver with non-blocking characteristic can be considered in NOMA study.
Proposal 2: User sorting based on e.g. SINR should be considered for NOMA to accelerate IC processes and improve the performance.
Proposal 3: Data-aided channel estimation refinement can be considered in the receiver for NOMA.
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Appendix 1 Simulation assumptions
Table A1 Link level simulation assumptions for MMSE-SIC enhancements evaluation
	Parameters
	Assumptions

	Carrier Frequency
	700 MHz

	Waveform
	CP-OFDM

	Channel Coding
	NR LDPC (16-bit CRC, 25 iterations, Max-logMAP)

	Numerology
	SCS = 15 kHz, #OS = 14, 2 DMRS symbols overhead

	Allocated bandwidth
	6 RBs

	TBS per UE
	20 bytes

	Number of UEs multiplexed in the same allocated bandwidth
	16, 20, 24

	BS antenna configuration
	2 Rx

	UE antenna configuration
	1 Tx

	Propagation channel & UE velocity
	TDL-A 30ns in TR38.901, 3km/h

	Max number of HARQ transmission
	1

	Channel estimation
	Realistic channel estimation based on DMRS

	MA signature allocation
	Fixed, the first K spreading codes in the spreading code set are used for K users respectively, the spreading code set can be found in Table A4 in [7][10]

	Distribution of avg. SNR
	Equal

	Timing offset
	0

	Frequency error
	0



Table A2 Link level simulation assumptions for data-only NOMA evaluation
	Parameters
	Assumptions

	Carrier Frequency
	700 MHz

	Waveform
	(1) CP-OFDM
(2) DFT-S-OFDM

	Channel Coding
	NR LDPC (16-bit CRC, 25 iterations, Max-LogMAP)

	Numerology
	SCS = 15 kHz, #OS = 14, no RS overhead

	Allocated bandwidth
	(1) 6 RBs, 1ms
(2) 1 RB, 6ms

	TBS per UE
	10, 20, 40 bytes

	Number of UEs multiplexed in the same allocated bandwidth
	1, 2, 4, 6, 8, 12, 16, 20, 24, 28, etc

	BS antenna configuration
	2 Rx

	UE antenna configuration
	1 Tx

	Propagation channel & UE velocity
	TDL-A 30ns and TDL-C 300ns in TR38.901, 3km/h

	Max number of HARQ transmission
	1

	Channel estimation
	Realistic channel estimation

	MA signature allocation
	Random selected from a sequence set;
For TBS = 10 or 20 bytes, spreading codes with length of 4 are used, the sequence set can be found in Table A4 in [7][10] );
For TBS = 40 bytes, spreading codes with length of 2 are used, the sequence set can be found in the last row of Table A3 in [7][10]).

	Distribution of avg. SNR
	Equal

	Timing offset
	0

	Frequency error
	0



Appendix 2 Simulation results for data-only based NOMA
CP-OFDM, (6 RBs, 1ms)
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(a) TBS = 10bytes, TDL-A 30ns
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(b) TBS = 10bytes, TDL-C 300ns
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(d) TBS = 20bytes, TDL-C 300ns 
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(e) TBS = 40bytes, TDL-A 30ns
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(f) TBS = 40bytes, TDL-C 300ns


Figure A1 BLER vs SNR for data-only based NOMA with CP-OFDM and (6 RBs, 1ms) in mMTC scenario (per UE SE = 0.095, 0.175 and 0.333 bits/data RE, respectively)
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(a) TBS = 10bytes, TDL-A 30ns
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(b) TBS = 10bytes, TDL-C 300ns
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(c) TBS = 20bytes, TDL-A 30ns
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(d) TBS = 20bytes, TDL-C 300ns
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(e) TBS = 40bytes, TDL-A 30ns
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(f) TBS = 40bytes, TDL-C 300ns


Figure A2 Sum throughput per RB vs SNR for data-only based NOMA with CP-OFDM and (6 RBs, 1ms) in mMTC scenario (per UE SE = 0.095, 0.175 and 0.333 bits/data RE, respectively)

CP-OFDM, (1 RB, 6ms)
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(a) TBS = 10bytes, TDL-A 30ns
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(b) TBS = 10bytes, TDL-C 300ns
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(c) TBS = 20bytes, TDL-A 30ns
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(d) TBS = 20bytes, TDL-C 300ns
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(e) TBS = 40bytes, TDL-A 30ns
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(f) TBS = 40bytes, TDL-C 300ns


Figure A3 BLER vs SNR for data-only based NOMA with CP-OFDM and (1 RB, 6ms) in mMTC scenario (per UE SE = 0.095, 0.175 and 0.333 bits/data RE, respectively)
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(a) TBS = 10bytes, TDL-A 30ns
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(b) TBS = 10bytes, TDL-C 300ns
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(c) TBS = 20bytes, TDL-A 30ns
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(d) TBS = 20bytes, TDL-C 300ns
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(e) TBS = 40bytes, TDL-A 30ns
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(f) TBS = 40bytes, TDL-C 300ns


Figure A4 Sum throughput per RB vs SNR for data-only based NOMA with CP-OFDM and (1RB, 6ms) in mMTC scenario (per UE SE = 0.095, 0.175 and 0.333 bits/data RE, respectively)

DFT-S-OFDM, (1RBs, 6ms)
	[image: ]
(a) TBS=10bytes, TDL-A 30ns
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(b) TBS=10bytes, TDL-C 300ns
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(c) TBS=20bytes, TDL-A 30ns
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(d) TBS=20bytes, TDL-C 300ns
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(e) TBS=40bytes, TDL-A 30ns
	[image: ]
(f) TBS=40bytes, TDL-C 300ns


Figure A5 BLER vs SNR for data-only based NOMA with DFT-S-OFDM and (1RB, 6ms) in mMTC scenario (per UE SE = 0.095, 0.175 and 0.333 bits/data RE, respectively)
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(a) TBS=10bytes, TDL-A 30ns
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(b) TBS=10bytes, TDL-C 300ns

	[image: ]
(c) TBS=20bytes, TDL-A 30ns
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(d) TBS=20bytes, TDL-C 300ns
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(e) TBS=40bytes, TDL-A 30ns
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(f) TBS=40bytes, TDL-C 300ns


Figure A6 Sum throughput per RB vs SNR for data-only based NOMA with DFT-S-OFDM and (1RB, 6ms) in mMTC scenario (per UE SE = 0.095, 0.175 and 0.333 bits/data RE, respectively)
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