
Prague, Czech Republic, 21 - 25 August 2017
Source:                 ZTE
Title:                      REG bundle size and REG bundle mapping for NR-PDCCH
Agenda item:        6.1.3.1.1.1
Document for:      Discussion and Decision
1 Introduction
In previous RAN1 meetings, some agreements were reached about the DL control channel design [1]:

	For a 1-symbol CORESET with interleaving, 

· At least REG bundle size = 2 is supported

· Working assumption:

· REG bundle size = 6 is also supported 

· FFS whether configuration between 2 and 6 is explicit or implicit

· Precoder granularity in frequency domain is equal to the REG bundle size in the frequency domain

For a 2 or 3 symbol CORESET with interleaving, 

· At least REG bundle size = CORESET length is supported

· Working assumption:

· REG bundle size = 6 is also supported 

· FFS whether configuration between CORESET length and 6 is explicit or implicit

· Precoder granularity in frequency domain is equal to the REG bundle size in the frequency domain


In this contribution, we give our discussion on REG bundle size and REG bundle mapping considering different REG bundle size coexistence for NR-PDCCH.

2 REG bundle size in a CORESET

In this section, different REG bundle sizes for distributed PDCCH transmission with different aggregation levels (i.e. aggregation levels 1, 2, 4, and 8) are evaluated. Precoder cycling is used for distributed PDCCH transmission, and different precoder across multiple REG bundles is assumed. 

Figure 1 shows the simulation results for 1-symbol CORESET under the assumption of 1/6 DMRS density and DCI size of 20 bits. The simulation results with other assumptions can be found in the Appendix-A, including 1-symbol CORESET with 1/4 and 1/3 DMRS density and DCI size of 20bits, 1/2/3-symbol CORESET with 1/6, 1/4 and 1/3 DMRS density and DCI size of 60 bits. 
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(a) Delay spread = 30ns, DCI size = 20bits
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(b) Delay spread = 300ns, DCI size = 20bits
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(c) Delay spread = 1000ns, DCI size = 20bits
Figure 1 Results of different bundling size for distributed transmission
In Figure 1, 'ALi_bsj_kRS' indicates REG bundle size of b for ALi with the DMRS density is k REs per REG. From Figure 1 it can be seen that, for high aggregation levels such as AL8 and AL4, the PDCCH transmission with large REG bundle shows better or similar performance with that of small REG bundle, and up to 2 dB gain can be achieved. For low aggregation level such as AL2 and AL1, small REG bundle shows better or similar performance with that of large REG bundle, and up to 3 dB gain can be achieved. Similar observation can be get for other simulation assumptions which are shown in the Appendix-A. 
Observation 1: 
- Large REG bundle shows better or similar performance than small REG bundles for high ALs, and up to 2 dB can be achieved.
- Small REG bundle shows better or similar performance than large REG bundles for low ALs, and up to 3dB can be achieved. 

It is because that larger REG bundle size usually gives smaller transmit diversity gain but allows for better channel estimation for one PDCCH. For higher aggregation levels, since the resource used for PDCCH transmission is large, sufficient transmit diversity gain is achieved even for a large REG bundle size, and at the same time the larger channel estimation gain can be achieved due to large bundle size. However, for lower aggregation level, since the resource used for PDCCH transmission is small such as only one CCE for AL = 1, large bundle size may lead to less transmit diversity gain, and lower aggregation levels usually used in good channel condition which means that its channel estimation is good regardless of large or small REG bundle size. As a result, a small REG bundle size is more suitable for lower aggregation levels. 

Proposal 1: Confirm the working assumption that REG bundle size = 6 is also supported for a 1/2/3 symbol CORESET with interleaving. 

Proposal 2: Large REG bundle should be used for high aggregation levels, and small REG bundle should be used for low aggregation levels. 

3 Different REG bundle size coexistence

For one CORESET resource, different UEs may need different aggregation levels to transmit PDCCH, such as high aggregation levels are needed by cell edge UEs while lower aggregation levels are needed by cell centre UEs. If only high aggregation levels or low aggregation levels are allowed in a CORESET, then this will limit the resource utilization efficiency and the scheduling flexibility. As a result, it is inevitable to support CORESETs with both high aggregation levels and with low aggregation levels. As the agreement in the previous meeting [2], nested structures are put forward in order for channel estimation reusing between different aggregation levels. However according to the evaluation results in the above section, high aggregation levels prefer large REG bundles while low aggregation levels prefer small REG bundles. As a result, REG bundle based nested structure should be considered for supporting channel estimation reusing. Figure 2 shows an example of REG bundle based nested structure including multiple REG bundle sizes. 
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Figure 2 REG bundle based nested structure
In the following, the performance of channel estimation reusing between different REG bundle size are evaluated, and the following two options are compared:
Option 1: The channel estimation for large REG bundle is achieved directly based on jointly channel estimation of all the REGs in it.

Option 2: The channel estimation for large REG bundle is achieved based on that of multiple small REG bundles overlapping with it. For example, the channel estimation for large REG bundle can be get by certain linear combination of the overlapped small REG bundles. We take Figure 3 as an example for interpreting for the option 2. 
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Figure 3 A REG bundle based nested structure unit for channel estimation
As Figure 3 shows an example of a REG bundle based nested structure unit for channel estimation reusing between different REG bundle sizes. For channel estimation for large REG bundle, the channels of three part of resources corresponding to three small REG bundle are estimated respectively, which including that the channel of the ith  (i = 0, 1, 2) part of resource can be the linear combination of the three DMRS estimation on it. The three DMRS is that the DMRS in the small REG bundle 0, the DMRS in the small REG bundle 1 and the DMRS in the small REG bundle 2. And the channel estimation for the ith part of resource using the DMRS in the ith small REG bundle can be reused for the ith small REG bundle. 
In this following, we give our evaluation to compare the performance of option 1 without considering channel estimation reusing between different REG bundle sizes and option 2 with considering channel estimation reusing between different REG bundle sizes. Two OFDM symbols duration for one CORESET is assumed. Large REG bundle size is 6 REGs and small REG bundle size is 2 REGs. The BLER performance of high aggregation level 4 and 8 with large REG bundle size of 6 REGs using the channel estimation method of option 1 and option 2 are evaluated. 
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Figure 4 Simulation results for option 1 and option 2
In Figure 4, 'ALi_sep' indicates option 2 for ALi, and 'ALi_uni' indicates option 1 for ALi. From Figure 4 it can be seen that option 1 show very similar performance to option 2, and their BLER are almost overlap with each other. It approves that REG bundle based channel reusing is feasible. And as the analysis in Appendix-B, the computation complexity of option 2 is not larger with option 1. Thus, REG bundle based nested structure should be supported for NR-PDCCH. 
Observation 2: 
- The channel estimation reusing between different REG bundle sizes shows very similar performance with that without channel estimation reusing. 
- The complexity for the channel estimation reusing between different REG bundle sizes is not larger than that without channel estimation reusing. 
Proposal 3: REG bundle based nested structure should be considered to support for NR-PDCCH. 
4 Conclusion

In this contribution, some considerations on REG bundle size and REG bundle mapping for NR-PDCCH. As summary, we have the following observations and proposals are given: 

Observation 1: 

- Large REG bundle shows better or similar performance than small REG bundles for high ALs, and up to 2 dB can be achieved.

- Small REG bundle shows better or similar performance than large REG bundles for low ALs, and up to 3dB can be achieved. 

Proposal 1: Confirm the working assumption that REG bundle size = 6 is also supported for a 1/2/3 symbol CORESET with interleaving. 

Proposal 2: Large REG bundle should be used for high aggregation levels, and small REG bundle should be used for low aggregation levels. 

Observation 2: 

- The channel estimation reusing between different REG bundle sizes shows very similar performance with that without channel estimation reusing. 

- The complexity for the channel estimation reusing between different REG bundle sizes is not larger than that without channel estimation reusing. 

Proposal 3: REG bundle based nested structure should be considered to support for NR-PDCCH. 
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Appendix-A

A-1 1-symbol CORESET, DCI size = 20 bits
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-1-1  RS density = 1/4
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-1-2 RS density = 1/3

A-2 2-symbol CORESET, DCI size = 20 bits
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-2-1 RS density = 1/6
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-2-2 RS density = 1/4
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
[image: image24.png]BLER

PC,distributed, 20

1008400

1.00£01

100£02

1.00£03

1.00E04

s,1000ns,2symb,10MHz,

L

ALLbs2
e ALLbs6.
—— A2 bs2
—o— 52 b6
——aa b2
—o— AL bss
o ALB_bs2
—o—ALs bss.





(c) Delay spread = 1000ns
Figure A-2-3 RS density = 1/3

A-3 3-symbol CORESET, DCI size = 20 bits
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-3-1  RS density = 1/6
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-3-2 RS density = 1/4
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-3-3 RS density = 1/3

A-4 1-symbol CORESET, DCI size = 60 bits
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-4-1  RS density = 1/6
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-4-2 RS density = 1/4
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(a) Delay spread = 30ns
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(b) Delay spread = 300ns
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(c) Delay spread = 1000ns
Figure A-4-3 RS density = 1/3

A-5 2-symbol CORESET, DCI size = 60 bits
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(d) Delay spread = 30ns
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(e) Delay spread = 300ns
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(f) Delay spread = 1000ns
Figure A-5-1  RS density = 1/6
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(d) Delay spread = 30ns
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(e) Delay spread = 300ns
[image: image48.png]BLER

PC,distributed,60bits,1000ns,2symb,10MHz,

1008400

1.00£01

100£02

1.00£03

1.00E04

1.00£05

3RS

== ALLbs2

ALLbs6

AL2_bs2
—HmAL2_bs6.

1210 & 5 4

2

SNR

B

B

10 12

AL4_bs2
e ALS_bsE.
— A8 bs2
e ALE_bs6.





(f) Delay spread = 1000ns
Figure A-5-2 RS density = 1/4
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(d) Delay spread = 30ns
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(e) Delay spread = 300ns
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(f) Delay spread = 1000ns
Figure A-5-3 RS density = 1/3

A-6 3-symbol CORESET, DCI size = 60 bits
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(g) Delay spread = 30ns
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(h) Delay spread = 300ns
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(i) Delay spread = 1000ns
Figure A-6-1  RS density = 1/6
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(g) Delay spread = 30ns
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(h) Delay spread = 300ns
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(i) Delay spread = 1000ns
Figure A-6-2 RS density = 1/4
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(g) Delay spread = 30ns
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(h) Delay spread = 300ns
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(i) Delay spread = 1000ns
Figure A-6-3 RS density = 1/3

Appendix-B
For option 1, channel estimation for one large bundle can be get using LMMSE channel estimation method directly based on joint estimation of all the DMRS REs in the large bundle. The channel estimation complexity is from the complexity of LMMSE channel estimation. Since the LMMSE channel estimation can be expressed as: 
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where 
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is the cross-correlation of data vector and RS vector, 
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 is the received RS vector. 
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. As a result, the computation complexity for option 1 is :
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where equally 
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 is the total number of data REs in a large bundle and 
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 is the total number of DMRS REs in a large bundle for option 1. 

For option 2, channel estimation for one large bundle can be achieved by linear combination of p small bundles which are included in the large bundle. The channel estimation for resource part corresponding to each small bundle can be get using LMMSE channel estimation method based on p times of estimation using the DMRS REs in each small bundle. Since there are p resource parts forming a large REG bundle, the channel estimation complexity for option 2 is :
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where 
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 is the number of data REs in a small bundle, 
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 is the number of DMRS REs in a small bundle, and 
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 is the number of small bundles in a large bundle. 
It can be easily seen that the complexity of option 2 is not larger than that of option 1 due to 
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