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1.  Introduction
In RAN1 NR Ad-hoc#2 meeting, the following points were agreed upon regarding construction of polar codes.
	Agreement: 
· All companies work together to design for the DL a Single CRC polynomial + Interleaver scheme to deliver early termination benefits while achieving the FAR (in presence of AWGN, and in presence of random QPSK, and undetected errors in intended user’s codeword), and BLER targets with acceptable complexity and latency. 
· Working assumption that the CRC length is 19 bits, to be finalised as part of the design, taking into account the number of blind decodes or hypotheses to be tested. 
· Longer CRCs will be considered if required to meet the FAR target
· For DL for K+nFAR>=12, and for UL where K+nFAR>22, J+J’ = nFAR + 3
· For UL, where 12<=K+nFAR<=22, J+J’ = nFAR + 6, comprising 3 parity bits and nFAR + 3 additional CRC bits
Note: K is the number of payload information bits without CRC or parity bits
Note: nFAR may be zero in some circumstances. 
Note: UE specific scrambling is not precluded and will be considered separately. 
Agreement:
For UL, where 12<=K+nFAR<=22, J+J’ = nFAR + 6, 3 PC bits are generated according to the following steps:
1.  Encode K info bits to K+nFAR+3 CRC encoded bits,
· FFS the nFAR+3 CRC bit locations
2.  Select K’ = K+nFAR+6 most reliable bit positions
3.  Select 3 PC bits from the K’ reliable positions
· The most reliable n positions with wmin, where
· wmin is the minimum row weight (as defined in R1-1706193) of the K+nFAR+3 most reliable positions within the K’ reliable positions, where n is given by:
· n=1 if M-K-nFAR>192
· n=0 otherwise
· 3-n positions selected in least reliable positions within the K’ reliable positions.
4. Working Assumption:  The value of the PC bits is obtained from a length-5 cycle shift register as in R1-1706193



Following the agreement, we document the results of our investigation on polar code construction to support early termination using a single CRC polynomial and interleaver in this contribution.
2. Background so far

· K information bits can be first encoded using a single CRC polynomial of  bits to generate a CRC-encoded codeword of length . This CRC codeword of length  can then be encoded using the method of polar encoding.

· It is well-understood that if the  CRC bits are appended to the end of the  information bits, then the CRC bits are less effective for early termination (a mechanism of terminating the decoding operation midway when decoding failure occurs during SC/SCL decoding of polar codes). Hence RAN1 agreed to use an interleaver for distributing at least some of the CRC bits within the information bits in such a way that those CRC bits can be used for checking decoding failure triggering a termination of the decoding process earlier than its timely ending.

· It was agreed that companies in RAN1 should work together to design a CRC polynomial and its suitable interleaving method such that early termination benefits are obtained while achieving the ① FAR target, ② BLER target at ③ acceptable complexity and ④ latency.

3. Proposal overview

3.1 Proposed method
· Step1: Find the parity check polynomial from the selected CRC polynomial. Form an array using the coefficients of the last  terms of the parity-check polynomial. Store this array in memory. 

· Step 2: The array stored in step1 forms the last row of the parity check matrix . The second last row of  is obtained by left shifting the last row by 1 position. In general, the  row from bottom () of the parity check matrix is obtained by shifting the last row (i.e.,  row here) by  positions to the left. Thus, the parity check matrix has a very simple form whose any row can be directly computed from the array stored in step1.

· Step3: (Interleaver design) Simple column permutations on the parity check matrix gives us the interleaved CRC bit positions. The position of the last 1 in each row indicates the index position of the CRC bits. The simplest way of column permutation is explained below. The operation starts from the first (topmost) row of  matrix and can be performed till the last row (if all the CRC bits have to be distributed). If only  bits out of the  CRC bits need to be distributed, then the operation can be stopped after  rows from the top of  matrix. For clear understanding of the operation, please see step 3 of Section 4 and the example in Section 5.
· All columns of  that have 1 in the first row are moved to the left of . Assume there are  such columns. Thus forming a string of  consecutive 1s at the extreme left of 1st row.
· From the remaining  columns of , all those columns that have 1 in the second row are moved next to the  columns. Let there be  such columns. Thus by the end of second step, the first  columns of the permuted matrix is obtained.
· Continuing in a similar fashion for each row  till the last row, those columns from the remaining set of columns that have 1 in the  row are arranged towards the left. 
· Say, the column permuted matrix is . Then by comparing the new positions of columns in  with the original positions of the columns in , the interleaving pattern is obtained.
  3.2 Benefits of the proposed method
· The proposed method requires storing only the last  coefficients of parity check polynomial of the chosen CRC polynomial. Hence it is not required to store the CRC generator matrix. 
· Searching the optimal CRC polynomial for best early termination is extremely simple. 
· The index position of the first CRC bit in the CRC codeword is just the Hamming weight of the last  coefficients of the parity check polynomial. 
· Thus it is easy to compare the Hamming weights of the last  coefficients of the candidate parity check polynomials, and pick the one that has lowest Hamming weight.
· Finding the positions of the distributed CRC bits is very simple.
· Good early termination effect is observed for selected CRC polynomials using the proposed interleaving. 
· The proposed method has less UER degradation.
· The interleaving pattern has nested property. Meaning, interleaver for short length can be easily generated from interleaver of longer length.  
· The proposed method is very low on complexity. It is possible to know everything about the interleaver just from the knowledge of the last  coefficients of the parity check polynomial.

4. Details of the proposed method

Step 1: Finding the parity check polynomial from the CRC generator polynomial
Let  denote a CRC polynomial of degree . The period  of  be defined as the least positive integer such that divides . Parity check polynomial  is defined as . Clearly, the degree  of  is equal to . 
Step 2: Constructing the parity check matrix H from the parity check polynomial
A parity-check matrix  for a CRC-encoded codeword of  bits ( information bits followed by  CRC bits) is given as shown in Fig. 1. The matrix can be simply generated by taking the coefficients of the last  terms of the parity check polynomial and putting it in the last row of . The  row from bottom () of the parity check matrix is obtained by shifting the last row (i.e.,  row) by s positions to the left. Thus, the parity check matrix has a very simple form whose any row can be directly computed from the last row. A simple example can be found in section 5 for further clear understanding. 
[image: ]
Fig. 1		Parity check matrix for CRC

Fig. 1 shows the general form of matrix  where  is the coefficient of  in  if , and 0 otherwise. Note that the submatrix of  consisting of the last  columns is lower triangular.

Step 3: (Interleaver design) Distributing the CRC bits in the CRC codeword
A parity-check matrix of a distributed CRC-encoded data can be obtained from  by applying an appropriate column permutation (interleaver). The column permutations are done as follows: 
The operation starts from the first (topmost) row of  and goes down till the last row, if we are interested in distributing all the CRC bits. If we are interested in distributing only CRC bits, then the operation can be stopped after  rows from the top. At first step, all the columns of  are selected that have a value 1 in the first row. All these rows are moved to the left of the matrix . Suppose there are  such columns; then we have obtained the first column of the permuted matrix  This concludes the operation on first row. For the second row, all the columns from the remaining  columns that have 1 in the second row are then moved next to the  columns. Suppose there are  such columns; then we have obtained the leftmost  columns of the matrix  Repeating this operation till the row, it is possible to obtain the column-permuted matrix  that can distribute  CRC bits. 
The column indices corresponding to the position of the last 1 in each of the  rows indicate the position of the   CRC bits.
For, further concreteness of understanding, an algorithm for generating an interleaver from the parity check polynomial is shown in Fig. 2. 

[image: ]
Fig. 2 Algorithm flowchart for generating the proposed interleaver pattern
The first parity check position in the distributed CRC encoded data is equal to the weight of the first row vector of. In general, for , the -th parity check position is , where  is given as follows:
[image: ]
	Remarks:
We note that the above interleaver  can also be obtained by a generator matrix approach [3] and it has the property that the ordering among CRC bits is invariant after interleaving. In the following we will restrict our attention to such interleavers in order to simplify the search of CRC polynomials (see section 6).
We also note that the interleaver  for a shorter length  can be obtained from the above interleaver  in the following way:
[image: ]
where is the integer sequence satisfying and  for .



5. Example
· CRC polynomial: 
· Number of CRC bits = 8
· Number of information bits: 30
· Period of : 127
· Parity-check polynomial: 
· Degree of : 119
· Length of CRC codeword = number of information bits + number of CRC bits = 30+8=38.
· The last row of  matrix is formed by the coefficients of last 38 terms of . Thus last row of  is given by  .
· Thus, parity-check matrix  is obtained as shown in Fig. 3. Basically the last row of  is left shifted by one position each time to obtain the upper rows. For instance, the second last row is obtained by left-shifting the last row by one position. The third last row is obtained by left shifting the last row by 2 positions and so on.
[image: ]
Fig. 3		Original parity check matrix  of the CRC code
· Column permutation on matrix  is done as described in step 3 of section 4. For instance, 13 columns (column indices 0,2,7,9,11,12,14,16,18,22,23,24,30) have 1 in the first row of . These 13 columns are shifted to the extreme left. From the remaining set of columns, those columns that have 1 in the second row, i.e., column indices 1,3,8,10,13,15,17,19,25,31 are selected and placed after the first 13 columns. This operation is repeated till the last column to distribute all CRC bits to the maximum extent possible. The obtained column-permuted matrix  is the parity-check matrix of the distributed CRC shown in Fig. 4.

[image: ]
Fig. 4		Column-permuted parity check matrix of the CRC code to distribute all CRC bits

· If distribution of only 3 bits is desired, then the operation explained above can be stopped after the first (topmost) 3 rows of . The resulting column-permuted matrix  is as shown in Fig. 5 below.

[image: C:\Users\0000011288435\Desktop\PolarCode_Survey\3GPP\2017_08_Prague\NEC_Tdocs\Picture2.png]
Fig. 5		Column-permuted parity check matrix of the CRC code to distribute 3 CRC bits

· The new index positions after column permutation (interleaving) can be found by comparing the columns of matrix  and . For instance, the 0th column of  is the 0th column of, the 1st column of  is the 2nd column of , the 3rd column of  is the 7th column of  etc.
As explained earlier, it can also be noted that the index position of the last 1 in each row represents the index of the distributed CRC bit. 

Thus, the interleaving pattern for a CRC codeword of length 30+8=38 with all CRC bits distributed to the maximum extent possible is as follows:

[image: ]
Again, the interleaving pattern for a CRC codeword of length 30+8=38 with 3 CRC bits distributed is as follows: 

[image: ]

A pictorial illustration of the interleaving pattern is shown in Fig. 6 for clarity in understanding. 

[image: ]
Fig.6 An exemplary interleaving pattern using K=30, no. of CRC bits .CRC polynomial used is . (a) shows distribution of as many CRC bits as allowed by the interleaver, (b) shows the distribution of only 3 CRC bits; remaining 5 CRC bits are left un-distributed.
6. Search of CRC polynomials of degree 19

The search of optimal CRC polynomial to encode K information bits is very simple as a brute-force search can be performed among all polynomials of the specified degree such that the Hamming weight of the coefficients of the last K terms of the corresponding parity check matrix is minimum. This condition will make sure that the first distributed CRC bit appears as early as possible after interleaving. Two examples of search operation using different sets of search criteria are shown below: 
[Search-1] Search conditions used in brute-force search: 
1. The degree of the CRC polynomial is 19; and the information length is 200 bits.
2. The period of the CRC polynomial is either  or .
3. The weight of the first row vector of  is less than or equal to 70.

There are 8 polynomials satisfying the above conditions. 
※The last polynomial was discussed and evaluated in R1-1711215.

Table 1: Search result 1 of brute-force search for CRC polynomials
[image: ]


	Remark: 
While 0xAAAAB has the least weight among all candidates, we found by simulations that it has poor UER performance.




[Search-2] Search conditions used in brute-force search: 
1. The degree of the CRC polynomial is 19; and the information length is 200 bits.
2. The period of the CRC polynomial is either  or .
3. ; This metric captures the gap between the positions of the CRC bits before and after interleaving; thus it indicates the extent to which the CRC bits get distributed (or pushed towards the front) post interleaving.

There are 10 polynomials satisfying the above conditions. 

Table 2: Search result 2 of brute-force search for CRC polynomials
[image: ]

The CRC polynomials ①, ②, ③, ④, ⑥, and ⑨ also appeared in Table 1. The CRC polynomial ⑧0xE18BB (highlighted in green in Table 2) has the best score among the candidates (not counting those that appeared in Table 1) and is observed to produce good performance. With improved search criteria, it may be possible to find better polynomials.

The interleaver distributing 3 CRC bits of the polynomial 0xE18BB (CRC bits are highlighted in bold):

[image: ]









For purposes of comparison, we also show the interleaver distributing 3 CRC bits of the polynomial 0xA2B79. 

[image: ]



7. Simulation Results

7.1 Evaluation of Undetected Error Rate 
The undetected error rate (UER) is defined here as the ratio of the number of the undetected error frames to the total number of decoding attempts, where the decoder input is assumed to be a transmitted codeword plus gaussian noise. Below, we present evaluations of the UER performance for 0xE18BB with an interleaver distributing 3 bits.


[image: ]
Fig.10 UER for 0xE18BB (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)


[image: ]
Fig.11 UER for 0xA2B79 (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)


7.2 Evaluation of Effectiveness of Early Termination 

We evaluate by simulations the complexity reduction ratio which is defined as the ratio of the average number of bits out of the  bits skipped by early termination (ET) events.

[image: ]

Fig.12 Complexity reduction ratio for 0xE18BB (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)

[image: ]

Fig.13 Complexity reduction ratio for 0xA2B79 (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)

Remark: From Fig.12 and 13, we can observe that polynomial 0xE18BB provides a better ET gain than 0xA2B79.


Obeservation1: Proposed interleaver with 3 CRC bits distributed out of 19 CRC bits of the polynomial 0xE18BB provides very good early termination.
Observation 2: Proposed interleaver is simple; only requires information of the last   coefficients of parity check polynomial.
Observation 3: Proposed interleaver has nested property; a short interleaved pattern can be easily obtained from a longer interleaved pattern. 
Observation 4: The search for good CRC polynomials to support high distribution (to support ET) is shown in a very structured way. 
Proposal 1: ET should be supported in polar codes such that interleaving does not degrade UER beyond acceptable limit. 
Proposal 2: Number of CRC bits that are distributed should be restricted less than a threshold so as to cause least harm to UER. 
Proposal 3: The proposed interleaver should be used for distributing the CRC bits to support ET.  



8. Appendix I (Other examples of interleavers for distributed CRC)

8.1 Distributing 6 CRC bits (CRC bits are highlighted in bold)

Interleaver for CRC=0xE18BB 
[image: ]


Interleaver for CRC=0xA2B79 
[image: ]

8.2 Distributing all CRC bits (CRC bits are highlighted in bold)

Interleaver for CRC=0xE18BB 
[image: ]




Interleaver for CRC=0xA2B79 
[image: ]

9. Appendix II (CRC polynomials listed in CRC polynomial Zoo)

The CRC polynomials listed in the CRC polynomial zoo [4] are studied below using our proposed interleaver. 
[image: ]
[bookmark: _GoBack]The two polynomials 0x80027 and 0x80029 highlighted in the above table may be good candidates which can balance UER/FAR performance and ET gain.
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CRC polynomial _| weight of 1% row of H “

0xDF6AF/0xF56FB 90/101 255/206

0x9013F/0xFC809 86/106 235/193 219 -1
0x81375/0AEC81 99/96 199/229 219 -1
0xDA267/0xE645B 99/99 206/209 219 -1
0x8BE39/0x9C7D1 107/112 163/142 219 -1
OxEAE7F/0XFE757 110/98 171/234 219 -1
0x9ED45/0xA2B79 90/95 268/201 219 -1
0x80027/0xE4001 89/98 338/214 219 -1
0x97599/0x99AE9 102/108 200/175 219 -1
OxEF61F/0xF86F7 104/99 157/198 219 -1

0x80029/0x94001 79/112 336/187 219 -1




