Page 1
3GPP TSG-RAN WG1 Meeting #90 	R1-1712334
Aug 21st – 25th, 2017
Prague, Czech Republic

[bookmark: Source]Agenda item:	6.1.4.2.1
Source: 	NEC Corporation
Title: 	Polar code construction with single CRC polynomial and interleaver
[bookmark: DocumentFor]Document for:	Discussion/Decision
1. Introduction
In RAN1 NR Ad-hoc#2 meeting, the following points were agreed upon regarding construction of polar codes.
	Agreement:
· All companies work together to design for the DL a Single CRC polynomial + Interleaver scheme to deliver early termination benefits while achieving the FAR (in presence of AWGN, and in presence of random QPSK, and undetected errors in intended user’s codeword), and BLER targets with acceptable complexity and latency.
· Working assumption that the CRC length is 19 bits, to be finalised as part of the design, taking into account the number of blind decodes or hypotheses to be tested.
· Longer CRCs will be considered if required to meet the FAR target
· For DL for K+nFAR>=12, and for UL where K+nFAR>22, J+J’ = nFAR + 3
· For UL, where 12<=K+nFAR<=22, J+J’ = nFAR + 6, comprising 3 parity bits and nFAR + 3 additional CRC bits
Note: K is the number of payload information bits without CRC or parity bits
Note: nFAR may be zero in some circumstances.
Note: UE specific scrambling is not precluded and will be considered separately.
Agreement:
For UL, where 12<=K+nFAR<=22, J+J’ = nFAR + 6, 3 PC bits are generated according to the following steps:
1. Encode K info bits to K+nFAR+3 CRC encoded bits,
· FFS the nFAR+3 CRC bit locations
2. Select K’ = K+nFAR+6 most reliable bit positions
3. Select 3 PC bits from the K’ reliable positions
· The most reliable n positions with wmin, where
· wmin is the minimum row weight (as defined in R1-1706193) of the K+nFAR+3 most reliable positions within the K’ reliable positions, where n is given by:
· n=1 if M-K-nFAR>192
· n=0 otherwise
· 3-n positions selected in least reliable positions within the K’ reliable positions.
4. Working Assumption: The value of the PC bits is obtained from a length-5 cycle shift register as in R1-1706193

Following the agreement, we document the results of our investigation on polar code construction to support early termination using a single CRC polynomial and interleaver in this contribution.
2. Background so far

· K information bits can be first encoded using a single CRC polynomial of bits to generate a CRC-encoded codeword of length . This CRC codeword of length can then be encoded using the method of polar encoding.

· It is well-understood that if the CRC bits are appended to the end of the information bits, then the CRC bits are less effective for early termination (a mechanism of terminating the decoding operation midway when decoding failure occurs during SC/SCL decoding of polar codes). Hence RAN1 agreed to use an interleaver for distributing at least some of the CRC bits within the information bits in such a way that those CRC bits can be used for checking decoding failure triggering a termination of the decoding process earlier than its timely ending.

· It was agreed that companies in RAN1 should work together to design a CRC polynomial and its suitable interleaving method such that early termination benefits are obtained while achieving the ① FAR target, ② BLER target at ③ acceptable complexity and ④ latency.

3. Proposal overview

3.1 Proposed method
· Step1: Find the parity check polynomial from the selected CRC polynomial. Form an array using the coefficients of the last terms of the parity-check polynomial. Store this array in memory.

· Step 2: The array stored in step1 forms the last row of the parity check matrix . The second last row of is obtained by left shifting the last row by 1 position. In general, the row from bottom () of the parity check matrix is obtained by shifting the last row (i.e., row here) by positions to the left. Thus, the parity check matrix has a very simple form whose any row can be directly computed from the array stored in step1.

· Step3: (Interleaver design) Simple column permutations on the parity check matrix gives us the interleaved CRC bit positions. The position of the last 1 in each row indicates the index position of the CRC bits. The simplest way of column permutation is explained below. The operation starts from the first (topmost) row of matrix and can be performed till the last row (if all the CRC bits have to be distributed). If only bits out of the CRC bits need to be distributed, then the operation can be stopped after rows from the top of matrix. For clear understanding of the operation, please see step 3 of Section 4 and the example in Section 5.
· All columns of that have 1 in the first row are moved to the left of . Assume there are such columns. Thus forming a string of consecutive 1s at the extreme left of 1st row.
· From the remaining columns of , all those columns that have 1 in the second row are moved next to the columns. Let there be such columns. Thus by the end of second step, the first columns of the permuted matrix is obtained.
· Continuing in a similar fashion for each row till the last row, those columns from the remaining set of columns that have 1 in the row are arranged towards the left.
· Say, the column permuted matrix is . Then by comparing the new positions of columns in with the original positions of the columns in , the interleaving pattern is obtained.
 3.2 Benefits of the proposed method
· The proposed method requires storing only the last coefficients of parity check polynomial of the chosen CRC polynomial. Hence it is not required to store the CRC generator matrix.
· Searching the optimal CRC polynomial for best early termination is extremely simple.
· The index position of the first CRC bit in the CRC codeword is just the Hamming weight of the last coefficients of the parity check polynomial.
· Thus it is easy to compare the Hamming weights of the last coefficients of the candidate parity check polynomials, and pick the one that has lowest Hamming weight.
· Finding the positions of the distributed CRC bits is very simple.
· Good early termination effect is observed for selected CRC polynomials using the proposed interleaving.
· The proposed method has less UER degradation.
· The interleaving pattern has nested property. Meaning, interleaver for short length can be easily generated from interleaver of longer length.
· The proposed method is very low on complexity. It is possible to know everything about the interleaver just from the knowledge of the last coefficients of the parity check polynomial.

4. Details of the proposed method

Step 1: Finding the parity check polynomial from the CRC generator polynomial
Let denote a CRC polynomial of degree . The period of be defined as the least positive integer such that divides . Parity check polynomial is defined as . Clearly, the degree of is equal to .
Step 2: Constructing the parity check matrix H from the parity check polynomial
A parity-check matrix for a CRC-encoded codeword of bits (information bits followed by CRC bits) is given as shown in Fig. 1. The matrix can be simply generated by taking the coefficients of the last terms of the parity check polynomial and putting it in the last row of . The row from bottom () of the parity check matrix is obtained by shifting the last row (i.e., row) by s positions to the left. Thus, the parity check matrix has a very simple form whose any row can be directly computed from the last row. A simple example can be found in section 5 for further clear understanding.
[image:]
Fig. 1		Parity check matrix for CRC

Fig. 1 shows the general form of matrix where is the coefficient of in if , and 0 otherwise. Note that the submatrix of consisting of the last columns is lower triangular.

Step 3: (Interleaver design) Distributing the CRC bits in the CRC codeword
A parity-check matrix of a distributed CRC-encoded data can be obtained from by applying an appropriate column permutation (interleaver). The column permutations are done as follows:
The operation starts from the first (topmost) row of and goes down till the last row, if we are interested in distributing all the CRC bits. If we are interested in distributing only CRC bits, then the operation can be stopped after rows from the top. At first step, all the columns of are selected that have a value 1 in the first row. All these rows are moved to the left of the matrix . Suppose there are such columns; then we have obtained the first column of the permuted matrix This concludes the operation on first row. For the second row, all the columns from the remaining columns that have 1 in the second row are then moved next to the columns. Suppose there are such columns; then we have obtained the leftmost columns of the matrix Repeating this operation till the row, it is possible to obtain the column-permuted matrix that can distribute CRC bits.
The column indices corresponding to the position of the last 1 in each of the rows indicate the position of the CRC bits.
For, further concreteness of understanding, an algorithm for generating an interleaver from the parity check polynomial is shown in Fig. 2.

[image:]
Fig. 2 Algorithm flowchart for generating the proposed interleaver pattern
The first parity check position in the distributed CRC encoded data is equal to the weight of the first row vector of. In general, for , the -th parity check position is , where is given as follows:
[image:]
	Remarks:
We note that the above interleaver can also be obtained by a generator matrix approach [3] and it has the property that the ordering among CRC bits is invariant after interleaving. In the following we will restrict our attention to such interleavers in order to simplify the search of CRC polynomials (see section 6).
We also note that the interleaver for a shorter length can be obtained from the above interleaver in the following way:
[image:]
where is the integer sequence satisfying and for .

5. Example
· CRC polynomial:
· Number of CRC bits = 8
· Number of information bits: 30
· Period of : 127
· Parity-check polynomial:
· Degree of : 119
· Length of CRC codeword = number of information bits + number of CRC bits = 30+8=38.
· The last row of matrix is formed by the coefficients of last 38 terms of . Thus last row of is given by .
· Thus, parity-check matrix is obtained as shown in Fig. 3. Basically the last row of is left shifted by one position each time to obtain the upper rows. For instance, the second last row is obtained by left-shifting the last row by one position. The third last row is obtained by left shifting the last row by 2 positions and so on.
[image:]
Fig. 3		Original parity check matrix of the CRC code
· Column permutation on matrix is done as described in step 3 of section 4. For instance, 13 columns (column indices 0,2,7,9,11,12,14,16,18,22,23,24,30) have 1 in the first row of . These 13 columns are shifted to the extreme left. From the remaining set of columns, those columns that have 1 in the second row, i.e., column indices 1,3,8,10,13,15,17,19,25,31 are selected and placed after the first 13 columns. This operation is repeated till the last column to distribute all CRC bits to the maximum extent possible. The obtained column-permuted matrix is the parity-check matrix of the distributed CRC shown in Fig. 4.

[image:]
Fig. 4		Column-permuted parity check matrix of the CRC code to distribute all CRC bits

· If distribution of only 3 bits is desired, then the operation explained above can be stopped after the first (topmost) 3 rows of . The resulting column-permuted matrix is as shown in Fig. 5 below.

[image: C:\Users\0000011288435\Desktop\PolarCode_Survey\3GPP\2017_08_Prague\NEC_Tdocs\Picture2.png]
Fig. 5		Column-permuted parity check matrix of the CRC code to distribute 3 CRC bits

· The new index positions after column permutation (interleaving) can be found by comparing the columns of matrix and . For instance, the 0th column of is the 0th column of, the 1st column of is the 2nd column of , the 3rd column of is the 7th column of etc.
As explained earlier, it can also be noted that the index position of the last 1 in each row represents the index of the distributed CRC bit.

Thus, the interleaving pattern for a CRC codeword of length 30+8=38 with all CRC bits distributed to the maximum extent possible is as follows:

[image:]
Again, the interleaving pattern for a CRC codeword of length 30+8=38 with 3 CRC bits distributed is as follows:

[image:]

A pictorial illustration of the interleaving pattern is shown in Fig. 6 for clarity in understanding.

[image:]
Fig.6 An exemplary interleaving pattern using K=30, no. of CRC bits .CRC polynomial used is . (a) shows distribution of as many CRC bits as allowed by the interleaver, (b) shows the distribution of only 3 CRC bits; remaining 5 CRC bits are left un-distributed.
6. Search of CRC polynomials of degree 19

The search of optimal CRC polynomial to encode K information bits is very simple as a brute-force search can be performed among all polynomials of the specified degree such that the Hamming weight of the coefficients of the last K terms of the corresponding parity check matrix is minimum. This condition will make sure that the first distributed CRC bit appears as early as possible after interleaving. Two examples of search operation using different sets of search criteria are shown below:
[Search-1] Search conditions used in brute-force search:
1. The degree of the CRC polynomial is 19; and the information length is 200 bits.
2. The period of the CRC polynomial is either or .
3. The weight of the first row vector of is less than or equal to 70.

There are 8 polynomials satisfying the above conditions.
※The last polynomial was discussed and evaluated in R1-1711215.

Table 1: Search result 1 of brute-force search for CRC polynomials
[image:]

	Remark:
While 0xAAAAB has the least weight among all candidates, we found by simulations that it has poor UER performance.

[Search-2] Search conditions used in brute-force search:
1. The degree of the CRC polynomial is 19; and the information length is 200 bits.
2. The period of the CRC polynomial is either or .
3. ; This metric captures the gap between the positions of the CRC bits before and after interleaving; thus it indicates the extent to which the CRC bits get distributed (or pushed towards the front) post interleaving.

There are 10 polynomials satisfying the above conditions.

Table 2: Search result 2 of brute-force search for CRC polynomials
[image:]

The CRC polynomials ①, ②, ③, ④, ⑥, and ⑨ also appeared in Table 1. The CRC polynomial ⑧0xE18BB (highlighted in green in Table 2) has the best score among the candidates (not counting those that appeared in Table 1) and is observed to produce good performance. With improved search criteria, it may be possible to find better polynomials.

The interleaver distributing 3 CRC bits of the polynomial 0xE18BB (CRC bits are highlighted in bold):

[image:]

For purposes of comparison, we also show the interleaver distributing 3 CRC bits of the polynomial 0xA2B79.

[image:]

7. Simulation Results

7.1 Evaluation of Undetected Error Rate
The undetected error rate (UER) is defined here as the ratio of the number of the undetected error frames to the total number of decoding attempts, where the decoder input is assumed to be a transmitted codeword plus gaussian noise. Below, we present evaluations of the UER performance for 0xE18BB with an interleaver distributing 3 bits.

[image:]
Fig.10 UER for 0xE18BB (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)

[image:]
Fig.11 UER for 0xA2B79 (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)

7.2 Evaluation of Effectiveness of Early Termination

We evaluate by simulations the complexity reduction ratio which is defined as the ratio of the average number of bits out of the bits skipped by early termination (ET) events.

[image:]

Fig.12 Complexity reduction ratio for 0xE18BB (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)

[image:]

Fig.13 Complexity reduction ratio for 0xA2B79 (3-bit CRC distribution; K=80,120,200; R=1/6, 1/3, 1/2, 2/3)

Remark: From Fig.12 and 13, we can observe that polynomial 0xE18BB provides a better ET gain than 0xA2B79.

Obeservation1: Proposed interleaver with 3 CRC bits distributed out of 19 CRC bits of the polynomial 0xE18BB provides very good early termination.
Observation 2: Proposed interleaver is simple; only requires information of the last coefficients of parity check polynomial.
Observation 3: Proposed interleaver has nested property; a short interleaved pattern can be easily obtained from a longer interleaved pattern.
Observation 4: The search for good CRC polynomials to support high distribution (to support ET) is shown in a very structured way.
Proposal 1: ET should be supported in polar codes such that interleaving does not degrade UER beyond acceptable limit.
Proposal 2: Number of CRC bits that are distributed should be restricted less than a threshold so as to cause least harm to UER.
Proposal 3: The proposed interleaver should be used for distributing the CRC bits to support ET.

8. Appendix I (Other examples of interleavers for distributed CRC)

8.1 Distributing 6 CRC bits (CRC bits are highlighted in bold)

Interleaver for CRC=0xE18BB
[image:]

Interleaver for CRC=0xA2B79
[image:]

8.2 Distributing all CRC bits (CRC bits are highlighted in bold)

Interleaver for CRC=0xE18BB
[image:]

Interleaver for CRC=0xA2B79
[image:]

9. Appendix II (CRC polynomials listed in CRC polynomial Zoo)

The CRC polynomials listed in the CRC polynomial zoo [4] are studied below using our proposed interleaver.
[image:]
[bookmark: _GoBack]The two polynomials 0x80027 and 0x80029 highlighted in the above table may be good candidates which can balance UER/FAR performance and ET gain.
References
1. 3GPP, Chairman's Notes, RAN1 Ad hoc NR#2, Qingdao, China, June 2017.
1. R1-1711215	Qualcomm Incorporated, 3GPP TSG-RAN WG1 NR Ad-Hoc#2, June 2017.
1. R1-1708833 Nokia, Alcatel-Lucent Shanghai Bell, 3GPP TSG RAN WG1 #89, May 2017.
1. P. Koopman, CRC Polynomial Zoo, https://users.ece.cmu.edu/~koopman/crc/crc19.html

image1.png
hm—n+r

hm—n+2

hm—n+1

(=]

image2.png
hm—n+r—i+j =17 and
j & {m(0),n(1),...,n(t—1)}?

Yes No

J<K+1?

No

i<r' —17?

je]

Yes

Yes

+1;

No

Ift <n—1,then
(k) «min{j |j #w(i),0<i<k}
fork=t,t+1,...n—1

-

output
{n(0),7(1),..,m(n— 1)}

i+1;

image3.png
di=#{jlhj=Lh=hyy=-=hy,;=0m-n+r—i<j<m}

image4.png
n'(j) = n(i]-) —(n—n"),

image5.png
10100001010110101010001110000010000000
11010000101011010101000111000001000000
01101000010101101010100011100000100000
00110100001010110101010001110000010000
10011010000101011010101000111000001000
11001101000010101101010100011100000100
01100110100001010110101010001110000010
00110011010000101011010101000111000001

image6.png
11111111111110000000000000000000000000
10000100001101111111111000000000000000
01011011100101000100010111100000000000
01000110000000101011110001011110000000
10001001110000100110000111000101110000
10100111001001000001100100011100101100
01000000110111010111000010010001101010
01110011101010100000111000001001001001

n(H) =

image7.png
n(H) =

11111111111110000000000000000000000000
10000100001101111111111000000000000000
01011011100101000100010111100000000000
01000110000000101011110001010110010000
10001001110000100110000111001011001000
10100111001001000001100100010111100100
01000000110111010111000010011001100010
01110011101010100000111000001100100001

image8.png
0 27 911 12 14 16 18 22232430 1 3 8 10 1315
17 19 25 31 4 20 26 32 5 21 27 33 6 28 34 29 35 36 37

image9.png
0 27 911 1214 16 18 22232430 1 3 8 1013 15
17 19 2531 4 2026 32 5 6 21 27 28 29 33 34 35 36 37

image10.png
olnla|ale|o|N|jloja|dw|[v|=|o

—
o

-
(@]

-
o

—_
~

-
[0}

-
o

N
o

N
-

N
N

N
w

N
g

N
a

N
o

N
~

N
©

N
©

(@)

©o| N | o

=N
N

14
16
18
22
23
24

NN N

21
27

N N

olnl2|alo|e|Njoja|dw|d|=|o

N
SN

N
(&)}

-
o

-
~

-
oo

-
©

N
o

N
-

N
N

N
w

N
i

N
o

N
»

N
By}

N
©

N
©

(b)

©o| N | o

—_
—_

14

16

image11.png
CHSNONGNCN®RCONC)

0x80083
0x8888d
0x9AF13
0xA2A29
0xA3451
0xAAAAB
0xB972F
0xE3423
0xA2B79

- CRC polynomial weight of 15t row of H

66
66
69
69
69
65
70
69
95

Period
218 —1
219 -1
219 -1
218 —1
218 —1
219 -1
219 -1
219 -1
219 -1

image12.png
@ 0x8888d 66

@ 0x9AF13 611 219 1 69

©] 0xA3451 481 218 1 69

@ O0XAAAAB 567 219 1 65

® 0xB697D 476 219 -1 79

® 0xB972F 537 219 1 70

@ 0xC353B

0xE3423

® 0xXE38B9 486 219 1 81

image13.png
0
39
64
95

148
1"
76

167
70
22
82

133

160

184

210

3
40
65
97

149
13
85

169
73
28
83

134

161

185

211

4
41
66
99

150
15
87

176
7
29

103

135

162

186

212

5
43
67

100
165
20
96
193
88
33
104
136
163
187
213

8
44
68
M
166

24

98
195
102

34
105
137
164
188
214

9
45
7
112
168

26
101
198
117

38
106
141
171
189
215

10
46
75
113
175
31
114
201
120
53
107
146
172
190
216

12
48
84
115
192
36
116

127

54
108
147
173
191
217

14
49
86
118
194
42
119

140

55
109
153
174
203
218

18
50
89
121
196
47
122
16
145
56
110
154
178
204

19
57
90
123
197
51
124
21
152
74
128
155
179
205

23
58
91
125
199
59
126
27
170
78
129
156
180
206

25
60
92
138
200
63
139
32
177
79
130
157
181
207

30
61
93
142

69
144
37
202
80
131
158
182
208

image14.png
27
62
88
122
164
189
42
98
150
16
99
12
153
210

2
28
63
92
129
165
190

45
102
157

22
112

37
154
211

4
29
64
93

130

166

196
51

104

160
36

117
38

155

212

5
30
65
94
131
168
198

54
107
167

43
121

47
162
213

7
31
66
97
133
169
200

57
111
170

46
124

48
172
214

8
32
68

101
137
173

60
114
175

52
135

49
193
215

9
33
7

103
140
174

67
116
177

55
139

91
194
216

13
34
73
106
143
176

69
120
180

58
142
100
195
217

14
39
74
106
144
178
10
72
123
182
61
151
118
203
218

17
41
75
108
146
179
15
76
132
184
70
158
125
204

18
44
78

109

147

181
19
80

134

191
77

161

126

205

20
50
79
110
149
183
21
83
138
197
81
171
127
206

23
53
82
113
156
186
25
86
141
199
84
185
128
207

24
56
85
115
159
187
35
89
145
201
90
192
136
208

image15.png
Undetected Error Rate

1.0E-04

8.0E-05

6.0E-05

4.0E-05

0.0E+00

SNR (dB)

—8-K=80; R=2/3;

—8—K=80; R=1/6;

—A—K=120; R=2/3;
—4—K=120; R=1/2;
—4—K=120; R=1/3;
—4—K=120; R=1/6;
—-K=200; R=2/3;
—8-K=200; R=1/2;
—-K=200; R=1/3;
—&-K=200; R=1/6;

6.0

image16.png
Undetected Error Rate

1.0E-04

8.0E-05

6.0E-05

4.0E-05

0.0E+00

SNR (dB)

—8-K=80; R=2/3;
—-K=80; R=1/2;
—@-K=80; R=1/3;
—8-K=80; R=1/6;
—A—K=120; R=2/3;
——K=120; R=1/2;
—A—K=120; R=1/3;
—A—K=120; R=1/6;
~B-K=200; R=2/3;
—-K=200; R=1/2;
-B-K=200; R=1/3;
—8-K=200; R=1/6;

6.0

image17.png
Complexity Reduction Ratio (Early Termination)

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

2.0 0.0
SNR (dB)

2.0

4.0

6.0

—8-K=80; R=2/3;
—@-K=80; R=1/2;
—8-K=80; R=1/3;
—@-K=80; R=1/6;
—A—K=120; R=2/3;
—A—K=120; R=1/2;
—A—K=120; R=1/3;
—A—K=120; R=1/6;
—-K=200; R=2/3;
—-K=200; R=1/3;
—B-K=200; R=1/2;
—-K=200; R=1/6;

image18.png
Complexity Reduction Ratio (Early Termination)

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%

-6.0

-2.0 0.0
SNR (dB)

2.0

4.0

6.0

—@—-K=80; R=2/3;
—8-K=80; R=1/2;
—8-K=80; R=1/3;
—8—K=80; R=1/6;
—A—K=120; R=2/3;
—4—K=120; R=1/2;
—A—K=120; R=1/3;
—A—K=120; R=1/6;
—-K=200; R=2/3;
—-K=200; R=1/3;
—-K=200; R=1/2;
—-K=200; R=1/6;

image19.png
0
39
64
95

148
1"
76

167
70
22
29

155

133

181

210

3
40
65
97

149
13
85

169
73
28
34

173

134

182

211

4
41
66
99

150
15
87

176
7
33
54

180

135

183

212

5
43
67

100
165
20
96
193
88
38
79
205
136
184
213

8
44
68

M
166
24
98
195
102
53
104
56
137
185
214

9
45
7
112
168

26
101
198
117

74
129

81
156
186
215

10
46
75
113
175
31
114
201
120
78
147
82
157
187
216

12
48
84
115
192
36
116

127
103
154

83
158
188
217

14
49
86
118
194
42
119

140
128
172
106
159
189
218

18
50
89
121
196
47
122
16
145
141
179
107
160
190

19
57
90
123
197
51
124
21
152
146
204
108
161
191

23
58
91
125
199
59
126
27
170
153
55
109
162
206

25
60
92
138
200
63
139
32
177
171
80
110
163
207

30
61
93
142

69
144

37
202
178
105
131
164
208

image20.png
27
62
88
122
164
189
42
98
150
16
99
12
126
210

2
28
63
92
129
165
190

45
102
157

22
112

37
153
211

4
29
64
93
130
166
196

51
104
160

36
17

47
194
212

5
30
65
94
131
168
198

54
107
167

43
121

91
204
213

7
31
66
97
133
169
200

57
M
170

46
124
100

49
214

8
32
68

101
137
173

60
114
175

52
135
118
127
215

9
33
7

103
140
174

67
116
177

55
139
125
154
216

13
34
73
105
143
176

69
120
180

58
142
136
195
217

14
39
74
106
144
178
10
72
123
182
61
151
152
205
218

17
41
75
108
146
179
15
76
132
184
70
158
162
128

18
44
78
109
147
181
19
80
134
191
e
161
172
155

20
50
79
110
149
183
21
83
138
197
81
171
193
206

23
53
82
113
156
186
25
86
141
199
84
185
203
207

24
56
85
115
159
187
35
89
145
201
90
192
38
208

202

209

image21.png
0
39
64
95

148
1"
76

167
70
22
29

155

157

135

164

3
40
65
97

149
13
85

169
73
28
34

173

182

160

189

4
41
66
99

150
15
87

176
7
33
54

180

207

185

214

5
43
67

100
165
20
96
193
88
38
79
205
83
210
190

8
44
68

M
166
24
98
195
102
53
104
56
108
136
215

9
45
7
112
168

26
101
198
117

74
129

81
133
161
191

10
46
75
113
175
31
114
201
120
78
147
106
158
186
216

12
48
84
115
192
36
116

127
103
154
131
183
211
217

14
49
86
118
194
42
119

140
128
172
156
208
137
218

18
50
89
121
196
47
122
16
145
141
179
174
109
162

19
57
90
123
197
51
124
21
152
146
204
181
134
187

23
58
91
125
199
59
126
27
170
153
55
206
159
212

25
60
92
138
200
63
139
32
177
171
80
82
184
163

30
61
93
142

69
144

37
202
178
105
107
209
188

35

94
143

72
151
52

203
130
132
110
213

image22.png
CRC polynomial _| weight of 1% row of H “

0xDF6AF/0xF56FB 90/101 255/206

0x9013F/0xFC809 86/106 235/193 219 -1
0x81375/0AEC81 99/96 199/229 219 -1
0xDA267/0xE645B 99/99 206/209 219 -1
0x8BE39/0x9C7D1 107/112 163/142 219 -1
OxEAE7F/0XFE757 110/98 171/234 219 -1
0x9ED45/0xA2B79 90/95 268/201 219 -1
0x80027/0xE4001 89/98 338/214 219 -1
0x97599/0x99AE9 102/108 200/175 219 -1
OxEF61F/0xF86F7 104/99 157/198 219 -1

0x80029/0x94001 79/112 336/187 219 -1

